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Abstract—Efficiently deploying deep learning (DL) algorithms
on different hardware backends has become a time-consuming
challenge. Achieving ultimate inference efficiency on hardware
requires both algorithm-level model compression techniques, such
as model quantization, and hardware-level optimization, such
as operation reconfiguration and scheduling. In this article, we
propose BAQE, a unified deployment framework that bridges
the gap between algorithm-level and backend-level optimization.
By constructing a global search space, we can synchronously
optimize both the model quantization settings and backend
configuration parameters. To accelerate this laborious and time-
consuming process, we propose a searching strategy based on
multiobjective Bayesian optimization (BO) using a Gaussian
model with deep kernel learning as the surrogate model. More
importantly, BAQE can easily adapt to various backends with
different hardware resources efficiently and effectively. Each
inner step of the optimization process is aware of the genuine
hardware resources, ensuring that all accuracy/latency metrics
and historical knowledge/feedback are evaluated directly on the
device within each iteration. Empirical results demonstrate that
our approach achieves both superior inference time and accuracy
with a faster optimization process.

Index Terms—Hardware-aware acceleration, model quantiza-
tion, neural network compression.

I. INTRODUCTION

MODEL quantization has emerged as a highly effective
strategy for accelerating DNN inference using lower-

numerical precision. In practical deep learning (DL) scenarios,
such as autonomous driving and VR/AR technology, quanti-
zation enables deployment without requiring changes to the
original architecture.

Quantization, compared to other DNN model compression
techniques like model pruning or knowledge distillation, is
generally more dependent on hardware. The hardware support
for quantized data types strongly influences the available
quantized bit-width candidates and acceleration ratio. For
example, NVIDIA’s Ampere GPU architecture with third
generation tensor core provides unprecedented acceleration for
tensor operations at Int1/4/8, bfloat16, and FP16 precision.
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Fig. 1. Current quantization model deployment is a 2-stage flow composed
of quantization at the model level and compilation optimization at the backend
level. PTQ/QAT denote post-training quantization and quantization aware
training. Decoupling these two steps may lead to potential unexplored search
space. Each “Bit setting” denotes a bit-width assignment for layers in the
model.

On the other hand, ARM Neon with its single instruction
multiple data (SIMD) architecture can support 8, 16, 32,
and 64-bit vector operations. Additionally, the effectiveness
of quantization on acceleration may vary depending on the
available hardware resources. With versatile bit-width support
of advanced hardware, algorithm designers have more flexibil-
ity to apply mixed-precision quantization for different layers.
Many previous works [1], [2], [3], [4], [5], [6], [7] have dug
into this direction to find the optimal bit-width setting for each
layer of a DNN model.

However, selecting bit-width and tuning the model is not
the final stage in the real scenario of quantization deployment.
As shown in Fig. 1, a complete deployment flow includes
the important stage of backend configuration optimization
on specific backends. This is a crucial step to fully utilize
the hardware resources on the device and to explore for
higher-inference efficiency. Hence, it is necessary to propose
a compilation method to map the quantized DNN model into
a series of backend-level kernels to launch.

Although some researchers [1], [8], [9], [10], [11] have tried
to introduce hardware information into the quantization stage,
these hardware-aware approaches still mainly focus on the
quantization stage with only bit-width selection as the objec-
tive. Some works simply insert indirect constraints/limitations
to their quantization objective, such as the number of opera-
tions, number of memory references, etc. The study [12] has
shown that computation amount (FLOPS/BOPs), parameter
numbers, or memory accesses of the model may not be good
proxies for inference latency. For example, quantization can
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(a) (b)

Fig. 2. Inference latency comparison with example model Resnet-50 and
data type in Int4, Int8, and Int32. Red dotted line indicates the speed-up ratio
from quantization, which differs for Jetson Orin NX and RTX 3070. Speed-
up from quantization on NX is marginal and Int8 inference is even slightly
faster than Int4. In comparison, the RTX3070 speed-up is more noticeable.
(a) Jetson orin NX. (b) RTX 3070.

affect the memory alignment, which relates to the inference
latency but is hard to analyze statically through the proxies.
On the other hand, backend configuration search space is
related to and varies along with the predetermined model
bit-width setting. As visualized in the lower area in Fig. 1,
decoupling these two stages may result in inadequate search,
where some subspace on backend and quantization bit-setting
combination are unexplored, which may possibly result in
suboptimal deployment results.

Another challenge of existing quantization methods is
transferability. The same quantization scheme may show
different speed-up ratios on different hardware backends,
as shown in Fig. 2, which indicates potential bias when
transferring quantization configuration to different backends.
Most previous works leave the necessity to genuinely evaluate
the real performance of the quantized model on different
hardware backends. HAQ [13] relies on a simulator to
retrieve the power/latency of an FPGA-based accelerator.
HAWQ-V3 [11]‘s ILP solver requires precollected latency, bit
operations count, as well as the Hessian score of each kernel
on specific hardware. They avoid it because exploration is
time-consuming, considering the large search space and huge
time cost per evaluation. First, mixed precision search space
has complexity O(kn), where k is the number of bit candidates
supported by the backend and n is the number of layers in
the model. Moreover, for each bit-width configuration, the
deployment flow requires backend-level compilation of the
loop scheduling parameters and data layout, which is also a
time-consuming process.

Given these challenges, we propose BAQE framework to
reconstruct the quantization deployment flow to simultane-
ously search for quantization bit-width settings and backend
configuration. First, we built a unified search space, including
model-level and backend-level parameters. To realize the goal
of adapting to different hardware backends, we assume that no
prior knowledge of the backend is available in our scenario.
First, we use the transductive experimental design (TED)-
based-sampling strategy to coarsely sample from the search
space as the initial data points. Afterward, we evaluate the
initial sample to fit a Gaussian process (GP) with deep
kernel learning (DKL-GP) as our surrogate model. Then we
build multiobjective Bayesian optimization (BO) to efficiently
search for better-bit-width settings and backend configuration
together. At each searching iteration, we auto-tune the scaling

Fig. 3. Example of flatten 2-D convolution workload partition on CUDA
programming architecture with hierarchical parallelism. 2-D matrix operations
are split into tiles, which are assigned to multiple thread blocks in GPU device.

factor and model weight as well as loop scheduling parameters
with a small batch of calibration data to test the potential
performance of each sampled candidate.

The contribution of this article is listed as follows.
1) We discuss the backend adaption challenge for DNN

quantization deployment and propose BAQE to bridge
the gap between algorithm-level and backend-level
optimization.

2) A unified search space is built to synchronously optimize
both the model quantization bit-width setting and back-
end configuration parameters together.

3) A two-stage searching strategy is proposed to efficiently
reach the optimal solution in the unified search space
without prior backend information.

4) Experiments show that our approach achieves superior
inference time and accuracy tradeoff and quickly reaches
Pareto optimality.

II. PRELIMINARIES

A. DNN Model Quantization

The key idea of quantization is to replace the numerical
representation FP32 with half-precision FP16 or even Int8/Int4
form, which is commonly formulated as

quantize(r) = round(r/S)− Z (1)

where quantize(·) denotes the quantization operation: the
original weight/activation r in FP32 precision is first scaled
with a real value factor S and then rounded to the nearest
integer value (with truncation). Z is the integer value zero point
to calibrate the mapping value shift from floating to integer
range.

Many previous works, such as [11], [14], [15], [16], [17],
[18], [19], and [20], have utilized weights or activation
quantization in low-bit precision. Among various approaches,
integer quantization has shown prominent efficacy in real
deployment scenarios for its hardware friendliness. In general,
fixed-point arithmetic operations, such as multiplication and
addition, are much simpler and faster with only shift and
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Fig. 4. Overview of the framework of BAQE. Our framework searches for bit-width settings b and backend configuration parameters hp (loop scheduling
parameters) simultaneously. Quantization scaling factor s and network parameters are tuned on the device at each searching step.

add, casting off time-consuming steps, such as normalization,
de-normalization, or exponent alignment in floating point
arithmetic.

Quantization may possibly lead to accuracy degradation,
especially for layers that are sensitive to the precision deduc-
tion. Mixed-precision [1], [2], [3], [4], [5], [6], [7] approaches
have been proposed to compensate for this problem by assign-
ing different bit precision for each layer. This fine-grained
bit-width distribution leads to a precision assignment problem,
where the number of choices grows exponentially as the
network grows deeper. Wu et al. [21] used the differentiable
NAS (DNAS) method to fastly select the bit candidates
while [1] chose bit-width based on the trace of the Hessian
matrix. Yao et al. [11] used integer learning programming to
optimize bit-width.

B. Hardware-Aware Quantization

One of the ultimate goals of DNN quantization is to improve
inference latency, which is strongly hardware-dependent.
Many methods [1], [8], [9], [10], [11] considered hard-
ware resource limit and reformulated this into a constrained
optimization problem. The objective becomes minimizing,
such as information loss or accuracy degradation, while
maintaining memory/speed metrics, such as model size or
GFLOPs. Wang et al. [13] used reinforcement learning (RL) to
determine the bit-width setting while mapping to a simulator
to retrieve energy/latency feedback. Yao et al. [11] extended
the awareness by directly compiling all layers at each bit-width
on hardware to get real latency before precision selection.

C. Hardware Backend Deployment Optimization

Nowadays, most DL layers are dense tensor operations that
can be decomposed into multilevel for-loop representation.
The original execution order of these loops may not reach the
utmost utilization of computation units or memory bandwidth.
Many approaches, such as loop reordering, loop unrolling,
or loop tiling, can enhance execution efficiency or reduce
memory cache miss. The same effect occurs if the data layout

is transformed to align with the loop order. In the case of
the GPU Backend, the selection on “tile size” is the number
of parallel threads assigned to each CUDA block to execute,
which needs to be properly selected to balance communication
and parallelism as shown in Fig. 3.

Rescheduling these loops with the operations above can
search for the optimal backend configuration by reorganizing
the low-level implementation. Several approaches [22], [23],
[24], [25], [26], [27] in the DNN compilation field have
proposed automatically tuning these backend parameters. Chen
et al. [22], [23] first used a simulated annealing (SA) algorithm
as a search strategy. Mu et al. [24] and Zheng et al. [26] used
guided genetic algorithm and evolution search to explore the
backend configuration search space.

III. METHODOLOGY

A. Overview of BAQE Framework

Fig. 4 visually describes the framework of BAQE. First,
we build a unified large search space in Section III-B with
model-level/backend-level parameters to optimize. Second, a
TED-based method is applied in Section III-C as the initial
step to generate initial samples on bit-width b and backend
configuration parameters hp that widely spread in the search
space. Afterward, BAQE utilizes multiobjective BO algorithm
to search for optimal b and hp (Section III-D). All performance
feedback is evaluated on the device with automatic deployment
and tuning at each iteration (Section III-F).

B. Unified Global Search Space

The unified global search space S is expanded from the
original mixed-precision space to

S = (b1, b2, . . . , bl, w1, w2, . . . , wl

s1, s2, . . . , sl, hp1, hp2, .., hpj) (2)

where b: [b1, b2, . . . , bl]� are the bit-width of each layer l to
quantize and s: [s1, s2, . . . , sl]� are the corresponding scaling
factors. w: [w1, w2, . . . , wl]� are the model weights. hp:
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Fig. 5. Example of pseudo implementation of the 2-D convolution kernel.
Annotations in red color denote backend-level optimization methods on this
multiloop code piece, which can increase parallelism or optimize memory
read/write efficiency.

[hp1, hp2, .., hpj]� denotes the backend configuration param-
eters, including loop orders, tiling size, and data layout. This
new search space is more comprehensive with extended vari-
ables, whereas also more complicated. Here, the b1, b2, . . . , bl

and hp1, hp2, .., hpj are discrete variables while s1, s2, . . . , sl

are continuous. In correspondence, our framework chose both
auto-tuning and discrete sampling strategies.

Concerning the algorithm-level search space, the bit-width
b: [b1, b2, . . . , bl]� selection range for each layer encompasses
Int4, Int8, and Float32, maintaining a discrete and uniform
framework across all layers in all models. As outlined in
the initial manuscript, all three platforms are equipped with
GPU architectures featuring third generation tensor cores
that facilitate Int4/Int8 quantized inference, while retain-
ing the original Float32 as a viable option. Each layer i
possesses its individual bit-width selection denoted by bi,
as referenced in Section III-B. The search space for scal-
ing factors s1, s2, . . . , sl and model parameter weights w:
[w1, w2, . . . , wl]� comprises floating-point variables with con-
tinuous exploration within the range of [FP32min, FP32max].

To clarify what backend configuration parameters hp rep-
resents, Fig. 5 is the visualization of a 2-D convolution. As
depicted in Fig. 5, reordering the loop topology enables the
inner loops to fetch and compute consecutive data on memory
without affecting the output value, therefore, relieving memory
pressure as the cache miss rate is reduced. Data layout with
dimension “nchw” renders more efficient memory fetch when
loop on Hin/Win is inside loop Cin. Loops can also be unrolled
into tiles of multithreads and mapped to hardware thread
blocks for parallel execution, as shown in Fig. 3.

In the context of hardware-level exploration, the search
space presents greater complexity, prompting the utilization of
abstract notation hp1, hp2, . . . , hpj as detailed in Section III-B.
To elucidate further, the hardware configuration search space
mirrors that of AutoTVM [22], encompassing an array of
discrete or binary variables. Illustrated in Fig. 5, for each
layer, the initial variable pertains to data layout, with dis-
crete options nhwc, nchw, hwcn representing memory data
arrangement. Additionally, tile size variables for width, height,
and channel dimensions of each layer li: [tilew, tileh, tilec]i
are discrete integers within ranges like 1, 2, . . . , wi. Other
hardware variables for each layer li consist of a binary variable
indicating the use of tensor cores: 1, 0. For CUDA program
generation, variables, such as CUDA block size and CUDA
thread number within each block, are represented as 3-D

variables [bx, by, bz, tx, ty, tz]i. Finally, the execution order of
loops in each layer encompasses all permutations of execution
variables denoted by [n, tilew, tileh, tilec, bx, by, bz, tx, ty, tz]i.
The unrolling factor, with a search range of [0, 1, . . . f max],
enables loop level unfolding for parallelism during the com-
pilation stage, with a maximum threshold set at 512.

C. TED-Based Initial Sampling

As we introduced above, BAQE is a backend-adaptive
framework where backend domain knowledge is not available.
Considering the scenario that no domain-specific knowledge
of input hardware backend is available at the beginning
stage, collecting genuine latency/accuracy data with online
tuning/evaluation is inevitable. Therefore, the acceleration
burden on the optimization flow falls to efficient sampling
and searching.

TED is an efficient sampling strategy to optimize the
sample quality for regression without label/prediction value of
the sample data, which aligns with our problem background
because the hardware platform is a opaque system with no
prior knowledge. The main objective of experimental design
is to select a set of candidates {(b, hp)0, (b, hp)1, . . . , } that
are maximally informative. Here, we denote each candidate as
x

xi =
[
b�, hp�

]
i
= [

b1, b2, .., bl, hp1, hp2, . . . , hpj
]
. (3)

Suppose we are trying to build a linear regression of [b, hp]
on performance y, which can be formulated as

min
w

�(w) =
m∑

i=1

(
w�xi − yi

)2 + μ‖w‖2. (4)

Here, m is the number of samples, w is the regression
weight, and μ is a regularization coefficient. Given maximum
likelihood estimate ŵ = argminw�(w), the estimation error
w− ŵ has 0 mean and covariance σ 2Cw. Here, σ is a constant
and Cw is the inverse Hessian of �(w)

Cw =
(

[B, HP]�[B, HP]+ μI
)−1

=
(

X�X + μI
)−1

(5)

where all m sampled bit-width and backend parameters are
X = [x1, x2, . . . , xm]. Note that the covariance indicates the
confidence of the estimation. Higher confidence means higher
informativeness of sampled data. In other words, maximizing
the trace Tr(Cw) can lead to higher informativeness. However,
one of the potential flaws is that Cw may not align with the
quality of all other data points to search.

When sample m candidate (b, hp) from search space S, let
V = [v1, v2, v3, . . . , ]� denotes all data points to search, each
vi is a (b, hp) bit-width/backend configuration combination.
The regression error of predicted performance on V is σCV
where

CV = VCwV�

= V
(

[B, HP]�[B, HP]+ μI
)−1

V�

= V
(

X�X+ μI
)−1

V�. (6)
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Algorithm 1 TED-Based Initial Sampling
1: Input: Bit/backend parameters space S, regularization

coefficient μ, sample size m.
2: Output: Sample X with |X| = m.
3: X← ∅, V← S;
4: K← Kij = k(vi, vj),∀vi, vj ∈ V;
5: for i in range(0, m) do
6: x∗ ← argmaxx∈VTr(KVx(Kxx + μI)−1KxV);


 KVx, Kxx, KxV are from rows/columns of K
7: X← X ∪ x∗, V← V\x∗;
8: K← K − Tr(KVx∗(Kx∗x∗ + μI)−1Kx∗V);
9: end for

10: Return X;

TABLE I
VARIABLE DEFINITION AT INITIAL SAMPLING STAGE

With the original goal of optimizing sample informative-
ness, we replace the Cw and switch to minimize trace of CV . In
addition, we try to add nonlinearity with a kernel function k:
k(xi, xj) = [(‖xi − xj‖2)/2σ 2], replacing original sample data
matrix with element distance. In the covariance matrix, all data
points V is replaced with KVX that (KVX)ij = k(vi, xj). The
sample product X�X is replaced with KXX where (KXX)ij =
k(xi, xj). Then our initial sampling objective becomes

max
X

Tr
(

KVX(KXX + μI)−1KXV

)

s.t. X ⊂ V, |X| = m. (7)

After deriving the optimization objective, the initial
sampling strategy of BAQE is constructed and listed in
Algorithm 1. In order the further illustrate the initial sampling
clearly, here we necessarily list definitions of all variable
notations in Table I. Note that here the kernel function k(·, ·)
is replaceable with any nonlinear distance function. The initial
sampling of BAQE iteratively chooses the most informative
bit-width/backend parameters to sample x∗ while dynamically
updating K for each iteration.

In real implementation, the dimension of K and V are not
constructed by traversing the complete search space, as this
would not be practical or feasible in real applications. The
construction of the target data matrix V is instead done using a
very first batch of 500 representative samples from the search
space. This initial batch is likely chosen to capture the diversity
and distribution of the overall search space, acting as a good
proxy for the full dataset. Similarly, the initial sampling of
10 points for the K matrix is selected from among these
500 batch representatives. This ensures that the K matrix, of
size 500× 500, spans a meaningful subspace of the overall
search space. The target data X will then be a 500 × dimx

matrix, where dimx is the dimensionality of the input data.
By constructing K and V in this way, we can efficiently
approximate the full search space without the need to traverse
it exhaustively. This makes the algorithm scalable and practical
for real-world applications where the full search space may be
prohibitively large or inaccessible.

D. Multiobjective Exploration

Once the initial dataset of (b, hp) is collected, we then
explore the search space. It is nontrivial to obtain optimal
quantized bit widths and backend configuration parameters to
tradeoff the on-device inference time, accuracy, and model size
within a limited time budget. The reason lies in two folds.
First, the concrete form f between a post-quantized DNN
model and its on-device inference time and model accuracy is
complex and unknown. Second, tuning and evaluating a DNN
model’s accuracy takes some time. We propose multiobjective
exploration based on BO to solve the problem. BO consists
of a surrogate model and an acquisition function. The initial
dataset generated from the proposed algorithm (Section III-C)
is used to build the surrogate model. The GP is often chosen as
the surrogate model to represent the concrete form f mentioned
earlier. The acquisition function guides the multiobjective
exploration direction. It decides which candidate solutions (bit
widths and loop scheduling parameters) should be applied
for the DNN model based on predictions from the surrogate
model. So, we can only evaluate the quantized DNN model’s
on-device inference time, accuracy, etc., with the candidate
solution to save the overall exploration runtime. BO selects
a new candidate solution iteratively. Next, we illustrate our
proposed surrogate model and the acquisition function for
multiobjective exploration.

Surrogate Model: Regarding the exploration focusing on
multiobjectives, we propose the DKL-GP as the surrogate
model. Without loss of generality, suppose a set of candidates
X = {x1, x2, . . . , xn}, where xi = (b, hp)i. Each candidate xi

is applied to the DNN model, and the corresponding metrics,
such as on-device inference time, model accuracy, and size,
are defined as Y = (y1, y2, . . . , yn)

�, where yil refers to the
value of the ith input xi for lth metric. DKL-GP places a GP
prior fl for these metrics, respectively, as shown in

yil ∼ N
(

fl(xi), σ
2
l

)
(8)

where σl is the variance for the lth metric. We define a positive
semi-definite matrix Kf as the interobjective similarities and
Kx as the covariance function over the input xi. The interob-
jective similarity demonstrates an observation of one metric
can affect the predictions of another metric. For example, a
DNN model with a large size often incurs a high-on-device
inference time due to more computations required. DKL-GP
models correlations between metrics with

cov
(
fl(x), fk(x′)

) = Kf
lkKx(x, x′

)
(9)

where Kf
lk characterizes the interobjective similarities between

metrics l and k. Introducing (9) in DKL-GP helps to capture
correlations between metrics [28]. And these correlations are
important in trading off the on-device inference time, model
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Fig. 6. 2-D visualization of the idea of Pareto hypervolume (PV) and EPVI.

accuracy, and size in the exploration procedure. For example,
given a new input x∗, DKL-GP predict its metric mean values
with

fl
(
x∗

) =
(

Kf
·l ⊗ Kx(x∗, X)

)�
�−1Y

� = Kf ⊗ Kx(X, X)+ D⊗ I (10)

where Kf
·l denotes the lth column of Kf , ⊗ is the Kronecker

product, D is the diagonal matrix in which the diagonal ele-
ments are σ 2

l , and I is the identify matrix. We stack multilayer
perceptrons to parameterize the kernels for Kf and Kx. The
formulated deep kernels are more robust than previous kernel
formulations like automatic relevance determinant (ARD).
Equation (11) shows the example deep kernels

cov
(
x, x′

) = σ 2 exp
(
−β��−1β

)

β = (
φ(x,www)− φ

(
x′,www

))
(11)

where www denotes weights of multilayer perceptrons, and φ are
nonlinear transformations.

Acquisition Function: BAQE chooses the expected improve-
ment of Pareto hypervolume (EPVI) as the acquisition function
to guide the multiobjective search. During the BO process,
the performance evaluation on bit-width b and backend con-
figuration parameters hp includes on-device inference time,
accuracy, and model size. However, the GP can only handle
a single performance metric as evaluation. Given such a
situation, we determine to formulate a new objective that is
sufficient to cover all three dimensions of the objective. This
is somewhat tricky as all these three factors are negatively
correlated. For example, compressing the model size or bit-
width may lead to accuracy loss. Increasing accuracy with
higher-precision costs higher-inference latency. In this way,
our optimization goal switch from co-optimization to finding a
good tradeoff point with overall optimality. In BAQE, we pick
the EPVI as the acquisition function to efficiently guide the
optimization process to the Pareto frontier of three objectives.

We demonstrate the idea of Pareto Hypervolume and EPVI
in Fig. 6 with a 2-D visualization. Given a reference point pref
in the 3-D space of (accuracy, latency, model size) denoted
as �(x, y, z), Pareto Hypervolume is the “half-arch” space
bounded by pref and the optimal points (blue dots in Fig. 6) on
Pareto frontier P. Such space volume is a Lebesgue measure of
the Pareto optimality of 3 dimensions, which is formulated as

PV�(P, pref) =
∑
p∈�

⎡
⎣1(p � pref)

⎡
⎣1−

∏
p′∈P

1
(
p � p′

)
⎤
⎦

⎤
⎦ (12)

where 1(·) is 1 if the statement is true and 0 otherwise. “�”
denotes “better or equal” at all three dimensions. The PV
bound by pref is the green area in Fig. 6. pref is manually
selected on space �.

With the definition of PV, the improvement of Pareto
hypervolume (PVI) is rather clear, namely, the optimality/PV
increased from a new positive sample point p+ in �, that
surpasses the old frontier (red area in Fig. 6)

PVI�
(
P, pref, p+

) = PV�

(
P ∪ p+, pref

)− PV�(P, pref) (13)

while the EPVI is

EPVI�(P, pref) = Ep+|�
[
PVI�

(
P, pref, p+

)]

=
∑

p+∈�
Prob

(
p+|�) · PVI�

(
P, pref, p+

)
. (14)

Our acquisition function is built based on (14) to select
the point p+ that maximizes the expected improvement.
Probability Prob(p+|�) is modeled as the multiobjective GP
for (accuracy, latency, model size). BAQE optimizes by itera-
tively selecting x∗ from candidates X such that the likelihood
of DKL-GP f (·) is maximally increased

x∗ = argmax
f (x)=p+

EPVI�(P, pref). (15)

E. Complete Exploration Flow

In addition to the visualization and description on each
component above, we illustrate more on the complete flow
description here. The multiobjective exploration of BAQE is
shown in Algorithm 2.

First, the TED-based initial sampling generate the first batch
Xinit as the training dataset to fit the DKL-GP surrogate model.
In our experiments, the selection on the initial sample size
m is not stressful, any number larger than 10 shows well
convergence. In our case, we choose 10 as m for both cases
of benchmark model: Resnet-18 and Resnet-50. As discussed
in Section III-C in this article, the TED-based sampling
maximizes the trace KVX(KXX + μI)−1KXV , which indirectly
minimize the covariance of the performance regression model.
From a high-level understanding, this step will reduce the
prediction uncertainty of the regression model with a more
sparse sampling on the search space S.

Afterwards, the BO process keeps sampling among the
all candidates V, picking the sample (b, hp) combination
with maximized expected Pareto hypervolume improvement.
Each candidate is embedded with a multilayer perceptron
model φ(·). In our experiment, this multilayer perceptrons
φ(·) is composed of four linear layer with the first three
layers followed with a ReLU layer to break the linearity. The
embedding dimensions of each linear layer are 1000, 500,
50, and 48. Each candidate x is embedded as feature before
calculating the covariance in DKL-GP.
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Algorithm 2 BAQE Complete Exploration Flow
1: Input: Bit/backend parameters space S, Stopping iteration

number N, initial smaple size m, regularization coefficient
μ.

2: Output: Pareto optimal solution set Xoptim.
3: X← ∅, V← S;
4: //Initial sampling
5: (b, hp)← TED(S, μ, m);
6: Take Xinit ← (b, hp) as initial set and deploy on board to

evaluate on-device performance Yinit;
7: Y← Yinit, X← Xinit;
8: //Remove initial samples from
candidates

9: V← V\Xinit;
10: //Multi-objective BO iterations
11: for i = 1← N do
12: Fit DKL-GP on Y and X;
13: x∗ ← argmaxx∈VEPVI(x|V);
14: on-device performance y∗ ← Auto-deploy&tuning
15: // Add the new sample from

candidates
16: X← X ∪ x∗, Y← Y ∪ y∗;
17: V← V\x∗;
18: end for
19: Construct Pareto frontier and select Pareto optimal Xoptim

from X;
20: Return Xoptim;

TABLE II
VARIABLE DEFINITION AT BAQE COMPLETE FLOW

F. Automatic Deployment and Tuning

At each BO iteration, a data sample x = (b, hp) is
derived from a large number of sample candidates. However,
weight w and scaling factor s are still at the initial value. At
each iteration, BAQE tunes the continuous w0, w1, . . . , wl and
s0, s1, . . . , sl. To attain performance feedback with genuine
evaluation, BAQE inserts automatic deployment and tuning at
each sampling stage to update w and s. We refuse to fine-tune
with fake quantization because simulated quantization usually
shows a large accuracy bias as networks go deep.

Our framework is not restricted to PTQ or QAT. Our
implementation follows baseline’s QAT scheme for fair com-
parison. During tuning, only a small batch of calibration data
is sufficient (0.01% of ImageNet). The fine-tuning stage does
not necessarily need to be thorough. We only need an indicator
of on-device performance as feedback instead of a well-trained
model. In addition, we can also further tune the backend-level
parameters during the on-device compilation and execution.

TABLE III
NORMALIZED SEARCHING RESULTS ON RESNET-18

TABLE IV
NORMALIZED SEARCHING RESULTS ON RESNET-50

In the end, BAQE omits some explored (b, s, w, hp) for given
hardware backend, with vairable definition in Table II.

The hardware support of the specific tensor virtual machine
(TVM) version utilized in this study has been thoroughly
examined. the platform is capable of supporting both ARM
and X86 CPU architectures, as well as CUDA-based GPUs.
Furthermore, the integration of low-level virtual machine
(LLVM) suggests the potential for adaptation to a wider
range of heterogeneous accelerators. This broad hardware
compatibility is a crucial factor, as it enables the deployment
of the proposed solution across a diverse set of computing
environments.

Given that the backend optimization process is grounded
in the TVM framework, we can reasonably conclude that
the search and co-optimization stages can be effectively
implemented without the need for extensive customization.
By leveraging the off-the-shelf toolkit provided by TVM, we
can capitalize on the established optimization algorithms and
techniques, thereby streamlining the development process and
ensuring the robustness of the proposed solution.

IV. EXPERIMENTS

Platforms: We evaluate the performance of all benchmark
models on three different level platforms. The first one is
System-on-Module (SoM) edge device NVIDIA Jetson Orin
NX with 16-GB LPDDR5 RAM. This device is built on
NVIDIA’s Ampere architecture with 1024 CUDA cores and
32 tensor cores. It has a 8-core ARM Cortex-A78E CPU and
three power mode: 10 W/15 W/20 W. For fair comparison,
all experiments in this article are conducted on 15-W mode.
The second platform is PC device with 14-core Intel i7-
12700H CPU and 64-GB RAM. The PC device is equipped
with NVIDIA RTX3070 GPU at 130-W power, which is also
built on Ampere architecture with 5160 CUDA cores and
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(a) (b) (c)

Fig. 7. Comparison of performance of searched samples. Blue dots denote all Pareto optimal points, which is a projection from (Accuracy, Latency, Size)
to (Accuracy, Latency). Red dots are found in Pareto points by searching. Gray dots denote searched suboptimal points that are not on the Pareto frontier.
Our BAQE found the most optimal points within the same search time. (a) Random search. (b) SA + XGBoost. (c) Ours.

184 tensor cores and 8-GB GDDR6 RAM on board. The
last platform is a server platform with 10-core Intel Xeon
4210R CPU and 128-G RAM. It is equipped with NVIDIA
RTX 3090 GPU with power 350 W, which is also on Ampere
architecture and has 10496 CUDA cores and 328 tensor cores
with 24-GB RAM on board. In our implementation, we choose
all three platforms with GPU on the same architecture so
they have the same computation units, such as CUDA core
and tensor core, but differ in quantities. In this way, they
can support same bit-with types and handle the same bit-
width with same computations to eliminate other environment
variance. We decided to use the 15-W power setting as
it offered a fair basis for comparison among the available
options (10 W, 15 W, 20 W) for all our experiments. We also
examined the model’s inference speed across these power
settings and observed that higher power resulted in faster
processing speeds, not affecting the performance finding in
this work.

Dataset: We use ImageNet-1K as the dataset for both
training and evaluation on the classification task. For fair
accuracy evaluation, we use all 50 000 images in the validation
set to test Top-1 score. For auto-tuning on model weight and
scaling factor during optimization. We use only 0.01% of the
training set for Resnet-18 and 0.05% for Resnet-50. For final
evaluation on the quantized performance, we use the complete
ImageNet-1K evaluation set.

QAT/PTQ: We chose QAT in practice but only slightly tune
the model. We use 0.01% of ImageNet for Resnet-18 (0.05%
for Resnet-50) with batch size 128 and LR 0.0001 for 1 epoch.
It is decoupled from the exploration stage. Such small size can
also be calibration set for PTQ as well.

Implementation Details: We choose the most commonly
deployed model: Resnet-18 and Resnet-50, as the benchmark
model. We build our BAQE framework using BOTorch and
TVM [22], and we extend TVM [22] framework with the third
gen. Tensor core support and more bit-width (Int4, Int8, FP32,
and Int32) to enable practical mixed-precision quantization.
In our implementation, each layer’s weight and activation
value are always at the same precision to align with genuine
mul/add calculations on hardware. All accuracy Top-1 score
and latency, including the baseline methods, are obtained in
our own platform and environment for fair comparison.

The proposed algorithm can be applied to a range of
DNN architectures beyond just ResNet, including other pop-
ular CNN models like [29] and InceptionV3 [30]. The

TABLE V
SEARCHING COMPARISON ON RESNET-18 WITH/WITHOUT TED-BASED

INITIAL SAMPLING. TRIAL NUMBER IS 40 FOR ALL EVALUATIONS HERE.
“10+ 30” TRIAL NUMBER INCLUDE 10 FOR TED-BASED INITIAL

SAMPLING AND 30 FOR FOLLOWING DKL-GP SEARCH

TABLE VI
SEARCHING COMPARISON ON RESNET-50 WITH/WITHOUT TED-BASED

INITIAL SAMPLING. TRIAL NUMBER IS 40 FOR ALL EVALUATIONS HERE.
“10+ 30” TRIAL NUMBER INCLUDE 10 FOR TED-BASED INITIAL

SAMPLING AND 30 FOR FOLLOWING DKL-GP SEARCH

results demonstrate consistent performance improvements
across different model sizes. We choose ResNet-18 and
ResNet-50 to align with the baseline HAWQ-V3 and to
show the performance on models with different sizes. There
is a common problem for all quantization techniques for
Transformer-based models. Transformer-based models have
more nonlinear layers, and the Softmax layer within each
transformer block is particularly problematic. The computation
of Softmax, σ(zi) = (ezi/[

∑J
j=1 ezj ]), involves an exponential

operation, whose output value is very sensitive to the input
of the exponent. Small value changes caused by quantization
noise can lead to significant accuracy drops. Given the same
quantization problem setting, the performance drop is signifi-
cant on both the baseline and our methods. Many techniques
have been proposed recently to address this, including custom
data types with more exponent representation or new hardware
modules. However, these are beyond the scope of this article.

A. Search Strategy Analysis

We evaluate BAQE’s search efficiency in bit-width and
backend configuration optimization with both visual and
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TABLE VII
PERFORMANCE COMPARISON WITH SOTA HAWQ-V3 [11] IN MODEL SIZE (MB), INFERENCE LATENCY (MS), AND TOP-1 SCORE (%)

numerical comparisons. We record the first thirty sampling
trials. Our baseline methods include random search in our
unified search space and SA with XGBoost as the performance
prediction model, which is the strategy of TVM [22].

Visual Analysis: As a visual demonstration, we choose
the most representative Jetson Orin NX as backend and
evaluate the search process on Resnet-18. We record the first
thirty sampling trials. For clear visualization, we use the 2-D
coordinate with latency and Top-1 score. As shown in Fig. 7,
our BAQE search strategy can reach the most optimal bit-
width and backend configurations with inference speed and
accuracy. Even the rest suboptimal points are near the frontier,
which indicates that BAQE possesses better-searching quality.

Numerical Analysis: We conduct numerical comparisons
to evaluate both search quality and efficiency. To show the
adaptiveness and generality of BAQE, we evaluate all three
backends and two benchmark models in Tables III and IV.
For efficiency, we collect normalized search time of collecting
the same number of optimal points. We collect the number of
Pareto optimal points within thirty trials for quality evaluation.
In addition, we calculate another metric: the average distance
of to reference set (ADRS). ADRS indicates how far the
sample performance �Y are away from the Pareto frontier
points P

ADRS(Y,P) = 1

|Y|
∑
p∈Y

min
p′∈P

D
(
p, p′

)
(16)

where D denotes Euclidean distance in the performance space.
Results in Tables III and IV show that our method is superior
in efficiency and quality.

Search Time Cost: BAQE has a fixed search time budget
of 40 trials (10 from initial TED and 30 from BO process).
In comparison, conventional baselines takes ILP + collecting
real latency of each layer/bit pair, of which time complexity is
O(kn). BAQE holds the search time advantage. The searching
process itself is rather fast, costing less than 1 min overhead.
On the other hand, the compilation time cost at each iteration
can be reduced given that a semi-optimized set of parameters
are provided with searching algorithm.

Ablation on TED-Based Initial Sampling: Ablation on TED-
Based Initial Sampling. In order to discuss the importance of
TED-based initial sampling and the contribution of this step to
the modeling effectiveness of the surrogate model, we conduct
an ablation study to evaluate the search without TED-based
sampling. As a fair comparison, we directly conduct the exact

TABLE VIII
COMPARISON WITH MULTIPLE BASELINES IN MODEL SIZE (MB),

INFERENCE LATENCY (MS), AND TOP-1 SCORE (%) FOR

RESNET-50 ON RTX3090 (SERVER)

same deep-kernel-learning GP to explore the design space for
the same number of trials. At the end, we list the search result
comparison in Tables V and VI. We have conducted the same
search process on the same three backends and two benchmark
networks. The result on the Pareto-optimal points collected
within 40 trials demonstrates the efficiency, indicating how far
the searching process can reach the most optimal solutions.
In Tables V and VI, the numbers clearly show that TED-
based initial sampling helps the searching stage to find more
optimal points, therefore demonstrating a positive effect on the
modeling of the DKL-GP process.

B. Quantization Performance Analysis

We compare the performance of Pareto points of
BAQE and the-state-of-the-art hardware-aware quantization
HAWQ-V3 [11] on all three backends with on-device infer-
ence speed and accuracy in Table VII. HAWQ-V3 [11] uses
the bit-width setting generated with ILP solver. Note that our
search strategy output a group of samples on the Pareto frontier
with optimal performance tradeoff. For each benchmark and
backend, we list three samples with different performances in
accuracy, speed, and model size, indicating BAQE’s searching
efficiency and ability. For a fair comparison, we compare with
HAWQ-V3 [11] with our Pareto set in hypervolume, which is
defined in Section III-D, we set the reference point as (0, 0, 0)

and normalized the final value. As shown in Table IX, BAQE
surpasses baseline with 6%–96% improvement.

More importantly, this result table aligns with our assump-
tion: given different backends, higher latency does not
necessarily lead to a slower inference. The interference of
backend configuration breaks the linear relations between
these metrics. Results also verify our statement that indirect
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(a) (b) (c)

Fig. 8. 3-D performance distribution of all (b, hp) on three different backends with benchmark model Resnet-18. (a) Jetson Orin NX. (b) PC + RTX 2030.
(c) Server + RTX 3090.

TABLE IX
COMPARISON IN NORMALIZED HYPERVOLUME

metrics, such as the number of parameters, and FLOPs/BOPs
are not trustworthy indicators; on-device evaluation with the
ultimate feedback, such as on-device latency and accuracy,
reflects the real performance. Other baselines are compared
in Table VIII, we can tell that HAWQ-V3 remains the most
performant baseline on the three objectives. Other baselines
like HAQ or AdaRound require specific hardware or have
adaptive bias terms, which add overhead and hinder infer-
ence latency. They also cannot go through normal backend
optimization for proper latency evaluation.

To further investigate into the quantized model performance
on real hardware and the relative performance, we collect the
quantized model bit-width distribution of all optimal solutions
in Table VII. As we looked into the Pareto-optimal results,
nearly all layers seem to tend tohquantize to Int8 or Int4.
This finding is within our anticipation as model parameters
in 8-bit integer are usually capable of containing enough
information with lossless compression and significant speed-
up. For Resnet-18, we have notice that the average ratio for
Int4 is 49.1%, the average ratio for Int8 is 50.8% on Jetson
NX. On the on RTX 3070 (PC), the average ratio for Int4
is 44.0%, the average ratio for Int8 is 56.0%. On RTX 3090
(Server), the average ratio for Int4 is 43.8%, the average ratio
for Int8 is 56.1%. From this trend we can tell that the ratio of
lower-bit-width (Int4) roughly equals to the higher-bit-width
(Int8) when the hardware resources are limited. The ratio of
lower bits slightly decrease as hardware resource limit relaxes.
For larger model Resnet-50, on Jetson NX, the average ratio
for Int4 is 48.4%, the average ratio for Int8 is 51.5%. On
the RTX 3070 (PC), the average ratio for Int4 is 49.03%, the
average ratio for Int8 is 50.96%, which are quite similar. the

TABLE X
EXAMPLE COMPARISON OF LATENCY WITH/WITHOUT LOOP-LEVEL

OPTIMIZATION ON ORIN NX

ratio only decreases when it comes to RTX 3090 (Server), the
average ratio for Int4 is 43.8%, the average ratio for Int8 is
56.20%. As we compare in terms of model size, we notice that
the ratio of lower-bit-widths decreases later when the model
is bigger. This is an intuitive conclusion such the bottleneck
turns from compute-bound to memory-bound as the hardware
resource becomes sufficient.

Ablation on hp Optimization: In order to justify our moti-
vation that hardware parameter optimization is essential as
well as bit-width during quantization, we also conduct ablative
study with/without loop-level optimization in Table X.

C. Pareto Optimality Analysis

Given the performance visualization in 2-D projection on
(Accuracy, Latency) space to show the performance distri-
bution as well as the searched optimal samples with Pareto
optimal performance. The original 3-D performance distribu-
tion in the search space is visualized here in Figs. 8 and 9.
The notations are the same as in the main paper where blue
dots denote all Pareto optimal points and red dots are found
in Pareto points by searching. Gray dots denote searched
suboptimal points that are not on the Pareto frontier. The
performance distribution of the target data from the unified
search space in the 3-objective performance space appears
highly disordered and sparse. This indicates the importance of
selecting proper candidate solutions within the search space
during deployment, highlighting the necessity of efficient
design space exploration at this step. Second, aside from the
“accuracy” and “model size” dimensions, the points in the
“latency” dimension exhibit a blocking relationship, such that
the points in the front physically block the points behind
them when visualized. Careful examination of the color-coded

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 22,2025 at 09:37:20 UTC from IEEE Xplore.  Restrictions apply. 



1404 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 4, APRIL 2025

(a) (b) (c)

Fig. 9. 3-D performance distribution of all (b, hp) on three different backends with benchmark model Resnet-50. (a) Jetson Orin NX. (b) PC + RTX 2030.
(c) Server + RTX 3090.

(a) (b) (c)

Fig. 10. Relation of latency and model size for all (b, hp) on three different backends with benchmark model Resnet-18. (a) Jetson Orin NX. (b) PC + RTX
2030. (c) Server + RTX 3090.

(a) (b) (c)

Fig. 11. Relation of latency and model size for all (b, hp) on three different backends with benchmark model Resnet-50. (a) Jetson Orin NX. (b) PC + RTX
2030. (c) Server + RTX 3090.

points can help delineate their relative positions. Third, while
the readers may not need to determine the precise position
of each individual point, the contrast between the sparse gray
dots and the distribution of the Pareto-optimal points provides
a general understanding of the Pareto frontier. The blue points
represent the existing frontier, while the red points denote
the searched optimal solutions, which appear to be relatively
spread out on the frontier rather than centralized around a
single corner.

Note that we have claimed the point in both introduction and
experiments that model size does not guarantee the indication
on performance but only a metric on the memory consumption.
On-device performance is usually affected by many reasons

especially when the hardware resources are limited. Here, we
plot the relation of latency in Figs. 10 and 11. We can tell
that latency and model show slight positive relation with large
variance. As the hardware sources shrink (from server to edge
device Jetson NX), such positive relation is fading. This aligns
with our claim that using model size as indirect speed or
latency indicator is not a valid choice. On-device evaluation
is necessary.

V. CONCLUSION

In this article, we discuss the several challenges of the
current quantization methodology in a real deployment sce-
nario. Decoupling quantization and deployment may cause
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some search space unexplored. In addition, we also stress the
inevitability of on-device evaluation because of the factor of
backend configuration. To mitigate the problems, we propose
a backend-adaptive DNN deployment framework to realize
synchronous algorithm-level and backend-level optimization
as a thorough solution for quantization deployment. We unify
the model-level and backend-level search space and design a
multiobjective search strategy to efficiently find the optimal set
of bit-width settings and backend configurations. Experiments
not only verify our proposition but also demonstrate the
efficiency and effectiveness of our framework.
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