
586 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024

GTCO: Graph and Tensor Co-Design for
Transformer-Based Image Recognition

on Tensor Cores
Yang Bai , Xufeng Yao, Qi Sun , Member, IEEE, Wenqian Zhao , Shixin Chen , Zixiao Wang,

and Bei Yu , Senior Member, IEEE

Abstract—Deep learning frameworks or compilers optimize the
operators in computation graph using fixed templates via signifi-
cant engineering efforts, which may miss potential optimizations
such as operator fusion. Therefore, automatically implementing
and optimizing the emerging new combinations of operators on
a specific hardware accelerator is of importance. In this article,
we introduce GTCO, a tensor compilation system designed to
accelerate transformer-based vision models’ inference on GPUs.
GTCO tackles the operator fusion techniques in the transformer-
based model using a novel dynamic programming algorithm and
proposes a search policy with new sketch generation rules for
the fused batch matrix multiplication and softmax operators.
Tensor programs are sampled from an effective search space, and
a hardware abstraction with hierarchical mapping from tensor
computation to domain-specific accelerators (Tensor Cores) is for-
mally defined. Finally, our framework can map and transform
tensor expression into efficient CUDA kernels with hardware
intrinsics on GPU. Our experimental results demonstrate that
GTCO improves the end-to-end execution performance by up to
1.73× relative to the cutting-edge deep learning library TensorRT
on NVIDIA GPUs with Tensor Cores.

Index Terms—Compilation, GPU acceleration, operator fusion,
tensor core, transformer.

I. INTRODUCTION

RECENT years have witnessed the success of deep learn-
ing in the industry-scale application, ranging from lan-

guage translation, virtual reality, and recommendation systems
to computer vision and autonomous driving. In particular,
convolutional neural networks (CNNs) remain dominant in
computer vision [2], [3], [4], [5]. Despite their significant
success, attention has been increasingly focused on integrat-
ing self-attention techniques with CNN-based models [6],
inspired by their success in neural language processing (NLP).
Many model architectures have entirely replaced CNNs with
transformer-based models [7], promoting the further applica-
tion of these models in various vision tasks [8], [9], [10], [11].
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This trend paves the way for using a unified transformer
architecture in future research developments.

Deep learning models, whether they are traditional CNNs or
transformer architectures, can be represented as directed acyclic
computation graphs (DAGs). Each node in the DAG represents
an operator, and edges denote the relationship between two
connected operators. DAGs are currently scheduled to hardware
accelerators, such as GPUs [12], [13], [14], [15], [16], [17],
FPGAs [18], and ASICs [19] through popular frameworks,
such as Caffe [20], TensorFlow [21], and PyTorch [22], using
vendor-provided libraries, such as MKL-deep neural network
(DNN) [23], ARM-Compute Library [24], and cuDNN [25] to
achieve efficient model deployment.

Optimizing the performance of different operators with
diverse hardware platforms requires a significant engineer-
ing effort when using these vendor-provided libraries. As a
result, researchers and engineers often concentrate on enhanc-
ing the performance of compute-intensive primitives, such
as GEMM and convolution, which are frequently employed
in CNN architecture. Alternatively, they turn to a search-
based compilation approach [26], [27] that involves separating
kernel definition from computation scheduling to automat-
ically generate tensor programs. While prior research has
primarily focused on optimizing the deployment of CNN
models, the potential of transformer-based vision models on
modern accelerators has not been effectively leveraged due
to the specialized self-attention modules. Although existing
libraries have the capability to fuse element-wise operators into
compute-intensive kernels, they are not as effective in optimiz-
ing memory-intensive workloads, such as matrix multiplication
with softmax operators. Furthermore, transformer-based mod-
els typically involve a large number of fine-grained operators,
which can result in significant overheads when implemented
on specific hardware, such as GPUs. Meanwhile, due to the
predefined rules for optimizing compute-intensive operators,
traditional techniques, such as Halide [26], [28], cannot effec-
tively utilize the inference efficiency of specialized modules
in transformer models.

Numerous techniques have been proposed to enhance the
efficiency of models by optimizing them at the graph-level.
Lots of work are proposed to facilitate the optimization
from the graph-level to improve the efficiency of the model.
TensorRT [29] utilizes a two-step fusion policy to optimize
the computation graph. First, specific operators, such as
fully connected, convolution, batch normalization [30], and
ReLU [31], are fused vertically using rules designed by
high-performance computing engineers. Second, the operators
are fused horizontally within the same stage. This two-step
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optimization method works well for CNN architectures with
multiple parallel branches and kernels of the same size.
Greedy rule-based subgraph substitutions are employed to
optimize the computation graph in classical frameworks, such
as TensorFlow [21], PyTorch [22], TVM [27], and Ansor [28].
While template-based substitutions may enhance the efficiency
of computations, they are not suitable for long-term mainte-
nance. With new operators continuously being proposed from
a high-level model perspective, the rule-based graph substitu-
tion approach becomes increasingly unsuitable for real-world
production, as it requires significant engineering effort. To
search potential substitutions, search-based methods are intro-
duced by TASO [32] and IOS [33] to exploit a large enough
search space. TASO generates graph substitutions with a for-
mal verification to verify the correctness of the optimized
graph substitutions automatically. Search-based methods have
been introduced to tackle the issue of finding potential substi-
tutions for new operators. TASO [32] and IOS [33] are two
examples of search-based methods that are capable of explor-
ing a vast search space. TASO generates graph substitutions
and verifies the correctness of the optimized graph substitu-
tions through formal verification techniques. While IOS is
able to leverage interoperator and intraoperator parallelism to
schedule operators with compute unified device architecture
(CUDA) stream, thus maximizing the benefits of both soft-
ware and hardware accelerators, it is not able to fully exploit
the code generation capabilities from a compilation perspec-
tive for the implementation of each operator. This is due to
the IOS using the vendor-provided library cuDNN to do the
runtime, which provides a fixed template for each operator
with limited runtime performance. As a result, searching for
optimal solutions with operator fusion from a comprehensive
search space is not possible using this paradigm.

The NVIDIA GPUs’ domain-specific accelerators (Tensor
Cores) are programmed using instruction set architecture,
which allows for algorithmic specification to be separated
from hardware architectural details. These instructions are
commonly referred to as intrinsic, and using them for ten-
sor computation is known as tensorization. While intrinsics
provide programmability, mapping specific intrinsics remains
a challenging task. For example, there are 35 different ways to
map the seven for-loops of a 2-D convolution implementation
on the Tensor Cores. Mapping performance is crucial to con-
figurations that can impact data locality and parallelism on
GPUs. However, current compilers [27], [28] rely heavily on
manual programming with hardware intrinsic to develop high-
performance implementation, which may overlook optimal
mapping choices between the complex memory hierarchy. To
efficiently support algorithms on domain-specific accelerators,
an automated mapping solution is necessary to explore soft-
ware and hardware co-design. While the baseline framework
is presented in [1] as depicted in Fig. 1, our framework is
called GTCO.

This article presents a solution to the automatic mapping
problem on domain-specific accelerators (Tensor Cores) by
introducing a novel abstraction above the hardware intrin-
sics. The abstraction comprises two components: computation
and memory abstraction, which describe the computation and
data movement behaviors within an intrinsic. Based on this
proposed abstraction, the authors develop a two-step map-
ping generation method that can map software computations
to a virtual hardware accelerator without hardware con-
straints and then modify the mapping configurations based on

Fig. 1. Overview of (a) Ansor [28] and (b) [1]. Initially, the input is
a computation graph, which is converted into tensor expression language.
Subsequently, the auto-schedule module is capable of automatically searching
for the optimal schedule for each operator. Finally, TVM code generation is
performed to generate optimized CUDA code on GPU. However, the primary
distinguishing factor between the two systems is the DPOF module.

actual physical constraints. Additionally, the authors efficiently
explore the search space to achieve low inference latency
on domain-specific accelerators (Tensor Cores). Finally, the
authors implement all of the techniques and integrate them into
an end-to-end tensor compilation named GTCO. In summary,
this article makes the following contributions.

1) A dynamic programming algorithm is introduced to
tackle the operator fusion for transformer-based vision
models. The algorithm is capable of automatically gen-
erating the optimal combination for operator fusion in
transformer-based vision models, which exploits a com-
prehensive combination search space than the template-
based techniques devised by high-performance experts.

2) Novel sketch generation rules incorporating a search pol-
icy are introduced for the purpose of fusing batch matrix
multiplication and softmax operators in an effective
search space. Furthermore, a regression-based learned
cost model is employed to optimize the performance of
kernels via an end-to-end automatic compilation flow.

3) A hardware abstraction at the register-level is introduced
to formally define the computation and memory behav-
ior of the operators on Tensor Cores. Additionally, a
fully automatic mapping from the tensor expressions
to hardware execution is developed to accelerate the
transformer-based vision models on Tensor Cores.

4) We analyze transformer-based image recognition mod-
els, specially DETR [8], SETR [10], and vision trans-
former (ViT) [11], using the GTCO. Our framework
can generate corresponding CUDA code with WMMA
instructions on GPU under different inference set-
tings automatically. Experiment results demonstrate the
superiority of the optimized code, which outperforms
TensorRT with measured inference speedup ranging
from 1.01× to 1.38× with CUDA Cores and 1.15× to
1.73× with Tensor Cores.

II. BACKGROUND AND RELATED WORKS

A. Transformer Architecture

Initially, transformer-based models were developed for
machine translation, using novel attention-based building
blocks. These models are constructed for processing long
sequences in natural language processing. The attention mech-
anism is the primary component in transformer architecture,
comprising neural network layers that aggregate information
from the entire input sequence and enable the model to learn
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Fig. 2. Details of scaled dot-product attention and MHA in the transformer
architecture.

how to focus on specific parts of the sequence. Transformers
have made two significant contributions. First, they popular-
ized the attention technique as a dedicated module known
as multihead attention (MHA) [10], which is widely used in
many models. Second, transformers do not rely on the con-
volutional or recurrent network, which sets them apart from
previous models. Moreover, an essential characteristic of the
transformer model is that it is composed of many similar sub-
graph structures. This attribute provides ample opportunities
for constructing novel systems that can be executed in parallel.

MHA: MHA employs h attention heads to simultaneously
obtain diverse learned projections from the input sequence.
Each head operates on an instance of scaled dot-product
attention with queries (q), keys (k), and values (v) as input
variables. Linear layers are utilized to enhance the function of
attention heads by projecting the input variables into a lower-
dimensional learning subspace. Weight tensors (wq, wk, wv)
are crucial matrix variables in the transformer-based models. A
learned input projection function, equipped with query and key
variables, is then scaled by their product, followed by multipli-
cation with the vv matrix to obtain the output. The query and
key variables are multiplied and scaled, and the softmax oper-
ation is applied to extract the most relevant results. Finally,
the per-head result is obtained by multiplying with vv. The
outputs from all attention heads are concatenated and linearly
projected back to the input dimensional size. More details can
be found in Fig. 2. This work centers on transformer mod-
els that are based on encoders and decoders, with a particular
focus on the ViT architecture family. ViT comprises a series
of uniform encoder blocks, wherein each block comprises
an MHA layer followed by a pointwise feedforward network
(FFN). Additionally, a residual connection layer is developed
between the two submodules with a layer normalization oper-
ator. The MHA layer is made up of multiple attention heads
that are independently parameterized

MHA(x) =
H∑

i=1

Atti(x), xMHA = LN
(
x+MHA(x)

)

where Att is a dot product attention head, LN is layer nor-
malization, and x is the input vector. The output of the MHA
layer is then entered into the FFN layer, which consists of N
filters

FFN(x) =
(

N∑

i=1

W (2)
:,i σ

(
W (1)

i,: x+ b(1)
i

))
+ b(2)

xout = LN
(
xMHA + FFN(xMHA)

)

where W (1),W (2), b(1), and b(2) are the FFN parameters, and
σ is the activation function, typically GELU [34].

Decoder: The decoder layer is very similar to the structure
of the encoder layer. Besides the two submodules introduced
in the encoder layer, a third submodule is inserted into the
decoder layer seamlessly. The function of the third sublayer is
to perform MHA over the output of the encoder part. Besides,
some improvements in masking techniques [35] are designed
to prevent positions from attending to subsequent positions in
the self-attention module.

B. Machine Learning Compilation

This work focuses exclusively on the application of deep
learning compilers. Specifically, we take Ansor [28] as an
example, a widely used deep learning compiler for generat-
ing tensor programs across various hardware platformsThe
compiler leverages a hierarchical search space to optimize
and separate the high-level generation structures from the
low-level sampling details. This approach enables Ansor to
automatically construct the search space for each operator
or subgraph, eliminating the need for experienced engineers
to manually develop computing templates, which can be a
time-consuming and engineering-heavy process. Subsequently,
Ansor incorporates an automatic performance tuner that uti-
lizes a comprehensive search space to obtain complete tensor
programs, which are then fine-tuned with a regression-based
model [36].

C. Efficient Transformers

In order to enhance the inference performance and decrease
the memory consumption of Transformer-based models, a
variety of techniques have been proposed. These techniques
can be classified into the following categories: 1) the design
of efficient model architecture [37]; 2) quantization [38]; and
3) pruning [39] and knowledge distillation [40]. This work
focuses on compilation techniques for accelerating the exe-
cution time of transformer-based vision models through the
utilization of specific hardware units, such as CUDA Cores or
Tensor Cores on NVIDIA GPUs.

D. Hardware Details of 2080Ti GPU

CUDA is a high-performance programming language
developed by NVIDIA to expose software programmers to
concepts, such as computation parallelism and memory hier-
archy. However, effectively leveraging the memory and com-
putation units of GPUs to accelerate the execution time of
DNNs requires significant engineering efforts. As depicted
in Fig. 3, the GPU device has many programmable units at
different levels. For our experiments, we utilize the NVIDIA
RTX 2080Ti GPU, which follows the Turing microarchitecture
and has 68 parallel streaming multiprocessors (SMs) within the
processing elements. Each SM has its local shared memory
that can be accessed by threads within the same SM. An
SM is further divided into four processing blocks, with each
block possessing a 64-kB register file, and every four blocks
sharing a combined 96-kB L1 data cache/shared memory.
Thread blocks are scheduled on each processing block, and
each thread block contains a group of threads that can execute
the same code on different data using the single-instruction–
multiple-threads (SIMT) technique. Typically, prior to launch-
ing the computation kernel, data is first copied from the host
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Fig. 3. Hardware details of the SM and the memory hierarchy of NVIDIA
RTX 2080 Ti GPU.

memory to the device memory. On-chip memory, which is
close to the computing elements, has a faster access speed
than off-chip memory, which is slower and further away from
the computing elements. Each type of memory has its own
unique access patterns. Registers and local memory are pri-
vate to the threads within a block and are located on-chip
with low latency. Shared memory is composed of a set of
full-sized banks, and multiple threads accessing the same bank
simultaneously may lead to conflicts and increased latency.

III. PROBLEM FORMULATION

Definition 1 (Computation Graph): The model is defined
using a computation graph G = (V, E), where V is the set
of vertices and E is the edge set. Each vertex in the graph
represents an operator, such as GEMM or softmax. As for the
edge (u, v) ∈ E, it represents a tensor that can store the input
of operator v and the output of operator u.

Computation graphs are a common way to represent deep
learning models in frameworks or compilers. Fig. 2 shows the
computation graph in the transformer-based model.

Operator Pattern: Operator fusion is a very efficient tech-
nique to optimize memory-bound workloads. To circumvent
the need for storing intermediate results in global memory,
operator fusion merges multiple connected operators into
a single computation kernel. This optimization technique
can substantially enhance the inference speed-up, particularly
in throughput-oriented architectures like GPUs. In order to
effectively do operator fusion, the operator patterns must first
be defined. We categorize operators into five distinct pat-
terns: 1) injective; 2) element-wise; 3) opaque; 4) reduction;
and 5) complex-out-fusable. As mentioned in Section II, we
observe that matrix transposition, layer normalization, batch
matrix multiplication, softmax, and fully connected layers
frequently occur in transformer-based models. Furthermore,
the default configuration of them adheres to these guide-
lines: 1) softmax is marked as the opaque pattern; 2) dense
and batch matrix multiplication are identified as the complex-
out-fusible pattern; and 3) layer normalization [41] can be
decomposed into a set of fundamental operators (multiple, add,
and subtract), which are labeled as the element-wise pattern.

Fusion Scheduling: Based on each computation graph G
extracted from the transformer-based model, a corresponding
schedule S is defined to optimize the inference latency on the

Fig. 4. Workflow and components of our framework. The input is the
transformer-based vision models and the output is the tensor programs
generated on the GPU platform.

GPU platform as follows:

S = {(V1, F1), (V2, F2), . . . , (Vk, Fk)}
where Vi denotes a set of computation operators in the ith
stage, and Fi denotes the paired variable that describes the
fusion relationship between any two nodes. The execution of
G with the schedule S is carried out consecutively from the
first stage (V1, F1) to the last stage (Vk, Fk).

Problem 1: Given a computation graph G and fusion
schedule S on GPU, our objective is to search for a schedule S∗

S∗ = argmin
S

Cost(G, S) (1)

where Cost is the execution time of G with the schedule S.

IV. DETAILS OF GTCO

A. Overview

Fig. 4 illustrates the overall architecture of our tensor
compilation system, which comprises four essential mod-
ules: dynamic programming operator fusion (DPOF), subgraph
scheduler, program sampler, and performance tuner. Starting
with the input of the transformer-based model lacking the oper-
ator fusion technique, each operator is initially labeled with
a pattern that denotes the relationship between the connected
operators. After applying the operator fusion technique, each
operator is assigned a new pattern, and the types of the con-
nected operators are also altered based on the predicted labels
that arise from the operator fusion. High-performance tensor
programs with hardware intrinsic are generated for the fused
operators on the GPU platform. All in all, our framework
includes the following components.

1) A DPOF module that can find an optimized operator
fusion schedule for the transformer-based vision model.

2) A subgraph scheduler module assigns time slots for
optimizing fused subgraphs optimized by the DPOF.

3) A program sampler module that constructs a comprehen-
sive search space and samples different kinds of tensor
programs from it randomly to ensure diversity.

4) A performance tuner module trains a regression-based
model to predict the performance of sampled programs.

5) An automatic mapping flow with compilation techniques
that can find the optimal implementation of the fused
operators in transformer-based models on Tensor Cores
with floating-point 16 (FP16) datatype.
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Fig. 5. The design of dynamic programming operator fusion.

B. Operator Fusion With Dynamic Programming (DPOF)

Operator Arrangement: Initially, the execution order of
computation operators in the original graph is determined by
a topological sorting algorithm, which serves as our start-
ing point for finding an optimized schedule. Next, we use
a computation queue to store the selected operators from the
topological sorting algorithm. Rather than using a more com-
plex graph data structure, we employ a queue data structure
to identify and store the optimal schedule. The variables in
the queue can be divided into two categories: placeholder and
computation variables. Placeholder variables are used to store
input and output results, which do not affect the execution
time of the entire computation graph and are therefore not
taken into account. As introduced in Section III, the same
operator with various labels makes the difference in the execu-
tion stage. Third, we assume that no fusion relationship exists
between the operators at the beginning stage, and all opera-
tors are assigned to an opaque state. The size of the queue is
determined by the maximum number of stage defined in the
scheduling Section III. As discussed in Section III, the same
operator with different patterns can have a significant impact
on the execution stage.

Operator Fusion: The computation graph G = (V, E) is
initially partitioned into two sets: V ′ and V − V ′ based on
the execution order of the computation variables and the
maximum number of stages during the scheduling. In a set
of V ′, the edges in a set of V − V ′ have a pointing rela-
tionship with the directed edges. Specifically, the start points
of the edges are in V − V ′ and the end points are in V ′.
The set of vertices V ′ is defined as the segmentation set.
The interplay between V ′ and V − V ′ is illustrated in Fig. 5.
We observe that the computation graph exhibits numerous
segmentation sets. According to the dynamic programming
algorithm, we can systematically enumerate the elements in
the segmentation sets V ′ of V . This technique transforms
the original problem into a subproblem that aims to deter-
mine the optimal schedule for V − V ′. Consequently, the
computation graph G can be recursively optimized for each
element in the segmentation set. The dynamic programming
approach defines dp[V] as the execution time of the com-
putation graph G with an optimal schedule S in the nodes
set V . Additionally, temp[V ′] represents the execution time
of the subgraph composed of the nodes in the stage (V ′, F).
Here, F represents the optimal fusion strategy in the segmen-
tation set V ′. The state transition equation can be defined as
follows:

dp[V] = min
v∈V ′

(
dp
[
V − V ′

]+
∑

v

temp[v]

)
. (2)

Algorithm 1 Operator Fusion Strategy
Input: A computation graph G = (V, E) with the opaque type for
∀v ∈ V, pattern(v) = 0;

Output: A operator fusion strategy with the type of each operator
v ∈ V, pattern(v);

1:
2: Defining dp[∅]← 0, dp[V]←+∞, action[V]← ∅;
3: Defining S← [∅] (A Stack data structure to store the phase of

optimal schedule for operator fusion);
4:
5: function SelectSchedule(G)
6: V = all operators in computation graph G;
7: Scheduler(V);
8: while V 	= ∅ do
9: V ′, F = action[V];

10: Put phase (V ′, F) into the stack S;
11: V = V − V ′;
12: end while
13: return the Fusion Strategy S;
14: end function
15:
16: function Scheduler(V)
17: if dp[V] 	= +∞ then
18: return dp[V];
19: end if
20: for all v ∈ V ′ do
21: TV ′ , FV ′ = PhasePartition(V ′);
22: TV = Scheduler(V − V ′)+∑vi∈V ′ TV ′ ;
23: if TV ≤ dp[V] then
24: dp[V] = TV ;
25: action[V] = (V ′, FV ′);
26: end if
27: end for;
28: return dp[V];
29: end function
30:
31: function PhasePartition(V ′)
32: for all operators vi ∈ V ′ do
33: if pattern(vi, vj) 	= opaque then
34: Tfused(i,j) = Runtime(pair(vi, vj));
35: else
36: Tfused(i,j) = +∞;
37: end if
38: end for
39: return Tfused(i,j), pattern(vi, vj);
40: end function

In Algorithm 1, v represents a node in the segmentation set
V ′, and dp[∅] is the boundary value of the state transition
equation, set to 0. The optimal solution is obtained by storing
each node v in the segmentation set V ′ and measuring the
execution time of each V through action[V].

C. Subgraph Scheduler

It is evident that partitioning a model into different sub-
graphs is a crucial step before performance optimization.
However, it is futile to invest significant time in tuning sub-
graphs without the possibility of enhancing the execution
performance of the model during optimization. Therefore,
we opt to dynamically assign varying amounts of time slots
to different types of subgraphs. For transformer models, a
subgraph may occur multiple times. As a result, achieving
a well-optimized transformer-based model requires resolving
numerous scheduling tasks during compilation.
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Fig. 6. Sketch generation for the subgraph of MHA. This figure shows two
generated sketches. The left one is generated by the default Ansor [28] and
the right one is generated by [1]. The difference between these two sketches is
that the operator fusion occurs in GTCO with “red-dotted.” The code example
is pseudocode in a Python-like syntax.

We integrate three objectives during the tuning process:
1) reducing the total execution time of the transformer-based
models; 2) meeting requirements of execution time for vari-
ous subgraph; and 3) decreasing the overall tuning time when
certain subgraphs already meet the requirement and cannot be
significantly improved. To achieve this, we define an assign-
ment vector as t, where ti denotes the time slots assigned
to the ith task. Initially, all t values are set to (1, 1, . . . , 1).
We then define gi(t) as the minimum execution time required
for the ith subgraph under task ti. The subgraph execution
times f (g1(t), g2(t), . . . , gn(t)) represent the end-to-end exe-
cution time of a transformer-based model, and our objective
is to minimize the following function. To minimize the end-to-
end execution time of the transformer, the objective function
is defined as follows:

f = max

[
n∑

i=1

wi ×max(gi(t), ES(gi, t)), Lj

]
. (3)

The number of search task occurrences is denoted as wi, where
i is the task index. It is important to note that if the latency
requirement is already satisfied, no tuning time slots will be
allocated for a subgraph i. Thus, the latency requirement
of subgraph j is represented as Lj. Additionally, we define a
function ES(gi, t) to enable early stopping by utilizing the his-
torical log information of the ith task. Our framework differs
from other frameworks in that it compares the execution and
early stopping configurations. Furthermore, we optimize each
search task sequentially. Finally, a scheduling design based on
the gradient descent method is developed to efficiently solve
the objective function.

D. Program Sampler

A hierarchical search space is defined to sample the ten-
sor program, which is based on two techniques: high-level
sketch generation and low-level annotation sampling. The
high-level information is encapsulated in the sketches, and
millions of low-level choices are made to obtain specific
optimization, such as blocking size, virtual thread tiling, and
cooperative fetching, as the final annotations. To generate

high-level sketches for each subgraph, computation nodes are
visited in topological order, and a generation structure is built
iteratively with multilevel for-loop nests. For computation-
intensive nodes with a higher likelihood of data reuse, such
as batch matrix multiplication, standard loop tiling, and fusion
strategies are implemented as the sketch generation technique.

As illustrated in Fig. 6, a running example is presented
to elucidate the process of generating high-level sketches
for a common subgraph that comprises matrix multiplica-
tion ([1050, 8, 32] × [32, 8, 1050]) and softmax operators in
the MHA mechanism. The computation nodes are sorted in
the order of (A, B, MatMul, Soft, D). Starting from the out-
put node D, we utilize the generation rules to obtain the
sketches of the subgraph. The generated sketch 1 depicts that
the softmax operators and matrix multiplication are imple-
mented separately, and are not integrated into a single CUDA
kernel. To fully exploit the potential of execution efficiency,
batch matrix multiplication and softmax operators with new
derivation rules are designed in the transformer-based model to
optimize numerous operators as a unified computation kernel.
In the end, we integrate all of the techniques with existing
optimization rules seamlessly to improve execution efficiency.

Sketch Customization: The default sketch generation rules
for the GPU backend with a multilevel tiling structure
in Ansor are denoted by the string “SSSRRSRS.” Here,
the letters “S” and “R” indicate the spatial and reduction
dimensions, respectively. The first three “S” correspond to
BlockIdx,Virtual Thread, and ThreadIdx in GPU program-
ming. The consecutive “S” in the tiling structure “SSSRRSRS”
describes the matrix multiplication process, which transforms
the original 3-level for-loop into a 19-level for-loop, as illus-
trated in Fig. 6. Additionally, the special multilevel tiling
structure can take loop order into consideration during the
tensor transformation.

Therefore, we have designed an effective operator fusion
strategy, denoted as “SSSR-RSRS.” For more details, please
refer to Fig. 7. This customized tile structure is specifically
designed for batch-matrix multiplication and softmax opera-
tors in transformer-based models. By incorporating a caching
node with the optimized loop tiling structure, we are able
to fully utilize the computation resources on GPUs and fuse
multiple operators together. Finally, the computation struc-
ture is sent to the sketch of the softmax operator to obtain
the fused subgraph implementation. In Fig. 7, the optimized
fusion strategy for a subgraph containing batch-matrix multi-
plication and softmax operators is shown. This strategy was
discovered using Algorithm 1 in DPOF. There are four states
1 , 2 , 3 , and 4 in the process. The initial state has

three operators in the subgraph V = {M1, M2, S}. For each
state, we can get the ending of V ′ of V . Thus, the exe-
cution efficiency of V can be composed of the latency of
V ′ and V − V ′. The latency of V ′ can be measured on the
GPU directly and the optimized latency of V − V ′ can be
solved with dynamic programming. 1 to 4 show the four
different states during the dynamic programming. 4 is the
final state with the best fusion strategy and it also has the
optimal inference latency compared with other states. In this
state, M1 and S are fused into a single computation kernel
in the first phase and M2 is executed after that in the second
phase.

Annotation Sampling: The sketches generated by the
customization rules are incomplete tensor programs because
they only have parallel thread structures without the spe-
cific value. In order to generate the complete tensor programs
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Fig. 7. Example to illustrate how DPOF finds the fusion strategy. The original computation graph is shown on the left. It has three operators, M1, M2,
and Soft. There are four states during the dynamic programming algorithm and each transition is shown in the figure. Any transition starts from the state
V = {M1, Soft, M2} to V = {}. The best fusion strategy can be obtained by the dynamic programming process.

Listing 1. Basic WMMA instructions for tensor cores.

which can be successfully executed on the GPU, an auto-
tuning technique is employed to find optimal parameters
for these optimized parallel thread structures. To achieve
this, a performance tuner is developed. a performance tuner
is developed to make up for the incomplete tensor pro-
grams with optimal values. To illustrate this, we randomly
select a sketch from a list of generated sketches using our
customization rules. Parallel intrinsic functions are used to
generate complete tensor programs for the outer for-loop
optimization, while vectorize and unroll intrinsic functions are
employed to optimize the inner for-loops. It is worth noting
that all valid hyperparameters are sampled from a uniform
distribution and assigned random values during the tuning
process.

E. Performance Tuner

ML-Based Cost Model: Auto-tuners [42] provide a means
to search for the optimal scheduling of a tensor program from
a vast search space. A crucial component of this process is the
use of a learned cost model to evaluate the performance of all
sampled tensor programs. The cost model is trained on a wide
range of extracted features, including arithmetic and memory

access features that represent the number of floating-point
and integer operations, vectorization, unrolling, parallelization,
buffer access, allocation, and GPU thread binding-related
features. We adopt the same feature extraction scheme as that
used in Ansor [28]. The loss function of the prediction model
f on a set of sampled programs P with throughput y is defined
as the weighted squared error. Specifically, the loss function
is given as

loss(f , P, y) = wp

⎛

⎝
∑

s∈S(P)

f (s)− y

⎞

⎠
2

(4)

where S(P) denotes a set of innermost nonloop statements in P.
To predict the performance of the sampled tensor programs, we
train a gradient-boosting decision tree [36] as the underlying
prediction model f . In the training process, we set y to be
approximately equal to w for the actual calculation, which is
consistent with Ansor’s approach.

Evolutionary Search: To collect training data, a search pol-
icy is required for the performance tuner. Evolutionary search
is utilized, which repeatedly generates a new set of candi-
dates through mutation and crossover mechanisms for
multiple iteration rounds during the search. The objective
of the performance tuner is to select a set of tensor pro-
grams with the highest prediction scores for optimization. If
a generated tensor program has a higher prediction score, it
indicates that it will run faster on the platform. The gen-
erated tensor programs are compiled and measured on the
actual GPU platform to obtain the execution time as the train-
ing labels. In addition, the collected data with the highest
prediction scores from the previous training is incorporated
into the training dataset to enhance the quality of the cost
model.
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V. HARDWARE ABSTRACTION AND MAPPING
EXPLORATION ON TENSOR CORES

A. Domain Specific Accelerators on GPU

The recent advancements of GPU hardware technology
have resulted in a significant increase in computing power,
particularly with the introduction of the Tensor Cores on
NVIDIA GPUs. Unlike the scalar-to-scalar primitives found
in CPUs or the general CUDA Cores in GPUs, Tensor Cores
provide specialized tensor computation capacities, which can
deliver over 10× higher throughput. Notably, the initial ver-
sion of Tensor Core is designed for handling the GEMM with
half-precision input and full-precision output. Recently, new
features supporting different datatypes, such as int8,int4,
and int1 input variables, have been introduced in the lat-
est architecture (Truing and Ampere). Listing 1 demonstrates
several essential instructions utilized in NVIDIA GPU Tensor
Cores. It is worth noting that Tensor Cores are capable
of executing fused-multiply–add (FMA) operations in each
instruction cycle. These FMA operations process input val-
ues in half-precision, while the output values can be in either
half-precision (FP16) or full-precision (FP32).

Tensor Cores enable the computation primitive of �D =
α(�A× �B)+ β �C, where tiling of matrix �A and �B is required to
be a certain type of precision, while the type of matrix �C and
�D are also be determined. The shape of tiling �A(M × K) and
�B(N ×K) may have multiple configurations which depend on
the input data precision and GPU architecture. Unlike CUDA
Cores, which require users to define the execution flow of each
thread, Tensor Cores only require the collaboration of a warp
of threads. Using Tensor Cores for computation involves the
following steps.

1) Before calling Tensor Cores, all registers of a warp of
threads collaboratively store the tiling into a memory
component called fragment, which allows for data
sharing across all registers. The intrawarp sharing
mechanism provides opportunities for fragment-based
memory optimizations.

2) The loaded matrix fragment components serve as the
input variables of the Tensor Cores to generate the out-
put fragment, which also consists of the registers from
each thread in a warp and data movements among these
registers are also managed collaboratively by a warp of
threads.

In this section, we present a compilation-based approach to
optimize tensorization programs and introduce the abstractions
utilized in our design. Our primary aim is to convert high-
level tensor expressions into low-level hardware intrinsics with
optimal inference performance. We define the register-level
abstraction using hierarchical mapping, which is divided into
two categories: computation and data movement (memory)
abstractions. The purpose of these abstractions is to formalize
the behavior of domain-specific accelerators, which enables
our system to automatically analyze and optimize different
compute-intensive workloads. In this work, we focus solely
on the NVIDIA Turing 2080Ti GPU with the FP16 datatype
via Tensor Cores. Turing architecture supports two common
matrix multiplication shapes from the instruction-level paral-
lelism, with 8 × 8 × 4 and 16 × 8 × 8. An overview of our
framework can be found in Fig. 8. We illustrate the whole pro-
cess by using the matrix multiplication operator in Fig. 9 and
demonstrate how to define the abstractions, generate tensoriza-
tion candidates, and explore the optimal mapping step-by-step
on the Tensor Cores. Tensor Cores are supported by different

Fig. 8. Register-level abstraction is defined to enable optimal configura-
tion of tensor computation with WMMA instructions on Tensor Cores. The
Input of the GTCO is the computation graph extracted from a deep learning
framework. The DPOF technique, as introduced in [1] with Section IV-B, is
utilized for graph-level optimization. With register-level abstraction, the orig-
inal tensor expressions can be encoded with hardware intrinsic. Subsequently,
a tensorization-aware auto-schedule, which includes code generation is
developed to generate high-performance tensor programs on Tensor Cores.

Fig. 9. During auto-tuning, the matrix multiplication is mapped to Tensor
Cores with hardware intrinsic via a hierarchical mapping described in
Algorithm 3. It involves three levels of optimization, namely, thread-blocks,
warps, and instruction-level. It employs six parameters (Bm, Bn, Bk, Wm, Wn,
and Wk) and two sets of WMMA instruction for tensor transformation.
Additionally, the double buffering technique is employed during kernel execu-
tion. It is worth noting that the primary difference between GTCO and [1] is
that the former utilizes more comprehensive optimization techniques that span
across all three levels of parallel programming models, while the latter only
uses thread-blocks-level optimization with shared memory on CUDA cores.

architectures, such as Volta, Turing, and Ampere, and they can
handle various datatypes, such as TF32, FP16, INT8, INT4,
and INT1.

B. Standard Attention Implementation on CUDA Cores

In the previous Section II, we presented an overview of the
transformer-based model. To compute the attention output for
input sequences Q, K, and V, where N is the number of tokens
in the input and d is the head dimensions in the MHA, the
following three steps are performed: 1) the matrix multipli-
cation S = QK� ∈ R

N×N is computed; 2) the intermediate
result �P = softmax(S) ∈ R

N×N is calculated; and 3) the final
attention output �O = �P�V ∈ R

N×d is obtained. Note that the
softmax operation is performed row-wise. During the compu-
tation, the matrices S and �P are stored in the global memory of
the GPU. However, since some or most of the operations in the
MHA are memory-intensive, such as the softmax operation,
the large number of memory accesses can lead to slow exe-
cution times. To illustrate this point, we provide Algorithm 2,
which describes the standard attention implementation using
the load-compute-store pipeline in the GPU programming
model.
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Algorithm 2 Standard Attention Implementation in the MHA

Input: Input Matrices Q, K, V ∈ R
N×d in the global memory.

Output: Output Matrics O ∈ R
N×d

1: Load Q, K with thread blocks from the global memory;
2: Compute S = QK� with CUDA cores;
3: Store S back to the global memory;
4: Read S from the global memory;
5: Compute P = softmax(S) with the CUDA cores;
6: Write P back to the global memory;
7: Load P and V with thread blocks form the global memory;
8: Compute O = PV with the CUDA cores;
9: Store O back to the global memory;

Memory Access Overheads: Memory-aware design involves
carefully managing the movement of data between the differ-
ent levels of hierarchical memory on a GPU. Since most oper-
ations in transformer-based models are memory-bound [43],
it is crucial to implement memory-aware optimizations to
achieve an efficient performance. However, popular frame-
works like TensorFlow, PyTorch, and TVM lack the neces-
sary fine-grained control for memory-bound optimization. A
computation paradigm that can compute exact operators in
transformer-based models with fewer data movements would
be highly beneficial. Such a paradigm would reduce the
number of required memory accesses and improve over-
all performance. Operation fusion, which involves using the
output values from one operation, such as a matrix multi-
plication layer as the input directly to the following oper-
ation such as a softmax layer, without writing intermediate
values to off-chip memory, is one way to achieve this
optimization.

Opportunities: Given the inherent limitations of the stan-
dard attention mechanism, it is imperative to minimize the
number of memory accesses to improve performance on
GPUs. However, a naive approach may lead to increased data
movement overheads between on-chip and off-chip memory,
even with the register files. Fortunately, the MHA com-
putation process can be deconstructed into distinct steps,
allowing the softmax reduction to be computed incre-
mentally without accessing the entire input. As such, the
attention computation can be restructured by partitioning
the input into blocks and performing several passes over
these blocks. Our approach leverages a compiler to enable
precise control over memory access and combines the
matrix multiplication and softmax operations into a sin-
gle kernel using specialized hardware intrinsic to accelerate
inference.

C. Register-Level Abstraction

Regarding computation abstraction, we utilize the function
to represent arithmetic operations, such as addition and mul-
tiplication operators. Specifically, we represent Tensor Core
computations as mma_sync intrinsic, which is capable of
computing a matrix multiplication for a special shape. The
abstraction can be defined as follows:

dst[m, n] = multiply(src1[m, k]src2[k, n]). (5)

Register-level abstraction is a list of statements that specify
the scope, operands, and memory access indices. The notation
used for this abstraction includes dst to represent the output
tensor, and �src1,2 for the input tensors. The terms “global,”

Algorithm 3 Optimized Implementation With Tensor Cores

Input: Input Matrices Q, K, V ∈ R
N×d in the global memory, shared

memory of size mem1 and register files of size mem2.
Output: Output Matrics O ∈ R

N×d .
1: Divide Q into a numbers of blocks Q1, Q2, . . . , Qi, . . . , Q mem1

4d
;

2: Divide K into a numbers of blocks K1, K2, . . . , Ki, . . . , K mem1
4d

;
3: Load Qi and Ki with blocks from global memory to shared

memory and store in the fragment;
4: Divide Qi into blocks Qi1, Qi2, . . . , Qij, . . . , Qi

mem2
4d

;
5: Divide Ki into blocks Ki1, Ki2, . . . , Kij, . . . , Ki

mem2
4d

;
6: Load Qij and Kij from the fragment to the register files;
7: Compute Sij = Qij K�ij with the Tensor cores;
8: Compute the max value of row in Sij via mij;
9: Compute the pij = exp(Sij −mij) for softmax;

10: Compute the sum value of row via lij = ∑ pij;
11: Compute P = softmax(S) with mij, pij and lij;
12: Write P back to the shared memory and store in the fragment;
13: Load V to the shared memory and store in the fragment;
14: Compute O = PV with the tensor cores;
15: Store O back to the global memory;

“shared,” and “register” are used to indicate the different
memory hierarchies, while �i, �j, and �k denote the indices for
tensor storage in each hierarchy. Specifically, �i refers to the
indices in the global memory, �j in the shared memory, and
�k in the register files. It is important to note that the same
operand may have different indices within different memory
scopes. For example, the intrinsic load_matrix_sync is
used to load data from shared memory to register files, while
the intrinsic for storing data from registers to global memory
can be expressed in the same way. The whole process of the
data movement can be formulated as follows:

shared.Src

[→
j
]
= global.Src

[→
i
]

(6)

reg.Src
[→

k
]
= shared.Src

[→
j
]

(7)

global.Src
[→

i
]
= reg.Src

[→
k
]
. (8)

Both the computation and memory abstractions are designed to
capture the behavior of hardware intrinsics with the behavior
of Tensor Cores.

D. Auto-Schedule on Tensor Cores

To generate the abstraction with hardware intrinsics, we
propose a hierarchical mapping approach. First, we map
the software iterations to a virtual accelerator component
composed of the load/store unit and computation units, with-
out considering memory allocation or computation resource
assignment. Next, we consider constraints, such as memory
capacity and hardware intrinsic with six parameters, as shown
in Fig. 9. These parameters can represent three-level paral-
lel optimization on the GPU with Tensor Cores. The first
three parameters Bm, Bn, and Bk can map the computation
on the thread-block-level concurrency. The last three param-
eters, Wm, Wn, and Wk represent warp-level optimization and
parallelism in the implementation of the main loop. In the
Tensorized Body component, the shapes of the WMMA
instruction and datatype differ between GPU architectures.
For this work, we focus solely on the Turing architecture
with FP16 datatype, with the option of using 8 × 8 × 4
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Fig. 10. Fusion of softmax and matrix multiplication kernel computation with
data movement across a complex memory hierarchy is implemented with the
double buffering technique to improve overall execution efficiency.

and 16 × 8 × 8 shapes. In order to obtain a valid physical
mapping from software iterations to the domain-specific accel-
erators with a more complex memory hierarchy, we propose
modifications to the previous auto-schedule introduced in [1].
We present a practical example to illustrate our hierarchi-
cal mapping approach for matrix multiplication on Tensor
Cores. Specifically, we consider the computation S[m, n] + =
Q[m, k] ×K[k, n], which can be easily extended to the batch
matrix multiplication used in ViT models on Tensor Cores.

The initial step assumes that GTCO is capable of loading
data of arbitrary volume into on-chip memory (register files
and shared memory), and has sufficient hardware resources to
directly perform all the tensor computations. The primary chal-
lenge at this stage is to map software-defined tensor operations
to their corresponding hardware intrinsic.

The second step involves considering two types of con-
straints: memory capacity and intrinsic size. Hardware acceler-
ators have a fixed capacity for computing results at any given
time, which is limited by the problem size of an intrinsic
extracted from its indices range represented in the computation
abstraction. In our running example, the matched software
iterations are limited by a factor of 4 due to the problem size of
the example Tensor Core shapes being 8 × 8 × 4 and 16 × 8
× 8. 1©, 2©, and 3© show the proposed mapping across
different memory hierarchies from high-level mathematical
expression to low-level hardware intrinsic. Step 1© represents
that the original matrix is divided into tiling data, which are
loaded from the global memory to the shared memory and
then stored in the fragment with thread block. It corresponds
to the operation defined in (6). Step 2© describes the process
of moving tiling data from the fragment to the register files for
the computation, which corresponds to (7). Step 3© indicates
that performing matrix multiplication within one clock cycle,
using the tiling data stored in the register and scaling it accord-
ing to the dimensions (m × n × k) specified by the WMMA
instruction. It corresponds to the data movement operations
defined in (8). To alleviate the impact of memory latency, soft-
ware pipelining is utilized to overlap memory accesses with
other computations within a thread. The pipelining stage is set
to 2 throughout the process. Further details on the pipelining
of various kernel fusions, such as softmax and matrix multi-
plication operators in transformer-based models, can be found
in Fig. 10.

Thus, in order to identify the optimal implementation, valid
software–hardware mappings need to be selected from the
design search space. However, when optimizing these sched-
ules with tiling or parallelization primitives on domain-specific
accelerators, it is challenging to determine the performance

of these mappings. The reason is that these optimiza-
tions, combined with different software–hardware mappings,
exhibit varying performance due to differences in computa-
tion and memory utilization. Moreover, the search space for
performance tuning is too vast. Therefore, to address this
challenge, we employ a combination of tuning techniques and
an ML-based cost model to explore the mapping and schedule
space. For a more detailed description of the performance tuner
design, please refer to Section IV-E. It enables our computa-
tion and data movement in one kernel, loading input from
global memory, performing all the computation operations,
such as softmax and matrix multiplication on the register-level
files, then writing the result back to global memory. It can
avoid repeatedly reading and writing inputs and outputs with
the memory access overhead. More details about the proposed
optimization technique can be found in Section V-C.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Our framework is implemented on top of PyTorch and the
HuggingFace Transformers library. We evaluate the effective-
ness of our approach, such as operator fusion optimization,
kernel generation mechanisms, and Tensor Cores accelera-
tion on three modern vision transformers: 1) ViT [11] for
image classification; 2) DETR [8] for object detection; and
3) SETR [10] for semantic segmentation. The DETR and
ViT pretrained models are downloaded from the Hugging
Face datasets hub. The SETR models are downloaded from
the original GitHub repo [44]. PyTorch 1.7.1, CUDA 10.0,
cuDNN V7.6.5, NVIDIA driver 460.67, TVM 0.8.dev0 [27],
and TensorRT V7.0.0.11 [29] are set as baselines for fair
comparisons. Note that all evaluation results are collected on
2080Ti GPU by different batch sizes.

Workflow: Our workflow can be categorized into the
following two patterns.

1) For the inference engine like TensorRT, PyTorch is
used to build the models and then the ONNX export
interface is used to export ONNX models. To avoid
some redundant operators caused by conversion, ONNX-
Simplifier [45] is used to simplify the ONNX model.
Finally, the model is converted into an executable file
with the CUDA runtime environment.

2) As for the compiler flow like Ansor, [1] and GTCO,
the model is converted into the TorchScript format
first and then is imported into the Relay interface
to read the TorchScript model into our compila-
tion system. In terms of the subgraphs, the corre-
sponding tensor programs are generated by the code
generation part. As for the Tensor Cores settings,
we only use the basic instructions provided by
CUDA, such as fragment, load_matrix_sync,
mma_sync, store_matrix_sync without exten-
sions of customized instructions.

B. End-to-End Performance

Workloads: The configurations of the models are described
in Table I, including the number of encoders, decoders, atten-
tion heads, the shape of inputs, and the outputs. All of
the results are reported with batch size 1 on an NVIDIA
2080Ti GPU.

Baselines and Configurations: PyTorch JIT [22],
TensorRT [29], TVM [27], and Ansor [28] are used as our
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TABLE I
DETAILED INFORMATION OF THE BENCHMARK AND EXPERIMENT MODELS

TABLE II
END-TO-END NETWORK EXECUTION PERFORMANCE BENCHMARK (MS)

baseline frameworks. More specifically, there are two common
ways to improve the efficiency of execution time on GPUs.
Optimizing operators via the vendor-provided libraries, such
as PyTorch and TensorRT, is the first way. On the other
hand, another strategy is to use a regression-based model to
search the schedule for each kernel such as TVM. In the
meantime, TVM also supports calling external libraries such
as cuBLAS/cuDNN to optimize some kernels in the com-
putational graph. PyTorch JIT is a just-in-time compiler in
PyTorch, which is a way to create serializable and optimizable
models from PyTorch code to a production environment where
Python programs may be disadvantageous for performance
and multithreading reasons. As mentioned in Section IV, the
end-to-end execution time can be described as the sum of the
latency of all subgraphs in the computation graph. Auto-tuning
trails are set to 10000 measurement unless execution time
converges to a stable value. The goal of the subgraph sched-
uler is to minimize the total execution time. Finally, optimized
tensor programs for subgraphs are generated for measurement.
In the Turing architecture GPUs, they have two recommended
types of GEMM shapes with 8 × 8 × 4 and 16 × 8 × 8. We
use 8 × 8 × 4 in all of the experiments and we find that
16×8×8 is not better than the former after a certain number
of experiments.

Results: Table II shows the results on a NVIDIA RTX
2080Ti GPU. In general, [1] surpasses all of the baseline
frameworks except the ViT-Base vision model. Compared with

vendor-specific engine TensorRT, [1] consistently outperforms
all benchmarks with 1.01× to 1.38× speedup except for the
ViT-Base vision model. The reason for the drop in execution
time is that ViT-Base is composed of a number of encoders,
and the input shape (197, 1, 768) of the encoder in ViT-Base
is relatively limited compared with ViT-Large and ViT-Huge.
Thus, it limits the search space of specific operators in
transformer-based models, such as batch matrix multiplication
and softmax fusion in MHA. Compared with the tuning-based
method [1], [28] outperforms all benchmarks with 1.01×
to 1.21× speedup. That is, our framework equipped with
operator fusion technique and sketch customization rules has
achieved good performance on transformer-based vision mod-
els. TVM-cuDNN/BLAS means we use the TVM as the
compiler and then call the operators defined in the cuDNN
and cuBLAS library to optimize the execution time of each
kernel. Compared with TVM-cuDNN/BLAS [1], [27] consis-
tently outperforms all benchmarks with significant speedup.
Obviously, TVM-cuDNN/BLAS uses the operator fusion
patterns defined in Relay to partition the graph into lots of
subgraphs. Each operator in the subgraph is replaced with
the implementations in cuDNN/cuBLAS. Neither the search-
based optimization for the tensor program nor fine-tuning
the performance of each kernel by a regression-based cost
model is implemented during the optimization. Therefore, [1]
has more advantages on the emerging new operators or
uncommon operator fusion patterns because it is not easy
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TABLE III
VIT-BASE-16 WITH DIFFERENT OPTIMIZATION SETTINGS

for vendor-specific static libraries such as cuDNN/cuBLAS
to optimize for all the cases manually. The only difference
between TVM-CUDA and TVM-cuDNN/BLAS is that the
implementation of each operator in the subgraph is done by
the default scheduling template defined in the deep learning
compiler. Note that the GTCO means all of the transformer-
based vision models are conducted on the Tensor Core with
floating-point 16 data type. From the last column in Table II,
we can find that our abstraction design and mapping strategies
on Tensor Cores for GTCO perform the best in the end-to-
end benchmark. In the DETR-ResNet series of vision models,
GTCO can achieve up to 1.27 × speedup compared with [1]
on 2080Ti GPU. In the SETR series of vision models, GTCO
can achieve up to 1.28 × speedup compared with [1]. All in
all, our design can fully take advantage of the Tensor Cores on
the modern GPU to accelerate the ViT execution with specific
datatype FP16.

Ablation Study: To explore the function of each module,
we run variants of GTCO on the ViT-Base-16 benchmark.
“DPOF �” means DPOF technique is used to optimize the
computation graph from graph-level rather than the template-
based method designed in Relay. “Sketch Customization � ”
means sketch generation rules and search policy defined in
GTCO is used to generate the tensor program rather than
default configurations defined in Ansor. “Subgraph sched-
uler �” means we use the object function defined in (3)
to optimize our auto-tuning. Obviously, Design (a) is the
native Ansor with Tensor Core support. We set the execu-
tion time of Design (b)–(d) to be the speedup against Ansor
equipped with Tensor Core. As shown in Table III, Design
(e) performs the best in speedup performance among all of
the designs. “TC” means that we only use the Tensor Cores
to accelerate the operators in the models without register-
level abstraction and hierarchical mapping. “Auto-Schedule
Register” represents the proposed register-level abstraction and
auto-schedule on Tensor Cores in Section V. It can verify
that the graph and tensor co-design is very significant for
the transformer-based model execution. At the graph-level,
GTCO utilizes the “DPOF” to optimize the operator fusion and
then uses a subgraph scheduler designed for the transformer-
based model to assign different search tasks with various time
slots. At the tensor-level, the tensor programs are generated
by our sketch generation rules with search policy. The design
of register-level abstraction of computation and memory can
boost the final performance on Tensor Cores with hierarchical
mapping.

C. Subgraph Benchmark

Baselines and Configurations: Three common subgraphs in
DETR-ResNet-50-E6 are conducted to verify the subgraph
benchmark, including MHA, Encoder, and Decoder. The mea-
surement trails per test case are set to 20 000 during the

Fig. 11. Subgraph performance benchmark. The y-axis is the throughput-
based log 10 and then plus 1.

TABLE V
NUMBER OF MEASUREMENT TRAILS

auto-tuning for Ansor and we use the consumed time in the
whole process to demonstrate the final performance. We use
the same set of baseline frameworks and run benchmarks with
the approximate converged latency.

Results: Fig. 11 shows that [1] outperforms PyTorch JIT
on the Encoder and Decoder by 2.47× and 11.67× speedup.
For the high-performance computing library TensorRT, [1]
can achieve 2.47×, 1.08×, and 4.19× speedup on MHA,
Encoder, and Decoder. For the compiler-based search algo-
rithm Ansor, GTCO can achieve 1.29×, 1.17×, and 1.17×
speedup on MHA, Encoder, and Decoder. It can prove that [1]
can generate efficient tensor programs for these subgraphs
on the NVIDIA GPU platform. Meanwhile, GTCO performs
best in all subgraph benchmarks compared with Pytorch-JIT,
TensorRT, Ansor, and [1] under the same inference configu-
ration. GTCO can achieve 1.83×, 1.44×, and 1.29× speedup
on MHA, Encoder, and Decoder compared to [1].

D. Graph Partition and Tuning Time

The graph partition on the DETR-ResNet50-E6 benchmark
is shown in Table IV. “ni” means the number of subgraphs
in the encoder, decoder, and transformer models, respectively.
The meaning of “Weight-*” can be explained with two impor-
tant values. For example, {[6 ∗ 7], [12 ∗ 2]} means there are
seven subgraphs with weight value 6 and 2 subgraphs with
weight value 12. Therefore, the total number of subgraphs in
the encoder is 9. Compared to the rule-based method in Ansor,
we can find that our graph partition and subgraph scheduler
methods can achieve a more effective operation fusion strategy
for the number of subgraphs and weight values. In addition,
GTCO can not change the partition methods defined in our
optimization on encoders and decoders compared with [1]
from Table IV, and it only accelerates the runtime on the
Tensor Cores.

Table V shows the search time needed for [1] and GTCO
to match the execution time of Ansor on the same bench-
mark.“number of measurement trails” are used to evaluate the
search time. From the table, GTCO can match the performance
of Ansor with fewer measurement trails. It can prove that the
efforts saving in search time come from the techniques we
introduced before including a subgraph scheduler, the DPOF at
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TABLE IV
INFORMATION OF SUBGRAPHS AND SCHEDULING WEIGHTS WITH GRAPH PARTITION

TABLE VI
TIME USED IN THE TOTAL COMPILATION PHASE

the graph level, the sketch generation rules for tensor programs
generation, and register-level abstraction with hierarchical
mapping on Tensor Cores. From the average performance
of six benchmarks, we can find that GTCO outperforms the
Ansor and [1]. CTCO can generate high-performance tensor
programs on Tensor Cores with less effort.

Table VI shows the total compilation time needed for GTCO
to match the nearly uniform latency performance of [1] on
the end-to-end performance. All the data used in this table
are recorded in seconds. We use “Ratio” to demonstrate the
efficiency of our compilation technique. Compared with the
time 1,625 s, the total compilation time used in GTCO with
DETR-ResNet-E3 is 1,430 s. If we use the GTCO with
FP16 datatype on Tensor Cores, we can get the final latency
performance compared with the dense CUDA Core version of
GTCO in 88% of the total time. From all of the experimental
results in Table VI, we can find that the techniques used in
the hardware abstraction and automatic mapping on Tensor
Cores can accelerate the optimization time during the total
compilation phase among all of the ViT models.

VII. CONCLUSION

Existing deep learning compilers optimize operator fusion
based on the rule designed by experts, which is strictly
improving execution performance for the new operators on
hardware platforms. However, they fail to consider the poten-
tial performance improvements that more effective operator
fusion strategies could provide. This article addresses this
issue by tackling the problem from two perspectives. First,

a dynamic programming algorithm is introduced to explore
operator fusion patterns. Second, a search policy is proposed
that includes new sketch generation rules and a novel hard-
ware abstraction with register-level optimization, enabling
more flexible mapping for tensor computation and better
performance. This approach is applied to optimize fused
matrix multiplication and softmax operators with WMMA
instructions. To achieve an end-to-end flow automatically,
a regression-based learned model is used to fine-tune the
performance of each kernel. Overall, GTCO achieved up to
1.73× inference speedups compared to the high-performance
inference engine TensorRT with Tensor Cores, and 1.38×
speedups with CUDA Cores.
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