Deep Learning-Driven Simultaneous Layout Decomposition and Mask Optimization

Wei Zhong1,2, Shuxiang Hu1,2, Yuzhe Ma3, Haoyu Yang3, Xiuyuan Ma1,2, Bei Yu3

1Information Science & Engineering, Dalian University of Technology
2Key Lab for Ubiquitous Network & Service Software of Liaoning Province
3CSE Department, Chinese University of Hong Kong
Biography

Shuxiang Hu
Dalian University of Technology
vsxhoo@mail.dlut.edu.cn
He is now studying for M.Sc. degree at the International School of Information Science and Engineering, Dalian University of Technology, under the supervision of Prof. Wei Zhong.
Outline

Introduction

Algorithm

Experimental Results

Conclusion
Outline

Introduction

Algorithm

Experimental Results

Conclusion
Optical Proximity Effect

Resolution enhancement Technologies (RETs):
- OPC
- MPL
Different decomposition results converge to divergent printability
Option for Decomposition Selection

- **Solution:** Collaboration of LD and MO in a unified framework [Ma+, ICCAD’17].

![Diagram showing the process of numerical layout optimization leading to discrete layout optimization, resulting in output optimized masks.]
Issues

- **Not Accurate**: Greedy pruning.
- **Not Efficient**: OPC suffers from large computational complexity.

Decomposition convergence of EPE

![Decomposition convergence of EPE](image)

Runtime break down

![Runtime break down](image)
Motivation

▶ Powerful convolutional neural network (CNN)
 - Build mapping relationship automatically.
 - Large amount of data required.

▶ CNN application in EDA field:
 - Routing predicting [Xie+, ICCAD’18]
 - Hotspot detection [Yang+, TCAD’18]
 - Resist modeling [Lin+, TCAD’18]

▶ How about integrating CNN for decomposition selection?
Outline

Introduction

Algorithm

Experimental Results

Conclusion
Forward Optimization Flow

1. Input Layout
2. Decomposition Generation
3. Printability Prediction
4. ILT Optimization
5. Printing Violation Detected?
 - Yes
 - No
6. Optimized Masks

Printability Predictor
ILT Prediction
ILT
Decomposition Generation

- Classify patterns & build minimal spanning tree

\[\mathcal{E} \in \begin{cases} S_P, & \text{if } d \leq n_{\min}, \\ \mathcal{V}_P, & \text{if } n_{\min} < d \leq n_{\max}, \\ \mathcal{N}_P, & \text{if } n_{\max} < d. \end{cases} \]
Decomposition Generation

▶ n-wise arrays
 - S_P and V_P with three-wise
 - N_P with two-wise

<table>
<thead>
<tr>
<th>Component 1</th>
<th>Component 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 75</td>
<td>C 60</td>
</tr>
<tr>
<td>B 78</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>F 60</td>
</tr>
<tr>
<td>E 76</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arrs1</th>
<th>S_P</th>
<th>V_P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B F</td>
<td>H I</td>
</tr>
<tr>
<td>#1</td>
<td>1 0</td>
<td>0 1</td>
</tr>
<tr>
<td>#2</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>#3</td>
<td>0 0</td>
<td>1 1</td>
</tr>
<tr>
<td>#4</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>#5</td>
<td>1 1</td>
<td>0 0</td>
</tr>
<tr>
<td>#6</td>
<td>1 1</td>
<td>0 0</td>
</tr>
<tr>
<td>#7</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>#8</td>
<td>0 1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arrs2</th>
<th>N_P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G J K</td>
</tr>
<tr>
<td>#1</td>
<td>0 1 0</td>
</tr>
<tr>
<td>#2</td>
<td>0 0 1</td>
</tr>
<tr>
<td>#3</td>
<td>1 1 1</td>
</tr>
<tr>
<td>#4</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>

12/24
Decomposition Generation

- n-wise arrays
 - Relax combination strength
 - Complete combination of n factors

Three-wise arrays

Any three columns contain complete combination from 000 to 111

<table>
<thead>
<tr>
<th></th>
<th>factor1</th>
<th>factor2</th>
<th>factor3</th>
<th>factor4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>#2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>#3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>#4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>#6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>#8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Printability Prediction & Mask Optimization
Select the best decomposition candidate for OPC engine

Printability score = \(\alpha \times \#EPE + \beta \times L2 \text{ Error} + \gamma \times \#\text{Print Violation} \)
How to Sample Data?

- Sample typical data for train
How to Sample Data?

- Layout sampling
- Decomposition sampling
 - Similar to decomposition generation stage
- Get printability score
Layout Sampling

- Calculate point distance
 - Match points
 - Euclidean distance as matched points distance

- Calculate layout distance
 - Sum up matched points as layout distance

- Cluster layouts
Outline

Introduction

Algorithm

Experimental Results

Conclusion
Comparision on EPE violations

- Outperform state-of-the-art.
- Reduce 68.0% EPE violations on average.
Comparision on Runtime

- About 4X speed up.

<table>
<thead>
<tr>
<th></th>
<th>ISQED'13+DAC'14</th>
<th>ICCAD'13+DAC'14</th>
<th>ICCAD'17</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR2_X1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAI211_X1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND4_X1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND3_X2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimization results

ICCAD’17

Ours

AOI211_X1 NAND3_X2 BUF_X1
Comparision with Random Sampling

- Reduce half of EPE violations.

![Bar chart comparing EPE# and Runtime between Random Sampling and Ours]
Outline

Introduction

Algorithm

Experimental Results

Conclusion
Conclusion

- Deep learning based layout decomposition and mask optimization framework.
 - Decomposition generation approach.
 - Decomposition printability estimation.
- A set of sampling strategies.
- Experimental results demonstrate the effectiveness and efficiency.
Thank You

Wei Zhong (zhongwei@dlut.edu.cn)
Shuxiang Hu (vsxhoo@mail.dlut.edu.cn)
Yuzhe Ma (yzma@cse.cuhk.edu.hk)
Bei Yu (byu@cse.cuhk.edu.hk)