Attacking Split Manufacturing from a Deep Learning Perspective

Haocheng Li1, Satwik Patnaik2, Abhrajit Sengupta2, Haoyu Yang1, Johann Knechtl3, Bei Yu1, Evangeline F. Y. Young1, Ozgur Sinanoglu3

1The Chinese University of Hong Kong
2New York University
3New York University Abu Dhabi
Split Manufacturing

Hardware is vulnerable with un-trusted foundries ab.

Split manufacturing safeguards chip designs cd.

a[Durvaux and Standaert 2016]
b[Shamsi et al. 2019]
c[McCants 2011]
d[Bi, Yuan, and Jin 2015]

Figure 1: Wire width in Nangate 45 nm open cell library.
Threat Model

Available: FEOL design, cell library, database of layouts generated in a similar manner.

Objective: correct connection rate \(^a \)

\[
CCR = \frac{\sum_{i=1}^{m} c_i x_i}{\sum_{i=1}^{m} c_i} ,
\]

\(m \) is the number of sink fragments, \(c_1, c_2, \ldots, c_m \) are the numbers of sinks in every fragment, \(x_i = 1 \) when a positive virtual pin pair (VPP) is selected for the \(i \)-th sink fragment, \(x_i = 0 \) when a negative VPP is selected for the \(i \)-th sink fragment.

\(^a\) [Wang et al. 2018]
Design and train a deep neural network to predict the missing BEOL connections.

The neural network makes use of both vector-based and image-based features.

Propose softmax regression loss to select best connection among variable-size candidates.

Figure 3: Attack flow.
Vector-based Features

- Distances for VPPs along both directions.
- Numbers of sinks connected within the fragments.
- Maximum capacitance of the driver and pin capacitance of the sinks.
- Wirelength and via contribution in each FEOL metal layer.
- Driver delay according to the underlying timing paths.
Image-based Features

Figure 4: Layout Image Scaling.

Figure 5: Layout Image Representation.
Sample Selection

Figure 6: All VPPs are considered as candidates except VPP (Source A, Sink B).

Table 1: VPP Preferences

<table>
<thead>
<tr>
<th>Sink</th>
<th>Source</th>
<th>Sink Prefers Source</th>
<th>Source Prefers Sink</th>
<th>Direction Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Model Architecture

[Diagram showing a neural network structure with input vector features, input source images, and input sink image.]

Figure 7: Neural Network Structure.
Figure 8: Neural Network Architecture.
Softmax Regression Loss

The loss of the two-class classification is

$$l_r = -\frac{1}{n} \left(\log \frac{e_{s_i}^+}{e_{s_i}^- + e_{s_i}^+} + \sum_{j\neq t} \log \frac{e_{s_j}^-}{e_{s_j}^- + e_{s_j}^+} \right), \quad (2)$$

whose partial derivative is

$$\frac{\partial l_r}{\partial s_j^+} = - \frac{\partial l_r}{\partial s_j^-} = \begin{cases} - \frac{e_{s_j}^-}{n \left(e_{s_j}^- + e_{s_j}^+ \right)} & \text{if } j = t, \\ \frac{e_{s_j}^+}{n \left(e_{s_j}^- + e_{s_j}^+ \right)} & \text{otherwise}. \end{cases} \quad (3)$$

The partial derivative in the last FC layer is

$$\frac{\partial l_r}{\partial w_i^+} = - \frac{\partial l_r}{\partial w_i^-} = \frac{1}{n} \left(\sum_{j=1}^{n} \frac{e_{s_j}^+ x_{i,j}}{e_{s_j}^- + e_{s_j}^+} - x_{i,t} \right). \quad (4)$$

We propose the following *softmax regression loss*

$$l_c = -\log \frac{e_{s_t}}{\sum_{j=1}^{n} e_{s_j}}, \quad (5)$$

whose partial derivative is

$$\frac{\partial l_c}{\partial s_j} = \begin{cases} \frac{e_{s_j}}{\sum_{j=1}^{n} e_{s_j}} - 1 & \text{if } j = t, \\ \frac{e_{s_j}}{\sum_{j=1}^{n} e_{s_j}} & \text{otherwise}. \end{cases} \quad (6)$$

The partial derivative in the last FC layer is

$$\frac{\partial l_c}{\partial w_i} = \frac{\sum_{j=1}^{n} e_{s_j} x_{i,j}}{\sum_{j=1}^{n} e_{s_j}} - x_{i,t}. \quad (7)$$
Experimental Results

Average Ratio

M1 CCR
- Wang
- Ours

M3 CCR

M1 Time

M3 Time

1.21
1.12
1

1 \cdot 10^{-3}

2 \cdot 10^{-3}

Wang

Ours

M1 CCR (%)

b7
b11
b13
b14
b15_1
b17_1
b18
c432
c880
c1355
c1908
c2670
c3540
c5315
c6288
c7552

0 5 10 15
Experimental Results

Figure 9: Comparison between different settings of techniques used.
Conclusion

- Demonstrate vector-based and image-based features.
- Process these heterogeneous features simultaneously in a neural network.
- Propose a softmax regression loss.
Thanks!

Questions?
References I

