Timing Aware Dummy Fill Insertion

- **Dummy fill insertion**
 - Reduce dielectric thickness variation;
 - Provide nearly uniform pattern density;
 - Highly related to the quality of chemical-mechanical polishing (CMP) process.

Timing-aware Dummy Fill Insertion

- Inserted metal fill as metal sidewall:
 - Improves density, increases planarity;
 - Cons: couples with signal tracks
- Severely affect the original layout timing closure.
- Need to reduce the coupling impact during the metal fill insertion.

Capacitance Evaluation

- **Area Capacitance**: Two conductor layers on different metal layers, and their projections overlap $\Rightarrow C^A = P_1(x) \times A$.
- **Lateral Capacitance**: Two conductor layers on the same layer, and have horizontal overlap $\Rightarrow C^L = P_1(d) \times l$.

Fringe Capacitance: Two conductor pieces on different layers, and have parallel edge overlap $\Rightarrow C^F = \frac{P_2(\Delta x) \times A_1}{\Delta x} = \frac{P_2(y) \times l}{y}$.

Fringe criteria $\Rightarrow C^F = \frac{P_2(\Delta x) \times A_1}{\Delta x} = \frac{P_2(y) \times l}{y} > \gamma d$.

Given a design layout, insert metal fills to minimize:

$$\min \sum \gamma i A_i$$

s.t. Density constraints

$$\gamma d < \gamma d$$

Overview of FIT Flow

- **Efficient**: Strong runtime performance on ICCAD 2018 benchmarks.
- **Optimal**: Outperforms the contest winner by all metrics.
- **Extensible**: Separate modules, easy to further integrate other optimization flow.

Fillable Region Generation

- Extract fillable polygons of the entire layer.
- Polygon decomposition: polygons with thousands of vertices and maybe holes inside are difficult to handle \Rightarrow decompose them into rectangles, assign rectangles into different windows (\Rightarrow 22813)
- The aspect ratio of rectangle fits the layer preferred direction. Use sweep line to \Rightarrow convert rectangles locally.
- Comparing to [Liu+, TODAES’16], significantly expands the solution spaces for later procedures.

Target Density Planning (TDP)

- The window \Rightarrow commit those fills that close to window border to global checker.

Global Fill Synthesis (GFS)

- Offload any area overlap between fill and the given critical wires.
- Order-Sensitive process, obtain a better insertion order.
- Order: \Rightarrow sort the windows order by the density gap $\Delta D = D - D_{\text{norm}}$.
- Fringe checker responsible for insertion and legalization of a specific window, discard when finished.
- Global checker keeps wire locations for the entire layout (\Rightarrow one partitioned region of the layer), success insertion of a window only commits those fills that close to window border to global checker.

Detailed Post Refinement (DPR):

- Relocate those fills (obtained from GFS) with high impact on timing:

$$\min \sum \gamma i A_i$$

s.t. Density and max fillable area constraints

$$\gamma d < \gamma d$$

Design rules

- Minimum spacing, maximum fill width, and maximum fill length.

Additionally, the total parasitic capacitance of all signal nets is also considered, since it will affect performance like power consumption, timing.

* Equivalently to the ground, can be obtained by network acyclic method.

Global Fill Synthesis and Legalization

- An efficient heuristic window-based flow for high quality initial solution.
- Guided by the target density scheduling result.
- Only performing the GFS flow can already beat the contest winner results.

Insertion criteria

- Increase the spacing and reduce the parallel overlap lengths between any two metal conductors.
- Forbidden any area overlap between fill and the given critical wire.
- Order- Sensitive process, obtain a better insertion order.
- Order: \Rightarrow sort the windows order by the density gap $\Delta D = D - D_{\text{norm}}$.
- Sort the fills rectangles by weighted score of their shape, area, distance, and parallel overlap to/with surrounding critical wires.

$$\Delta D = D - D_{\text{norm}} = \alpha + \beta \gamma + \sqrt{\gamma^2 + \frac{1}{4}}$$

Legalization

- A design rules checker (RTWme) is maintained to perform legalization and record density.
- Noise implementation: insert all wires and fills into checker \Rightarrow Time consuming.
- Pruning: Global checker = local checkers.
- Local checker responsible for insertion and legalization of a specific window, discard when finished.
- Global checker keeps wire locations for the entire layout (or one partitioned region of the layer), success insertion of a window only commits those fills that close to window border to global checker.

Detailed Post Refinement

- Timing-aware Fill Relocation:

$$\min \sum \gamma i A_i$$

s.t. Density and max fillable area constraints

$$\gamma d < \gamma d$$

Design rules

- Minimum spacing, maximum fill width, and maximum fill length.

- Alternately optimize for X-dimension and Y-dimension:

$$\min \frac{D - \sum \gamma i A_i}{D}$$

s.t. Density constraints

$$\gamma d < \gamma d$$

Shifting refinement is regardless of original fillable region limitations.

Experimental Results

- On ICCAD 2018 Contest Benchmarks

<table>
<thead>
<tr>
<th>Case</th>
<th>Critical nets</th>
<th>1st Place Team</th>
<th>FIT</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15246</td>
<td>753.31</td>
<td>715.69</td>
<td>0.90%</td>
</tr>
<tr>
<td>2</td>
<td>11897</td>
<td>733.99</td>
<td>715.69</td>
<td>0.90%</td>
</tr>
<tr>
<td>3</td>
<td>13252</td>
<td>715.69</td>
<td>715.69</td>
<td>0.90%</td>
</tr>
<tr>
<td>4</td>
<td>30099</td>
<td>7725.76</td>
<td>7632.02</td>
<td>0.68%</td>
</tr>
<tr>
<td>5</td>
<td>7632.02</td>
<td>7632.02</td>
<td>7632.02</td>
<td>0.98%</td>
</tr>
</tbody>
</table>

Windows average density upper bound

<table>
<thead>
<tr>
<th>Case</th>
<th>Density (Case 1)</th>
<th>Density (Case 2)</th>
<th>Density (Case 3)</th>
<th>Density (Case 4)</th>
<th>Density (Case 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7169</td>
<td>0.7339</td>
<td>0.7169</td>
<td>0.6998</td>
<td>0.5940</td>
</tr>
<tr>
<td>2</td>
<td>0.7169</td>
<td>0.7339</td>
<td>0.7169</td>
<td>0.6998</td>
<td>0.5940</td>
</tr>
<tr>
<td>3</td>
<td>0.7169</td>
<td>0.7339</td>
<td>0.7169</td>
<td>0.6998</td>
<td>0.5940</td>
</tr>
<tr>
<td>4</td>
<td>0.7169</td>
<td>0.7339</td>
<td>0.7169</td>
<td>0.6998</td>
<td>0.5940</td>
</tr>
<tr>
<td>5</td>
<td>0.7169</td>
<td>0.7339</td>
<td>0.7169</td>
<td>0.6998</td>
<td>0.5940</td>
</tr>
</tbody>
</table>

Target Density Planning

Objective: distribute the target density for each window (under density constraint).

- Divide original window $(w \times w)$ into 4 sub-windows with size of $\frac{w}{2} \times \frac{w}{2}$.
- Reduce the critical nets capacitance and total wire capacitance.

$$\min \frac{1}{w} \sum_{i=1}^{m} (\sum_{j=1}^{n} C_{ij} - \min \{\sum_{j=1}^{n} C_{ij}^{\text{max}} - D_{ij}\})$$

s.t. Density constraints

$$\frac{w}{2} \times \frac{w}{2} \Rightarrow C^F = \frac{P_2(\Delta x) \times A_1}{\Delta x} > \gamma d$$

- Weight Ω_i measures the criticality of window W_i (the ratio of critical wires enclosed in).

$$\Omega_i = \left\{ \begin{array}{ll} 1 & \text{if} \quad \Omega_i > 0, \quad \Omega_i^0 = 0, \\ \omega^0 & \text{else.} \end{array} \right.$$