
SRAF Insertion via Supervised Dictionary Learning
Hao Geng

CSE Department, CUHK
hgeng@cse.cuhk.edu.hk

Haoyu Yang
CSE Department, CUHK

hyyang@cse.cuhk.edu.hk

Yuzhe Ma
CSE Department, CUHK

yzma@cse.cuhk.edu.hk

Joydeep Mitra
Cadence Design Systems Inc.
joydeepm@cadence.com

Bei Yu
CSE Department, CUHK

byu@cse.cuhk.edu.hk

ABSTRACT
In modern VLSI design flow, sub-resolution assist feature (SRAF)
insertion is one of the resolution enhancement techniques (RETs) to
improve chip manufacturing yield. With aggressive feature size con-
tinuously scaling down, layout feature learning becomes extremely
critical. In this paper, for the first time, we enhance conventional
manual feature construction, by proposing a supervised online dic-
tionary learning algorithm for simultaneous feature extraction and
dimensionality reduction. By taking advantage of label informa-
tion, the proposed dictionary learning engine can discriminatively
and accurately represent the input data. We further consider SRAF
design rules in a global view, and design an integer linear pro-
gramming model in the post-processing stage of SRAF insertion
framework. Experimental results demonstrate that, compared with
a state-of-the-art SRAF insertion tool, our framework not only
boosts the mask optimization quality in terms of edge placement
error (EPE) and process variation (PV) band area, but also achieves
some speed-up.

1 INTRODUCTION
As feature size of semiconductors entering nanometer era, litho-
graphic process variations are emerging as more severe issues in
chip manufacturing process. That is, these process variations may
result in manufacturing defects and a decrease of yield. Besides
some design for manufacturability (DFM) approaches such as mul-
tiple patterning and litho-friendly layout design [1, 2], a de facto
solution alleviating variations is mask optimization through various
resolution enhancement techniques (RETs) (e.g. [3, 4]).

Sub-resolution assist feature (SRAF) [5] insertion is one represen-
tative strategy among numerous RET techniques. Without printing
SRAF patterns themselves, the small SRAF patterns can transfer
light to the positions of target patterns, and therefore SRAFs are
able to improve the robustness of the target patterns under different
lithographic variations. A lithographic simulation example demon-
strating the benefit of SRAF insertion is illustrated in Figure 1. Here
process variation (PV) band (i.e. yellow circuit) area is applied to
measure the performance of lithographic process window. As a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’19, January 21–24, 2019, Tokyo, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6007-4/19/01. . . $15.00
https://doi.org/10.1145/3287624.3287684

(a)

(b)

Target

OPC

SRAF

PV band

Figure 1: (a) PrintingwithOPConly (2688nm2 PV band area);
(b) Printing with both OPC and SRAF (2318 nm2 PV band
area).

matter of fact, better printing performance, smaller area of the PV
band. In Figure 1(a), only optical proximity correction (OPC) is
conducted to improve the printability of the target pattern, while
in Figure 1(b) both SRAF insertion and OPC are exploited. We can
see that, through SRAF insertion, the PV band area of the printed
target pattern is effectively reduced from 2688 nm2 as in Figure 1(a)
to 2318 nm2 as in Figure 1(b).

There is a wealth of literature on the topic of SRAF insertion
for mask optimization, which can be roughly divided into three
categories: rule-based approach, model-based approach, and ma-
chine learning-based approach [6, 7]. Rule-based method is able to
achieve high performance on simple designs, but it cannot handle
complicated target patterns. Although model-based approach has a
better performance, it is unfortunately very time-consuming. Re-
cently, Xu et al. investigated an SRAF insertion framework based
on machine learning techniques [7]. By calibrating a mathematical
model based on the training data set, the calibrated model draws
inferences that can guide SRAF insertion from testing data set. How-
ever, on account of coarse feature extraction techniques and lack
of global view in SRAF designs, the simulation results may not be
good enough.

In a machine learning-based SRAF insertion flow, before fed
into the learning engine, raw clips should be preprocessed in fea-
ture extraction stage. One of the key takeaways of previous arts is
the importance of features extracted from clips that leverage prior
gained knowledge to achieve expected results. Namely, with more
representative, generalized and discriminative layout features, the
calibrated model performs better. In this paper, we argue that the
label information utilized in learning stage can be further imposed
in feature extraction stage, which in turn will benefit the learning

https://doi.org/10.1145/3287624.3287684

counterpart. In accordance with this argument, we propose a super-
vised online dictionary learning algorithm, which converts features
from high-dimension space into a low-dimension space, meanwhile
label information is integrated into the feature representation. To
the best of our knowledge, this is the first layout feature extraction
work seamlessly combining with label information. There is no
prior art in applying the dictionary learning techniques or further
supervised dictionary approaches into SRAF insertion issue. Our
main contributions are listed as follows.
• Leverage supervised online dictionary learning algorithm to
handle a large amount of layout patterns.
• Our proposed feature is more discriminative and representa-
tive, and is embedded into SRAF insertion framework.
• The SRAF insertion with design rules is modeled as an inte-
ger linear programming problem.
• Experimental results show that our method not only boosts
F1 score of machine learning model, but also achieves some
speed-up.

The rest of this paper is organized as following. Section 2 in-
troduces the problem to be addressed in the paper and illustrates
the whole working flow of our framework to insert SRAFs. Sec-
tion 3 firstly describes the specific feature extraction method, and
then proposes our supervised online dictionary learning method.
Section 4 reveals the integer linear programming framework in
post-processing stage. Section 5 presents the experiment results,
followed by conclusion in Section 6.

2 PRELIMINARY
2.1 Problem Formulation
Given a machine learning model, F1 score is used to measure its
accuracy. Specifically, the higher, the better. Besides F1 score, we
also exploit other two metrics, PV band area and edge placement
error (EPE), to quantify lithographic simulation results. We define
SRAF insertion problem as follows.

Problem 1 (SRAF Insertion). Given a training set of layout clips
and specific SRAF design rules, the objective of SRAF insertion is
to place SRAFs in the testing set of layout clips so that the cor-
responding PV band and the EPE under nominal condition are
minimized.

2.2 Overall Flow

CCAS Feature ExtractionLayout
Pattern

Supervised Feature Revision

SRAF Probability Learning

SRAF Generation via ILP SRAF
Output

Feature Extraction

SRAF Insertion

Figure 2: The proposed SRAF insertion flow.

Label: 1

Label: 0

(a)

0 1 2N%1
sub%sampling0point

(b)

Figure 3: (a) SRAF label; (b) CCAS feature extractionmethod
in machine learning model-based SRAF generation.

The overall flow of our proposed SRAF insertion is shown in
Figure 2, which consists of two stages: feature extraction and SRAF
insertion. In the feature extraction stage, after feature extraction
via concentric circle area sampling (CCAS), we propose supervised
feature revision, namely, mapping features into a discriminative
low-dimension space. Through dictionary training, our dictionary
consists of atoms which are representatives of original features. The
original features are sparsely encoded over a well-trained dictionary
and described as combinations of atoms. Due to space transforma-
tion, the new features (i.e. sparse codes) are more abstract and
discriminative with little important information loss for classifica-
tion. Therefore, proposed supervised feature revision is expected
to avoid over-fitting of a machine learning model. In the second
stage, based on the predictions inferred by learning model, SRAF
insertion can be treated as a mathematical optimization problem
accompanied by taking design rules into consideration.

3 FEATURE EXTRACTION
In this section, we firstly introduce the CCAS feature extraction
method, and specify supervised feature revision. By the end, we
give the details about our supervised online dictionary learning
algorithm and corresponding analysis.

3.1 CCAS Feature Extraction
With considering concentric propagation of diffracted light from
mask patterns, recently proposed CCAS [8] layout feature is used
in SRAF generation domain.

In SRAF insertion, the raw training data set is made up of layout
clips, which include a set of target patterns and model-based SRAFs.
Each layout clip is put on a 2-D grid plane with a specific grid size so
that real training samples can be extracted via CCASmethod at each
grid. For every sample, according to the model-based SRAFs, the
corresponding label is either “1” or “0”. As Figure 3(a) illustrates, “1”
means inserting an SRAF at this grid and “0” vice versa. Figure 3(b)
shows the feature extraction method in SRAF generation.

However, since adjacent circles contain similar information, the
CCAS feature has much redundancy. In fact, the redundancy will
hinder the fitting of a machine learning model.

3.2 Supervised Feature Revision
With CCAS feature as input, the dictionary learning model is ex-
pected to output the discriminative feature of low-dimension. In the
topic of data representation [9], a self-adaptive dictionary learning

⇡ Dyt

xt

{ N { s {

s

{ N

Figure 4: The overview of a dictionary learning model.

model can sparsely and accurately represent data as linear com-
binations of atoms (i.e., columns) from a dictionary matrix. This
model reveals the intrinsic characteristics of raw data.

In recent arts, sparse decomposition and dictionary construction
are coupled in a self-adaptive dictionary learning framework. As a
result, the framework can be modeled as a constraint-optimization
problem. The joint objective function of a self-adaptive dictionary
model for feature revision problem is proposed as Equation (1):

min
x ,D

1
N

N∑
t=1
{
1
2
∥yt − Dxt ∥

2
2 + λ ∥xt ∥p }, (1)

whereyt ∈ Rn is an input CCAS feature vector, andD =
{
dj

}s
j=1 ,dj ∈

Rn refers to the dictionary made up of atoms to encode input fea-
tures. xt ∈ Rs indicates sparse codes (i.e. sparse decomposition
coefficients) with p the type of norm. Meanwhile, N is the total
number of training data vectors in memory. The above equation,
illustrated in Figure 4, consists of a series of reconstruction error,
∥yt − Dxt ∥

2
2, and the regularization term ∥xt ∥p . In Figure 4, every

grid represents a numerical value, and dark grid of xt indicates
zero. It can be seen that the motivation of dictionary learning is to
sparsely encode input CCAS features over a well-trained dictionary.

However, from Equation (1), it is easy to discover that the main
optimization goal is minimizing the reconstruction error in a mean
squared sense, which may not be compatible to the goal of classi-
fication. Therefore, we try to explore the supervised information,
and then propose our joint objective function as Equation (2). An
assumption has been made in advance that each atom is associated
with a particular label, which is true as each atom is selected to
represent a subset of the training CCAS features ideally from one
class (i.e. occupied with an SRAF or not).

min
x ,D,A

1
N

N∑
t=1
{
1
2

(y⊤t ,√αq⊤t)⊤ − (
D
√
αA

)
xt

2
2
+ λ∥xt ∥p }. (2)

In Equation (2), α is a hyper-parameter balancing the contribution
of each part to reconstruction error. qt ∈ Rs is defined as discrim-
inative sparse code of t-th input feature vector. Hence, A ∈ Rs×s
transforms original sparse code xt into discriminative sparse code.
In qt , the non-zero elements indicate that the corresponding atoms
share the same label with t-th input. Given dictionary D, it is obvi-
ous that qt has some fixed types.

For example, assume D = {d1,d2,d3,d4} with d1 and d2 from
class 1, d3 and d4 from class 2, then qt for the corresponding input
yt is supposed to be either (1, 1, 0, 0)⊤ or (0, 0, 1, 1)⊤. For further
explanation, we merge different types of qt as aQ matrix:

Q =
(
q1, q2

)
=

©­­­«
1 0
1 0
0 1
0 1

ª®®®¬ , (3)

where (1, 1, 0, 0)⊤ means input sample shares the same label with
d1 and d2, and (0, 0, 1, 1)⊤ indicates that the input, d3 and d4 are
from the same class.

To illustrate physical meaning of Equation (2) clearly, we can
also rewrite it via splitting the reconstruction term into two terms
within l2-norm as (4):

min
x ,D,A

1
N

N∑
t=1
{
1
2
∥yt − Dxt ∥

2
2 +

α

2
∥qt −Axt ∥

2
2 + λ∥xt ∥p }. (4)

The first term ∥yt − Dxt ∥22 is still the reconstruction error term. The
second term ∥qt −Axt ∥22 represents discriminative error, which im-
poses a constraint on the approximation ofqt . As a result, the input
CCAS features from same class share quite similar representations.

Since the latent supervised information has been used, the label
information can also be directly employed. After adding the pre-
diction error term into initial objective function Equation (2), we
propose our final joint objective function as Equation (5):

min
x ,D,A,W

1
N

N∑
t=1
{
1
2

(y⊤t ,√αq⊤t ,√βht)⊤ − ©­«
D
√
αA√
βW

ª®¬xt

2

2

+ λ∥xt ∥p },

(5)

where ht ∈ R is the label with W ∈ R1×s the related weight
vector, and therefore ∥ht −Wxt ∥

2
2 refers to the classification error.

α and β are hyper-parameters which control the contribution of
each term to reconstruction error and balance the trade-off. So this
formulation can produce a good representation of original CCAS
feature.

3.3 Online Algorithm
Recently, some attempts which explore label information are pro-
posed in succession such as Discriminative K-SVD [10], kernelized
supervised dictionary learning [11], label consistent K-SVD [12]
(LCK-SVD) dictionary learning and supervised K-SVD with dual-
graph constraints [13].

However, most of them are based on K-SVD [14] which belongs
to batch-learning method. They are not suitable for dealing with
large dataset since the computation overhead (e.g. computing the
inverse of a very large matrix) may be high. Online learning method
applied in dictionary learning model [15, 16] is a good idea, yet
these algorithms are unsupervised.

Therefore, we develop an efficient online learning method, which
seamlessly combines aforementioned supervised dictionary learn-
ing. Unlike the batch approaches, online approaches process train-
ing samples incrementally, one training sample (or a small batch of
training samples) at a time, similarly to stochastic gradient descent.

According to our proposed formulation (i.e. Equation (5)), the
joint optimization of both dictionary and sparse codes is non-
convex, but sub-problem with one variable fixed is convex. Hence,
Equation (5) can be divided into two convex sub-problems. Note

that, in a taste of linear algebra, our new input with label infor-

mation, i.e.
(
y⊤t ,
√
αq⊤t ,

√
βht

)⊤
in Equation (5), can be still re-

garded as the original yt in Equation (1). So is the new merged
dictionary consisting of D, A andW . For simplicity of description
and derivation, in following analysis, we will use yt referring to(
y⊤t ,
√
αq⊤t ,

√
βht

)⊤
and D standing for merged dictionary with x

as the sparse codes.
Two stages, sparse coding and dictionary constructing, alterna-

tively perform in iterations. Thus, in t-th iteration, the algorithm
firstly draws the input sample yt or a mini-batch over the cur-
rent dictionary Dt−1 and obtains the corresponding sparse codes
xt . Then use two updated auxiliary matrices, Bt and Ct to help
computing Dt .

The objective function for sparse coding is showed in (6):

xt
∆
= argmin

x

1
2
∥yt − Dt−1x ∥

2
2 + λ∥x ∥1. (6)

If the regularizer adopts l0-norm, solving Equation (6) is NP-hard.
Therefore, we utilize l1-norm as a convex replacement of l0-norm.
In fact, Equation (6) is the classic Lasso problem [17], which can be
solved by any Lasso solver.

Two auxiliary matrices Bt ∈ R(n+s+1)×s and Ct ∈ Rs×s are
defined respectively in (7) and (8):

Bt ←
t − 1
t

Bt−1 +
1
t
ytx
⊤
t , (7)

Ct ←
t − 1
t

Ct−1 +
1
t
xtx
⊤
t . (8)

The objective function for dictionary construction is:

Dt
∆
= argmin

D

1
t

t∑
i=1
{
1
2
∥yi − Dxi ∥

2
2 + λ∥xi ∥1}. (9)

Algorithm 1 Supervised Online Dictionary Learning (SODL)

Input: Input merged features Y ← {yt }Nt=1 ,yt ∈ R
(n+s+1) (in-

cluding original CCAS features, discriminative sparse code
Q ← {qt }

N
t=1 ,qt ∈ R

s and label information H ←

{ht }
N
t=1 ,ht ∈ R).

Output: New features X ← {xt }Nt=1 ,xt ∈ R
s , dictionary D ←{

dj
}s
j=1 ,dj ∈ R

(n+s+1).
1: Initialization: Initial merged dictionary D0,dj ∈ R(n+s+1)

(including initial transformation matrix A0 ∈ Rs×s and ini-
tial label weight matrix W0 ∈ R1×s), C0 ∈ Rs×s ← 0,
B0 ∈ R(n+s+1)×s ← 0;

2: for t ← 1 to N do
3: Sparse coding yt and obtaining xt ; ▷ Equation (6)
4: Update auxiliary variable Bt ; ▷ Equation (7)
5: Update auxiliary variableCt ; ▷ Equation (8)
6: Update dictionary Dt ; ▷ Algorithm 2;
7: end for

Algorithm 1 summarizes the algorithm details of the proposed
supervised online dictionary learning (SODL) algorithm. We use
coordinate descent algorithm as the solving scheme to Equation (6)

(line 3). To accelerate the convergence speed, Equation (9) involves
the computations of past signals y1, . . . ,yt and the sparse codes
x1, ...,xt . One way to efficiently update dictionary is that introduce
some sufficient statistics, i.e.Bt ∈ R(n+s+1)×s (line 4) andCt ∈ Rs×s
(line 5), into Equation (9) without directly storing the past input
data sample yi and corresponding sparse codes xi for i ≤ t . These
two auxiliary variables play important roles in updating atoms,
which summarizes the past information from sparse coefficients
and input data. We further exploit block coordinate method with
warm start [18] to resolve Equation (9) (line 6). As a result, through
some gradient calculations, we bridge the gap between Equation (9)
and sequentially updating atoms based on Equations (10) and (11).

uj ←
1

C [j, j]

(
bj − Dc j

)
+ dj . (10)

dj ←
1

max
(

uj

2, 1)uj . (11)

For each atom dj , the updating rule is illustrated in Algorithm 2.
In Equation (10), Dt−1 is selected as the warm start of D. bj indi-
cates the j-th column of Bt , while c j is the j-th column ofCt .C [j, j]
denotes the j-th element on diagonal ofCt . Equation (11) is an l2-
norm constraint on atoms to prevent atoms becoming arbitrarily
large (which may lead to arbitrarily small sparse codes). [19] proves
that in the stage of constructing dictionary, the convex optimiza-
tion problem allowing separable constraints in the updated blocks
(columns) will guarantee the convergence to a global optimum.

Algorithm 2 Rules for Updating Atoms

Input: Dt−1 ←
{
dj

}s
j=1 ,dj ∈ R

(n+s+1),
Bt ←

{
bj
}s
j=1 ,bj ∈ R

(n+s+1),
Ct ←

{
c j
}s
j=1 ,c j ∈ R

s .
Output: dictionary Dt ←

{
dj

}s
j=1 ,dj ∈ R

(n+s+1).
1: for j ← 1 to s do
2: Update the j-th atom dj ; ▷ Equations (10) and (11)
3: end for

The proposed algorithm, SODL, handles the non-convex opti-
mization problem. So finding the global optimum is not guaranteed.
Although our algorithm will converge to a stationary point of the
objective function, for practical applications, stationary points are
empirically enough.

4 SRAF INSERTION
4.1 SRAF Probability Learning
After feature extraction via CCAS and proposed SODL framework,
the new discriminative feature in low-dimension is fed into the
machine learning model. For fair comparison, we exploit the same
classifier, logistic regression, as used in [7]. The classifier is cali-
brated by the training samples and then predict the SRAF labels as
probabilities for testing instances.

4.2 SRAF Insertion via ILP
Through SODL model and classifier, the probabilities of each 2-
D grid can be obtained. Based on design rules for the machine

(x, y)

(i, j)

10nm

(a)

Wmin

Wmax

40nm

X X

X X

(b)

Figure 5: (a) SRAF grid model construction; (b) SRAF inser-
tion design rule under the grid model.

learning model, the label for a grid with probability less than the
threshold is “0". It means that the grid will be ignored when doing
SRAF insertion. However, in [7], the scheme to insert SRAFs is
a little naive and greedy. Actually, combined with some relaxed
SRAF design rules such as maximum length and width, minimum
spacing, the SRAF insertion can be modeled as an integer linear
programming (ILP) problem. With ILP model to formulate SRAF
insertion, we will obtain a global view for SRAF generation.

In the objective of the ILP approach, we only consider valid grids
whose probabilities are larger than the threshold. The probability
of each grid is denoted as p(i, j), where i and j indicate the index of
a grid. For simplicity, we merge the current small grids into new
bigger grids, as shown in Figure 5(a). Then we define c(x ,y) as the
value of each merged grid, where x ,y denote the index of merged
grid. The rule to compute c(x ,y) is as follows.

c(x ,y) =

{∑
(i, j)∈(x,y) p(i, j), if ∃ p(i, j) ≥ threshold,
−1, if all p(i, j) < threshold.

(12)

The motivation behind this approach is twofold. One is to speed
up the ILP. Because we can pre-determine some decision variables
whose values are negative. The other is to keep the consistency of
machine learning prediction.

In ILP for SRAF insertion, our real target is to maximize the total
probability of valid grids with feasible SRAF insertion. Accordingly,
it is manifest to put up with the objective function, which is to
maximize the total value of merged grids. The ILP formulation is
shown in Formula (13).

max
a(x,y)

∑
x,y

c(x ,y) · a(x ,y) (13a)

s.t. a(x ,y) + a(x − 1,y − 1) ≤ 1, ∀(x ,y), (13b)
a(x ,y) + a(x − 1,y + 1) ≤ 1, ∀(x ,y), (13c)
a(x ,y) + a(x + 1,y − 1) ≤ 1, ∀(x ,y), (13d)
a(x ,y) + a(x + 1,y + 1) ≤ 1, ∀(x ,y), (13e)
a(x ,y) + a(x ,y + 1) + x(x ,y + 2)

+ a(x ,y + 3) ≤ 3, ∀(x ,y), (13f)
a(x ,y) + a(x + 1,y) + x(x + 2,y)

+ a(x + 3,y) ≤ 3, ∀(x ,y), (13g)
a(x ,y) ∈ {0, 1}, ∀(x ,y). (13h)

Here a(x ,y) refers to the insertion situation at the merged grid
(x ,y). According to the rectangular shape of an SRAF and the spac-
ing rule, the situation of two adjacent SRAFs on the diagonal is
forbidden by Constraints (13b) to (13e); e.g. Constraint (13b) re-
quires the a(x ,y) and the left upper neighbor a(x − 1,y − 1) cannot

0 5 10

60

80

100

Number of Atoms (×100)

F 1
Sc
or
e
(%
)

100

200

300

Ru
nt
im

e
(s
)

F1
Runtime

Figure 6: The trend of changing number of atoms.

be 1 at the same time, otherwise which will lead to the violation
against design rules. Constraints (13f) to (13g) restrict the maxi-
mum length of SRAFs. The Figure 5(b) actively illustrates these
linear constraints coming from design rules.

5 EXPERIMENTAL RESULTS
We implement the framework using python on an 8-core 3.7GHz
Intel platform. To verify the effectiveness and the efficiency of our
SODL algorithm, we employ the same benchmark set as applied in
[7], which consists of 8 dense layouts and 10 sparse layouts with
contacts sized 70nm. The spacing for dense and sparse layouts are
set to 70nm and ≥ 70nm respectively.

Table 1 compares our results with a state-of-the-art machine
learning based SRAF insertion tool [7]. Column “Benchmark” lists
all the test layouts. Columns “F1 score”, “PV band”, “EPE” and
“CPU” are the evaluation metrics in terms of the learning model
performance, the PV band area, the EPE, and the total runtime.
Column “ISPD’16” denotes the experiment results by [7], while
columns “SODL” and “SODL+ILP” correspond to the results of our
supervised online dictionary learning framework without and with
ILP model in post-processing. Note that in “SODL”, a greedy SRAF
generation approach as in [7] is utilized.

It can be seen from the table that the SODL algorithm outper-
forms [7] in terms of F1 score by 5.5%. This indicates the predicted
SRAFs by our model match the reference results better than [7].
In other words, the proposed SODL based feature revision can
efficiently improve machine learning model generality.

We also feed the SRAFed layouts into Calibre [20] to go through
a simulation flow that includes OPC and lithography simulation,
which will generate printed contours under a given process win-
dow. The simulation results show that we get slightly better PV
band and EPE results with around 20% less runtime overhead. In
particular, after incorporating SRAF design rules with an ILP so-
lution, SODL behaves even much better with an average PV band
of 2.609×10−3µm2 and an average EPE of 0.774nm that surpass [7]
with 2% less PV band and 3% less EPE.

We exemplify the trends of runtime and F1 score with respect
to the changing of number of atoms, which is depicted in Fig-
ure 6. With an increment in number of atoms, runtime ascends.
Meanwhile, F1 score goes down until number of atoms reaches a
threshold. The reason is that the increase of feature dimensionality
may generate over-fitting.

Table 1: Lithographic Performance Comparison with [7].

Benchmark
ISPD’16 [7] SODL SODL+ILP

F1 score PV band EPE CPU F1 score PV band EPE CPU F1 score PV band EPE CPU
(%) (.001µm2) (nm) (s) (%) (.001µm2) (nm) (s) (%) (.001µm2) (nm) (s)

Dense1 95.37 1.891 0.625 1.46 96.69 1.840 0.625 1.12 96.69 1.823 0.750 1.26
Dense2 94.77 1.960 0.313 1.35 97.00 2.033 0.500 1.06 97.00 2.003 0.438 1.20
Dense3 93.70 2.677 1.625 1.25 96.87 2.718 1.375 0.97 96.87 2.445 1.375 1.07
Dense4 93.89 2.426 1.313 1.47 96.49 2.288 1.125 1.13 96.49 2.459 1.625 1.29
Dense5 93.54 2.445 1.250 1.47 96.16 2.428 1.375 1.18 96.16 2.336 1.375 1.28
Dense6 93.02 2.933 0.750 1.17 96.86 2.871 1.000 0.91 96.86 2.886 0.250 1.00
Dense7 94.22 2.426 1.500 1.42 97.13 2.409 1.333 1.09 97.13 2.318 1.500 1.21
Dense8 93.24 2.354 1.417 1.40 96.85 2.436 1.417 1.10 96.85 2.366 1.167 1.20
Sparse1 90.51 2.937 0.438 2.61 93.62 2.866 0.563 2.04 93.62 2.803 0.375 2.18
Sparse2 87.65 2.870 0.625 7.02 94.03 2.872 0.516 5.25 94.03 2.873 0.594 5.63
Sparse3 85.75 2.882 0.556 14.07 91.68 2.911 0.535 10.74 91.68 2.829 0.528 11.50
Sparse4 85.56 2.896 0.566 23.81 93.35 2.891 0.496 18.44 93.35 2.830 0.547 19.66
Sparse5 85.69 2.889 0.565 28.96 90.48 2.931 0.571 23.18 90.48 2.850 0.580 24.80
Sparse6 84.65 2.875 0.558 41.87 91.57 2.852 0.630 32.43 91.57 2.787 0.572 34.29
Sparse7 85.00 2.881 0.540 56.95 93.01 2.921 0.611 44.87 93.01 2.841 0.575 47.58
Sparse8 84.05 2.899 0.564 74.56 92.72 2.860 0.573 59.70 92.72 2.835 0.560 63.08
Sparse9 84.71 2.885 0.586 94.93 90.21 2.940 0.549 75.34 90.21 2.833 0.568 79.58
Sparse10 84.03 2.884 0.599 106.33 92.60 2.915 0.512 82.90 92.60 2.836 0.560 88.00

Average 89.41 2.667 0.799 25.67 94.30 2.666 0.795 20.19 94.30 2.609 0.774 21.43
Ratio 1.000 1.000 1.000 1.000 1.055 0.999 0.994 0.787 1.055 0.978 0.969 0.835

6 CONCLUSION
In this paper, for the first time, we have introduced the concept
of dictionary learning into the layout feature extraction stage and
further proposed a supervised online algorithm constructing dictio-
nary. This algorithm has been exploited into a machine learning-
based SRAF insertion framework. To get a global view for SRAF
generation, combined with design rules, an ILP has been built to
generate SRAFs. The experimental results show that the F1 score
of machine learning model in SRAF insertion has been boosted and
runtime overhead is also reduced compared with a state-of-the-art
SRAF insertion tool. More importantly, the results of lithography
simulations demonstrate the promising lithography performance in
terms of PV band area and EPE. With the transistor size shrinking
rapidly and the layouts becoming more and more complicated, we
expect to apply our ideas into general VLSI layout feature learning
and encoding.

ACKNOWLEDGEMENTS
This work is supported in part by The Research Grants Council of
Hong Kong SAR (Project No. CUHK24209017).

REFERENCES
[1] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with emerging nano-

lithography,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 32, no. 10, pp. 1453–1472, 2013.

[2] S. Shim, S. Choi, and Y. Shin, “Light interference map: A prescriptive optimization
of lithography-friendly layout,” IEEE Transactions on Semiconductor Manufactur-
ing (TSM), vol. 29, no. 1, pp. 44–49, 2016.

[3] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in mask optimiza-
tion and benchmark suite,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2013, pp. 271–274.

[4] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing solution with
process window aware inverse correction,” in ACM/IEEE Design Automation

Conference (DAC), 2014, pp. 52:1–52:6.
[5] C. H. Wallace, P. A. Nyhus, and S. S. Sivakumar, “Sub-resolution assist features,”

Dec. 15 2009.
[6] J. Jun, M. Park, C. Park, H. Yang, D. Yim, M. Do, D. Lee, T. Kim, J. Choi, G. Luk-Pat

et al., “Layout optimization with assist features placement by model based rule
tables for 2x node random contact,” in Proceedings of SPIE, vol. 9427, 2015.

[7] X. Xu, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, and D. Z. Pan, “A machine
learning based framework for sub-resolution assist feature generation,” in ACM
International Symposium on Physical Design (ISPD), 2016, pp. 161–168.

[8] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction with hierar-
chical bayes model,” in Proceedings of SPIE, vol. 9426, 2015.

[9] M. J. Gangeh, A. K. Farahat, A. Ghodsi, and M. S. Kamel, “Supervised dictionary
learning and sparse representation-a review,” arXiv preprint arXiv:1502.05928,
2015.

[10] Q. Zhang and B. Li, “Discriminative K-SVD for dictionary learning in face recog-
nition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2010, pp. 2691–2698.

[11] M. J. Gangeh, A. Ghodsi, and M. S. Kamel, “Kernelized supervised dictionary
learning,” IEEE Transactions on Signal Processing, vol. 61, no. 19, pp. 4753–4767,
2013.

[12] Z. Jiang, Z. Lin, and L. S. Davis, “Learning a discriminative dictionary for sparse
coding via label consistent K-SVD,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2011, pp. 1697–1704.

[13] Y. Yankelevsky and M. Elad, “Structure-aware classification using supervised
dictionary learning,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017, pp. 4421–4425.

[14] M. Aharon, M. Elad, and A. Bruckstein, “k -SVD: An algorithm for designing
overcomplete dictionaries for sparse representation,” IEEE Transactions on Signal
Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[15] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning for sparse
coding,” in International Conference on Machine Learning (ICML), 2009, pp. 689–
696.

[16] K. Skretting and K. Engan, “Recursive least squares dictionary learning algorithm,”
IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 2121–2130, 2010.

[17] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal of the
Royal Statistical Society: Series B, vol. 58, pp. 267–288, 1996.

[18] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized
linear models via coordinate descent,” Journal of Statistical Software, vol. 33, no. 1,
p. 1, 2010.

[19] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont, 1999.
[20] Mentor Graphics, “Calibre verification user’s manual,” 2008.

