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ABSTRACT
Mask optimization has been a critical problem in the VLSI design flow
due to the mismatch between the lithography system and the continu-
ously shrinking feature sizes. Optical proximity correction (OPC) is one
of the prevailing resolution enhancement techniques (RETs) that can
significantly improve mask printability. However, in advanced technol-
ogy nodes, the mask optimization process consumes more and more
computational resources. In this paper, we develop a generative ad-
versarial network (GAN) model to achieve better mask optimization
performance. We first develop an OPC-oriented GAN flow that can
learn target-mask mapping from the improved architecture and objec-
tives, which leads to satisfactory mask optimization results. To facilitate
the training process and ensure better convergence, we also propose
a pre-training procedure that jointly trains the neural network with
inverse lithography technique (ILT). At convergence, the generative
network is able to create quasi-optimal masks for given target circuit
patterns and fewer normal OPC steps are required to generate high
quality masks. Experimental results show that our flow can facilitate
the mask optimization process as well as ensure a better printability.

1 INTRODUCTION
With the VLSI technology node continuously shrinking down, the
mask optimization process becomes a great challenge for designers
[1, 2]. Conventional mask optimization process is illustrated in Fig-
ure 1, where OPC aims at compensating lithography proximity effects
through correcting mask pattern shapes and inserting assist features.
OPC methodologies include model-based techniques [3–5] and inverse
lithography-based technique (ILT) [6–8].

In model-based OPC flows, pattern edges are fractured into segments
which are then shifted/corrected according to mathematical models. A
high printability mask can then be obtained with sub-resolution assist
features (SRAF) [9]. Awad et al. [3] propose a pattern fidelity awaremask
optimization algorithm that optimizes core polygons by simultaneously
shifting adjacent segmentations. Su et al. [5] significantly accelerate the
OPC flow by extracting representative process corners while maintain-
ing a good wafer image quality. However, model-based OPC flows are
highly restricted by their solution space and hence lacking in reliability
for complicated designs. On the other hand, ILTs minimize the error
between the wafer image and the target with lithography constraints.
Because ILTs conduct pixel-based optimization on layout masks, they
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Figure 1: Conventional OPC flow and lithography process,
where OPC is very time consuming.

are expected to offer better lithography contour quality. Recently, Ma
et al. [8] adopt ILT to simultaneously perform mask optimization and
layout decomposition that brings a better solution of multiple pattern-
ing mask design. Although the model-based method and the ILT-based
method behave well on a variety of designs, they take the wafer image
as a mask update criterion in each iteration of the OPC process. In other
works, multiple rounds of lithography simulation are indispensable in
the optimization flow which is drastically time consuming.

The explosion of machine learning techniques have dramatically
changed the way to solve design for manufacturability problems. Re-
cently, both shallow and deep learning models have been successfully
utilized to estimate mask printability accurately and efficiently (e.g. [10–
13]). There are also several attempts on mask optimization problems
that contain more complex regression or classification procedures. Mat-
sunawa et al. [14] conduct segment based pattern correction with hier-
archical Bayes model. Gu et al. [15] introduce discrete cosine transform
(DCT) features and linear regression to predict fragment movement.
[16, 17] incorporate artificial neural networks to estimate mask pat-
terns. However, existing machine learning models can only perform
pixel-wise or segment-wise mask calibration that is not computationally
efficient.

Generative adversarial networks (GAN) has shown powerful gener-
ality when learning the distribution of a given dataset [18]. The basic
optimization flow of GAN contains two networks interacting with each
other. The first one is called generator that takes random vectors as in-
put and generates samples which are as much closer to the true dataset
distribution as possible. The second one is called discriminator that
tries to distinguish the true dataset from the generated samples. At
convergence, ideally, the generator is expected to generate samples
that have the same distribution as true dataset. Inspired by the gener-
ative architecture and the adversarial training strategy, in this work
we propose a lithography-guided generative framework that can syn-
thesis quasi-optimal mask with single round forwarding calculation.
The quasi-optimal mask can be further refined by few steps of normal
OPC engine. It should be noted conventional GAN cannot be directly
applied here, due to the following two reasons. (1) Traditional GANs
are trained to mimic a dataset distribution which is not enough for the
target-mask mapping procedure. (2) Compensation patterns or segment
movements in the mask are derived based upon a large area of local
patterns (e.g. 1000 × 1000nm2) that brings much training pressure on
the generator.

In accordance with these problems, we develop customized GAN
training strategies for the purpose of mask optimization. Besides, since
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layout topology types are limited within specific area, we automatically
synthesis local topology patterns based on size and spacing rules. The
benefits of the artificial patterns are twofold: (1) we avoid to train the
neural network with large images and facilitate the training procedure
significantly; (2) automatically designed patterns are distributed uni-
formly and to some extent alleviate the over-fitting problem. Observing
that most ILTs update the mask through steepest descent that resembles
the training procedure in neural networks, we connect an ILT structure
with the generative networks and pre-train the generator through back-
propagating the lithography error to neuron weights. With the above
pre-training phase, the generative model converges faster than training
from random initialized neuron weights. The main contributions of this
paper are listed as follows:
• We synthesis training topologies to enhance the computational
efficiency and alleviate the over-fitting problem.
• We propose an ILT-guided pre-training flow to initialize the
generator which can effectively facilitate the training procedure.
• We design new objectives of the discriminator to make sure the
model is trained toward a target-mask mapping instead of a
distribution.
• Experimental results show that our framework can significantly
facilitate the mask optimization procedure as well as generating
mask that has better printability under nominal condition.

The rest of the paper is organized as follows. Section 2 lists basic
concepts and problem formulation. Section 3 discusses the details of
the framework and training strategies. Section 4 presents experimental
results, followed by conclusion in section Section 5.

2 PRELIMINARIES
In this section, we will discuss some preliminaries of mask optimization
and the generative adversarial nets. Throughout this paper, we use Zt
to represent the target layout, M for the mask, I for the aerial image, Z
for the wafer image, G for the generator output, D for the discriminator
output and px for some distribution. We also denote operations “⊗” and
“⊙” as convolution and element-wise product, respectively. In order
to avoid confusion, all the norms | | · | | are calculated with respect to
flattened vectors.

Hopkins theory of the partially coherence imaging system has been
widely applied to mathematically analyze the mask behavior of lithog-
raphy [19]. Because the Hopkins diffraction model is complex and not
computational-friendly, [20] adopts the singular value decomposition
(SVD) to approximate the original model with a weighted summation
of coherent systems.

I =
N 2∑
k=1

wk |M ⊗ hk |
2, (1)

where hk and wk are the kth kernel and its weight. As suggested in
[7], we pick the N th

h order approximation to the system. Equation (1)
becomes,

I =
Nh∑
k=1

wk |M ⊗ hk |
2. (2)

We pick Nh = 24 in our experiments. The lithography intensity corre-
sponds to the exposure level on the photo resist, which controls the
final wafer image with a photo resit model (Equation (3)).

Z(x ,y) =
{

1, if I(x ,y) ≥ Ith ,
0, if I(x ,y) < Ith .

(3)

Mask quality is evaluated through the fidelity of its wafer image
with respect to the target image. Edge placement error (EPE), bridge
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Figure 2: Different types of defects. Same lithography images re-
sult in different EPE violation counts due to different choices of
measurement points. Some defects are not detectable through
merely checking edge placement errors.

and neck are three main types of defect detectors that are adopted in a
layout printability estimation flow. As shown in Figure 2, EPE measures
horizontal or vertical distances from given points (i.e. OPC control
points) on target edges to lithography contours. Neck detector checks
the error of critical dimensions of lithography contours compared to
target patterns, while bridge detector aims to find unexpected short
of wires. Note that unlike EPE violations, bridge and neck defects can
appear in any directions. Because EPE violations could happen with
good critical dimension and neck or bridge occurs with small EPE, none
of these defect types individually can be an ideal representation of
mask printability. Considering the objective of mask optimization is
to make sure the remaining patterns after lithography process are as
close as target patterns, we pick the squared L2 error as the metric of
lithography quality since a smaller L2 indicates a better wafer image
quality.

Definition 1 (Squared L2 Error). Let Zt and Z as target image and
wafer image respectively, the squared L2 error ofZ is given by | |Zt−Z| |22 .

Following above terminologies, we define the mask optimization
problem as follows.

Problem1 (Mask Optimization). Given a target imageZt , the objective
of the problem is generating the corresponding mask M such that
remaining patterns Z after lithography process is as close as Zt or, in
other word, minimizing the squared L2 error of lithography images.

3 GAN-OPC FRAMEWORK
A classical GAN architecture comprises a generator and a discriminator.
The generator accepts random vectors z ∼ pz as the input and generates
samples G(z;Wд ) that follows some distribution pд , where G is a con-
volutional neural networks parameterized byWд . The discriminator
acts as a classifier that distinguishes G(z;Wд ) and the instance drawn
from a data distribution pd . The output D(x;Wd ) represents the proba-
bilities of x drawn from pd and pд . It should be noted that the original
settings are not well suitable for the mask optimization problem. In
this section, we will introduce the details of our framework including
OPC-oriented GAN architecture and advanced training strategies.

3.1 Generator Design
From the previous discussion we can notice that the generator learns
a distribution of a given dataset, which is originally designed as a
mapping function G : pz → pд , where pz is a distribution that input
vectors are drawn and pд denotes the distribution of the training set.
The objective of the generator is to generate samples that deceive the
discriminator as much as possible, as in Equation (4):

maxEz∼pz [log(D(G(z)))], (4)

which maximizes the log-likelihood of the discriminator giving predic-
tions that generated samples are real. Correspondingly, the generator
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Figure 3: Conventional GAN architecture.

comprises a deconvolutional architecture that casts 1D vectors back
to 2D images through stacked deconvolution operations, as shown in
Figure 3.

Our framework, however, is expected to perform mask optimization
on given target circuit patterns and obviously violates the deconvo-
lutional architecture. To resolve this problem, we design a generator
based on auto-encoder [21] which consists of an encoder and a decoder
subnets. As depicted in Figure 4, the encoder is a stacked convolutional
architecture that performs hierarchical layout feature abstractions and
the decoder operates in an opposite way that predicts the pixel-based
mask correction with respect to the target based on key features ob-
tained from the encoder.

3.2 Discriminator Design
The discriminator is usually an ordinary convolutional neural networks
that perform classification to distinguish the generated samples from
the given data samples as shown in Equation (5):

maxEx∼pd [log(D(x))] + Ez∼pz [log(1 − D(G(z)))]. (5)

In this work, the discriminator predicts whether an input instance is the
generated mask M or the reference mask M∗. However, the discrimina-
tor in Equation (5) is necessary but not sufficient to ensure generator to
obtain a high quality mask (Figure 3). Consider a set of target patterns
Z = {Zt,i , i = 1, 2, . . . ,N } and a corresponding reference mask set
M = {M∗i , i = 1, 2, . . . ,N }. Without loss of generality, we use Zt,1 in
the following analysis. Suppose the above GAN structure has enough
capacity to be well trained, the generator outputs an mask G(Zt,1)
that optimizes the objective function as in Equation (4). Observe that
log(D(G(Zt,1))) reaches its maximum value as long as

G(Zt,1) = M∗i ,∀i = 1, 2, . . . ,N . (6)

Therefore, an one-one mapping between the target and the reference
mask cannot be guaranteed with current objectives. To address above
concerns, we propose a new classification scheme that predicts pos-
itive or negative labels on target-mask pairs that inputs of the dis-
criminator will be either (Zt ,G(Zt )) or (Zt ,M∗), as illustrated in Fig-
ure 4. Claim that G(Zt ) ≈ M∗ at convergence with new discrimi-
nator. We still assume enough model capacity and training time for
convergence. The discriminator now performs prediction on target-
mask pairs instead of masks. Because only pairs {Zt,i ,M∗i } are labeled
as data, the generator can deceive the discriminator if and only if
G(Zt,i ) ≈ M∗i ,∀i = 1, 2, . . . ,N , where N is the total number of training
instances.
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Figure 4: The proposed GAN-OPC architecture.

3.3 GAN-OPC Training
Based on the OPC-oriented GAN architecture in our framework, we
tweak the objectives of G and D accordingly,

maxEZt∼Z[log(D(Zt ,G(Zt )))], (7)

maxEZt∼Z[log(D(Zt ,M∗))] + EZt∼Z[1 − log(D(Zt ,G(Zt )))]. (8)

In addition to facilitate the training procedure, we minimize the dif-
ferences between generated masks and reference masks when updating
the generator as in Equation (9).

minEZt∼Z | |M
∗ − G(Zt ) | |n , (9)

where | |·| |n denotes the ln norm. Combining (7), (8) and (9), the objective
of our GAN model becomes

min
G

max
D
EZt∼Z[1 − log(D(Zt ,G(Zt ))) + | |M∗ − G(Zt ) | |nn ]

+ EZt∼Z[log(D(Zt ,M∗))]. (10)

Previous analysis shows that the generator and the discriminator
have different objectives, therefore the two sub-networks are trained
alternatively, as shown in Figure 5(a) and algorithm 1. In each training
iteration, we sample a mini-batch of target images (line 2) and their
ground truth masks (line 3); Gradients of both the generator and the
discriminator are initialized to zero (line 4); A feed forward calculation
is performed on each sampled instances (lines 6); We calculate the loss
of the generator and the discriminator on each instance in the mini-
batch (lines 7–8); We obtain the accumulated gradient of losses with
respect to neuron parameters (lines 9–10); Finally the generator and
the discriminator are updated by descending their mini-batch gradients
(lines 12–13). Note that in Algorithm 1we convert the min-max problem
in Equation (10) into two minimization problems such that gradient
ascending operations are no longer required to update neuron weights.

Algorithm 1 differs from traditional GAN optimization flow on the
following aspects. (1) The generator plays as a mapping function from
target to mask instead of merely a distribution, therefore the gradient
of L2 loss is back-propagated along with the information from the
discriminator. (2) The discriminator functions as an alternative of ILT
engine that determines only the quality of generated masks without any
calibration operations. Besides, our combined input ensures that the
discriminator will make positive prediction if and only if the generated



Algorithm 1 GAN-OPC Training

1: for number of training iterations do
2: Samplem target clips Z← {Zt,1,Zt,2, . . . ,Zt,m };
3: ∆Wд ← 0,∆Wd ← 0;
4: for each Zt ∈ Z do
5: M← G(Zt ;Wд );
6: M∗ ← Groundtruth mask of Zt ;
7: lд ← − log(D(Zt ,M)) + α | |M∗ −M| |22 ;
8: ld ← log(D(Zt ,M)) − log(D(Zt ,M∗));

9: ∆Wд ← ∆Wд +
∂lд

∂Wд
; ∆Wd ← ∆Wd +

∂ld
∂Wд

;

10: end for
11: Wд ←Wд −

λ

m
∆Wд ; Wd ←Wd −

λ

m
∆Wd ;

12: end for

mask is much close to the ground truth, which also helps train the
generator better.

3.4 ILT-guided Pre-training
Although with OPC-oriented techniques, GAN is able to obtain a fairly
good performance and training behavior, it is still a great challenge
to train the complicated GAN model with satisfactory convergence.
Observing that ILT and neural network training stage share similar
gradient descent techniques, we develop an ILT-guided pre-training
method to initialize the generator, after which the alternativemini-batch
gradient descent is discussed as a training strategy of GAN optimization.
The main objective in ILT is minimizing the lithography error through
gradient descent.

E = | |Zt − Z| |22 , (11)

where Zt is the target and Z is the wafer image of a given mask. Because
mask and wafer images are regarded as continuously valued matrices in
the ILT-based optimization flow, we apply translated sigmoid functions
to make the pixel values close to either 0 or 1.

Z =
1

1 + exp[−α × (I − Ith )]
, (12)

Mb =
1

1 + exp(−β ×M)
, (13)

where Ith is the binarization threshold,Mb is the incompletely binarized
mask, while α and β control the steepness of relaxed images.

Combine Equations (1)–(3), Equations (11)–(13) and the analysis in
[6], we can derive the gradient representation as follows,

∂E

∂M
=2αβ ×Mb ⊙ (1 −Mb )⊙

(((Z − Zt ) ⊙ Z ⊙ (1 − Z) ⊙ (Mb ⊗ H∗)) ⊗ H+

((Z − Zt ) ⊙ Z ⊙ (1 − Z) ⊙ (Mb ⊗ H)) ⊗ H∗), (14)

where H∗ is the conjugate matrix of the original lithography kernel H.
In traditional ILT flow, the mask can be optimized through iteratively
descending the gradient until E is below a threshold.

The objective of mask optimization problem indicates the generator
is the most critical component in GAN. Observing that both ILT and
neural network optimization share similar gradient descent procedure,
we propose a jointed training algorithm that takes advantages of ILT
engine, as depicted in Figure 5(b). We initialize the generator with
lithography-guided pre-training to make it converge well in the GAN
optimization flow thereafter. The key step of neural network training is
back-propagating the training error from the output layer to the input

Generator Real
Fake
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Figure 5: (a) GAN-OPC training and (b) ILT-guided pre-training.

layer while neural weights are updated as follows,

Wд =Wд −
λ

m
∆Wд , (15)

where ∆Wд is accumulated gradient of a mini-batch of instances and
m is the mini-batch instance count. Because Equation (15) is naturally
compatible with ILT, if we create a link between the generator and ILT
engine, the wafer image error can be back-propagated directly to the
generator as presented in Figure 5.

The generator pre-training phase is detailed in Algorithm 2. In each
pre-training iteration, we sample a mini-batch of target layouts (line
2) and initialize the gradients of the generator ∆Wд to zero (line 3);
The mini-batch is fed into the generator to obtain generated masks
(lines 5). Each generated mask is loaded into the lithography engine to
obtain a wafer image (line 6); The quality of wafer image is estimated
by Equation (11) (lines 7); We calculate the gradient of lithography
error E with respect to the neural networks parameterWд through the

chain rule, i.e.,
∂E

∂M
∂M
∂Wд

(line 8) ; Finally,Wд is updated following the

gradient descent procedure (line 10).

Algorithm 2 ILT-guided Pre-training

1: for number of pre-training iterations do
2: Samplem target clips Z← {Zt,1,Zt,2, . . . ,Zt,m };
3: ∆Wд ← 0;
4: for each Zt ∈ Z do
5: M← G(Zt ;Wд );
6: Z← LithoSim(M) ▷ Equations (2)–(3)
7: E ← ||Z − Zt | |22 ;

8: ∆Wд ← ∆Wд +
∂E

∂M
∂M
∂Wд

; ▷ Equation (14)

9: end for
10: Wд ←Wд −

λ

m
∆Wд ; ▷ Equation (15)

11: end for

Compared to the training towards ground truth (i.e., directly back-
propagate the mask error to neuron weights), ILT-guided pre-training
provides step-by-step guidance when searching for a solution with high
quality, which reduces the possibility of the generator being stuck at
local minimum region in an early training stage. Because ILT contains
complicated convolutions and matrix multiplications that are com-
putational expensive, we approximate the pre-training stage through
back-propagating errors of intermediate masks, which “guides” the
generator towards optimality. We only adopt the ILT engine in the
pre-training stages and replace it with the discriminator in the main
training stage where the generator is optimized in an adversarial style.



Table 1: The design rules used.

Item Min Size (nm)
M1 Critical Dimension 80

Pitch 140
Tip to tip distance 60

ILT
Engine

Generator

Figure 6: GAN-OPC flow: generator inference and ILT refine-
ment.

4 EXPERIMENTAL RESULTS
The generative adversarial network for mask optimization is imple-
mented based on Tensorflow [22] library and tested on single Nvidia
Titan X. The lithography engine is based on the lithosim_v4 pack-
age from ICCAD 2013 CAD Contest [23], which also provides ten
industrial M1 designs on 32nm design node.

As a type of deep neural networks, GAN can be hardly well trained
with only ten instances. To verify our framework, we synthesize a train-
ing layout library with 4000 instances based on the design specifications
from existing 32nm M1 layout topologies. We adjust the wire sizes to
make sure the shapes in synthesized layouts are similar to those in
the given benchmark. To generate experimental cells, all the shapes
are randomly placed together based on simple design rules, as detailed
in Table 1. In addition, most generative models have shown obvious
weakness in image details, which makes it extremely hard to optimize
images with size 2048×2048. Therefore, we perform 8 × 8 average pool-
ing on layout images before feeding them into the neural networks. In
the generation stage we adopt simple linear interpolation to convert
the layout images back to their original resolution.

The proposed GAN-OPC flow is illustrated in Figure 6, where we
first feed target patterns into the generator and obtain the quasi-optimal
masks, followed by refinement through an ILT engine. To verify the
effectiveness of ILT-guided pre-training algorithm, we record training
behaviors of two GANs which are denoted by GAN-OPC and PGAN-
OPC. Here “GAN-OPC” and “PGAN-OPC” denote GAN-OPC flow with-
out generator pre-training and GAN-OPC flow with ILT-guided pre-
training, respectively. The training procedure is depicted in Figure 7,
where x-axis indicates training steps and y-axis is L2 loss between
generator outputs and ground truth masks, as in Equation (9).

The training time for both GAN and PGAN are around 10 hours on
our platform. Although L2 loss of GAN-OPC drops slightly faster before
3000 iterations, the training curve shows that PGAN-OPC is a more
stable training procedure and converges to a lower loss. Besides, it takes
much more efforts for GAN-OPC to search a direction to descending
the gradient fast, while the training loss of PGAN-OPC drops smoothly
and converges at a lower L2 loss than GAN-OPC, which indicates ILT-
guided pre-training indeed facilitates mask-optimization-oriented GAN
training flow. We will also show that PGAN-OPC exhibits better mask
optimization results in the following section.

In the second experiment, we optimize the ten layout masks in
ICCAD 2013 contest benchmark [23] and compare the results with
previous work. Figure 8 depicts mask optimization results in compar-
ison with an ILT engine [7], and the quantitative results are listed in
Table 2. Here the wafer images are calculated from the simulation tool
(lithosim_v4) in the contest [23]. Note that all the GAN-OPC and
PGAN-OPC results are refined by an ILT engine which generates final
masks to obtain wafer images. Column “L2” is the squared L2 error

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0.00

50.00

100.00

Training Step

L
2
L
o
ss

GAN-OPC
PGAN-OPC

Figure 7: Training curves of GAN-OPC and PGAN-OPC.

between the wafer image and the target image under nominal condi-
tion. Column “PVB” denotes the contour area variations under ± 2%
dose error. It is notable that GAN-OPC significantly reduces squared L2
error of wafer images under the nominal condition by 9% and with the
ILT-guided pre-training, squared L2 error is slightly improved and PVB
is further reduced by 1%. Because we only focus on the optimization
flow under the nominal condition and no PVB factors are considered,
our method only achieves comparable PVB areas among ten test cases.
Additionally, feed-forward computation of GAN only takes 0.2s for
each image which is ignorable, therefore runtime of our flow is almost
determined by ILT refinements. Columns “RT (s)” lists the total mask
optimization time of [7], GAN-OPC and PGAN-OPC. For most bench-
mark cases, GAN-OPC and PGAN-OPC show a earlier stop at a smaller
L2 error and, on average, reduce the optimization runtime by more than
50%. For most test cases, [7] exhibits a smaller PV band area possibly
because the printed images are more likely to have large wafer image
CD and shorter wire length, which makes masks suffer less proximity
effects while inducing bridge or line-end pull back defects, as shown in
Figure 9.

5 CONCLUSION
In this paper, we have proposed a GAN based mask optimization flow
that takes target circuit patterns as input and generates quasi-optimal
masks for further ILT refinement. We analyze the specialty of mask opti-
mization problem and design OPC-oriented training objectives of GAN.
Inspired by the observation that ILT procedure resembles gradient de-
scent in back-propagation, we also develop an ILT-guided pre-training
algorithm that initializes the generator with intermediate ILT results,
which significantly facilitates the training procedure. Experimental
results show that our framework not only accelerates ILT but also has
the potential to generate better masks through offering better starting
points in ILT flow.

ACKNOWLEDGMENTS
This work is supported in part by The Research Grants Council of Hong
Kong SAR (Project No. CUHK24209017).

REFERENCES
[1] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with emerging nanolithog-

raphy,” IEEE TCAD, vol. 32, no. 10, pp. 1453–1472, 2013.
[2] B. Yu, X. Xu, S. Roy, Y. Lin, J. Ou, and D. Z. Pan, “Design for manufacturability and

reliability in extreme-scaling VLSI,” Science China Information Sciences, pp. 1–23, 2016.
[3] A. Awad, A. Takahashi, S. Tanaka, and C. Kodama, “A fast process variation and pattern

fidelity aware mask optimization algorithm,” in Proc. ICCAD, 2014, pp. 238–245.
[4] J. Kuang, W.-K. Chow, and E. F. Y. Young, “A robust approach for process variation

aware mask optimization,” in Proc. DATE, 2015, pp. 1591–1594.
[5] Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithographic mask

optimization considering process variation,” IEEE TCAD, vol. 35, no. 8, pp. 1345–1357,
2016.

[6] A. Poonawala and P. Milanfar, “Mask design for optical microlithography–an inverse
imaging problem,” IEEE Transactions on Image Processing, vol. 16, no. 3, pp. 774–788,
2007.

[7] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing solution with process
window aware inverse correction,” in Proc. DAC, 2014, pp. 52:1–52:6.



(a)

(b)

(c)

(d)

(e)

Figure 8: Result visualization of PGAN-OPC and ILT. Columns correspond to ten test cases from ICCAD 2013 CAD contest. Rows
from top to bottom are: (a) masks of [7]; (b) masks of PGAN-OPC; (c) wafer images by masks of [7]; (d) wafer images by masks of
PGAN-OPC; (e) target patterns.

Table 2: Comparison with state-of-the-art ILT solver.

Benchmarks ILT [7] GAN-OPC PGAN-OPC
ID Area (nm2) L2 PVB (nm2) RT (s) L2 PVB (nm2) RT (s) L2 PVB (nm2) RT (s)
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