Minimizing Thermal Gradient and Pumping Power in 3D IC Liquid Cooling Network Design

Gengjie Chen, Jian Kuang, Zhiliang Zeng, Hang Zhang, Evangeline F. Y. Young, Bei Yu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

June 21, 2017
Why 3D IC Liquid Cooling?

- **Power** is the number one problem in chip design
- **3D IC** is promising for increasing computer performance
- But 3D IC **worsens** power problem by
 - higher heat dissipation density
 - larger thermal resistance from junction to ambient
- Microchannel-based liquid cooling is proposed as a solution

![Diagram of 3D IC Liquid Cooling](image)

[Brunschwiler+, 3DIC'09]
[Dang+, TAP'10]
[Madhour+, ICEPT'12]
Challenges for 3D IC Liquid Cooling

- Hot downstream and cool upstream \implies large thermal gradient \implies reliability and timing issues
- Limited channel diameter \implies high pumping requirement \implies overhead to whole system
- Limitation of previous work
 - No considering thermal gradient
 - Assuming unidirectional straight channels
 - Assuming unrealistic constant-temperature heat source
Thermal Modeling Background

- Most existing models assume unidirectional straight channels
- 4-register model (4RM) in 3D-ICE [Sridhar+, TOC’14]
 - Accurate
 - Has been extended for flexible topology
 - Slow
- We construct a fast 2-register model (2RM) for cooling network
Thermal Modeling Basics

- Divide channel layer into **basic cells** with a 2D grid
- Solve local pressure and flow rate from a **linear system**
4RM Model

- **Thermal cell** = basic cell
- Solve temperature from a **linear system** considering three kinds of heat transfer
 - Solid-solid
 - Solid-liquid
 - Liquid-liquid
Faster 2RM Model

▶ No conforming channel geometry \implies larger and fewer thermal cells \implies speed-up

▶ In solid layers, $m \times m$ basic cells = a thermal node

▶ In channel layers, $m \times m$ basic cells = a solid thermal node + a liquid one
Problem Formulations

Decision variables

- **Cooling network topology** N
- **System pressure drop** P_{sys}

Metrics

- **Pumping power** $W_{pump} = \frac{P_{sys} \cdot Q_{sys}}{\eta}$
 - Q_{sys}: system flow rate; η: efficiency term
- **Thermal gradient** $\Delta T = \max_{i}(\Delta T_i)$
 - ΔT_i: range of node temperatures in i-th source layer
- **Peak temperature** T_{max}
Problem Formulations

▶ **Problem 1: Pumping Power Minimization**

\[
\begin{align*}
\text{min} & \quad W_{\text{pump}}, \\
\text{s.t.} & \quad P_{\text{sys}} \in \mathbb{R}^+, \; N \in \mathcal{N}, \; T_{\text{max}} \leq T_{\text{max}}^*, \; \Delta T \leq \Delta T^*.
\end{align*}
\]

(\mathcal{N}: \text{all legal cooling networks})

▶ **Problem 2: Thermal Gradient Minimization**

\[
\begin{align*}
\text{min} & \quad \Delta T, \\
\text{s.t.} & \quad P_{\text{sys}} \in \mathbb{R}^+, \; N \in \mathcal{N}, \; T_{\text{max}} \leq T_{\text{max}}^*, \; W_{\text{pump}} \leq W_{\text{pump}}^*.
\end{align*}
\]

▶ Design rules from ICCAD 2015 Contest
Pumping Power Minimization – Flow

Input: \(N_{\text{init}}, \Delta T^*, T_{\text{max}}^* \), stack description and floorplan files.
Output: \(N, P_{\text{sys}} \).

1: \(N \leftarrow N_{\text{init}} \);
2: while #iteration is within the limit do
3: Obtain neighboring network solution \(N' \);
4: \(W'_{pump} \leftarrow \text{EVALUATENETWORK}(N', \Delta T^*, T_{\text{max}}^*) \);
5: \(N \leftarrow N' \) or not according to SA mechanism;
6: if \(W'_{pump} \) converges then return \(N \) and \(P_{\text{sys}} \);
7: end while

The problem is divided into two levels:

- **Inner**: \(P_{\text{sys}} \) is varied to minimize \(W_{pump} \) for a specific \(N \), which evaluates \(N \)
- **Outer**: simulated annealing (SA) searches for a good \(N \)
Pumping Power Minimization – Temperature vs. Pressure

- As P_{sys} increases, T_{max} decreases and finally becomes approximately constant.
- $\Delta T = f(P_{sys})$ is either uni-modal or monotonically decreasing.
Pumping Power Minimization – Network Evaluation

- Replace W_{pump} by P_{sys}, as W_{pump} vs. P_{sys} is monotonic for a specific N
- Ignore T_{max} first, as it is easier to handle
 - Step 1: solve the problem without constraint T_{max}^*
 - Step 2: check T_{max} and find optimal solution by binary search

```
1: function EvaluateNetwork(N, ΔT*, T_{max}^*)
2:     Minimize $W_{pump}$ s.t. $ΔT ≤ ΔT^*$;
3:     if $ΔT > ΔT^*$ then
4:         return $+∞$;
5:     else if $T_{max} > T_{max}^*$ then
6:         Minimize $W_{pump}$ s.t. $T_{max} ≤ T_{max}^*$;
7:         if $ΔT > ΔT^*$ or $T_{max} > T_{max}^*$ then
8:             return $+∞$;
9:         else
10:             return $W_{pump}$;
11:     end if
12: else
13:     return $W_{pump}$;
14: end if
15: end function
```
In step 1, by further substituting $\Delta T = f(P_{sys})$, Problem 1 becomes single-variable:

$$\begin{align*}
\min & \quad P_{sys}, \\
\text{s.t.} & \quad P_{sys} \in \mathbb{R}^+, \quad f(P_{sys}) \leq \Delta T^*.
\end{align*}$$

(3)

Solve (3) by searching (with three probing points):

- If a feasible P_{sys} exists, return optimal P_{sys}
- Otherwise, return the P_{sys} for minimum f
 (show the nonexistence of feasible P_{sys})
Hierarchical tree-like structure is simple and can balance cooling:

- Between upstream and downstream
- Among different trees
Pumping Power Minimization – Network Topology Optimization

<table>
<thead>
<tr>
<th>Stage #</th>
<th>Step Size</th>
<th>Objective Function</th>
<th>Simulator</th>
<th>Runtime for an Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>ΔT</td>
<td>2RM</td>
<td>short</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>W_{pump}'</td>
<td>2RM</td>
<td>medium</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>W_{pump}'</td>
<td>2RM</td>
<td>medium</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>W_{pump}'</td>
<td>4RM</td>
<td>long</td>
</tr>
</tbody>
</table>

- In stage 1, ΔT under a fixed P_{sys} is used as cost function to accelerate
- Eight types of global flow directions are attempted
Thermal Gradient Minimization – Network Evaluation

Problem for a specific N can be similarly solved:

- Its simplified form becomes:

\[
\begin{align*}
\min & \quad f(P_{sys}), \\
\text{s.t.} & \quad P_{sys} \in \mathbb{R}^+, \quad P_{sys} \leq P^*_{sys},
\end{align*}
\] (4)

- Solving (4) is simpler:
 - If P^*_{sys} locates on falling side of f, it is optimal already
 - Otherwise, adopt golden section search
Thermal Gradient Minimization – Network Topology Optimization

<table>
<thead>
<tr>
<th>Stage #</th>
<th>Step Size</th>
<th>Objective Function</th>
<th>Simulator</th>
<th>Runtime for an Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>$\Delta T'$</td>
<td>2RM</td>
<td>short</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>$\Delta T'$</td>
<td>4RM</td>
<td>medium</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$\Delta T'$</td>
<td>4RM</td>
<td>medium</td>
</tr>
</tbody>
</table>

Minimizing W_{pump} under a fixed P_{sys} is unrelated to temperature and meaningless, but minimizing ΔT under a fixed P_{sys} is safe \implies **speed-up**

- Some iterations are evaluated by one simulation under a fixed P_{sys}
- The original stage 1 is no longer needed
Experimental Results – Faster 2RM Model

- 5 benchmarks, 40 network samples, 6 thermal cell sizes and 13 pressures
- Tree-like networks, 400µm thermal cells: 0.52% errors (compared to 4RM), runtime reduced from 3.37s to 0.07s
Experimental Results – Pumping Power Minimization

<table>
<thead>
<tr>
<th>Case #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{sys} (kPa)</td>
<td>12.98</td>
<td>6.23</td>
<td>7.85</td>
<td>9.71</td>
<td>N/A</td>
</tr>
<tr>
<td>T_{max} (K)</td>
<td>322</td>
<td>314</td>
<td>321</td>
<td>314</td>
<td>N/A</td>
</tr>
<tr>
<td>ΔT (K)</td>
<td>15.0</td>
<td>10.0</td>
<td>15.0</td>
<td>10.0</td>
<td>N/A</td>
</tr>
<tr>
<td>W_{pump} (mW)</td>
<td>10.41</td>
<td>6.91</td>
<td>8.34</td>
<td>11.65</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Baseline

<table>
<thead>
<tr>
<th>Manual (1st place in ICCAD Contest)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{sys} (kPa)</td>
<td>8.86</td>
<td>5.54</td>
<td>6.98</td>
<td>9.45</td>
<td>40.1</td>
</tr>
<tr>
<td>T_{max} (K)</td>
<td>357</td>
<td>336</td>
<td>328</td>
<td>336</td>
<td>338</td>
</tr>
<tr>
<td>ΔT (K)</td>
<td>15.0</td>
<td>10.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>W_{pump} (mW)</td>
<td>1.72</td>
<td>1.51</td>
<td>3.36</td>
<td>2.96</td>
<td>113.96</td>
</tr>
</tbody>
</table>

Ours

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{sys} (kPa)</td>
<td>8.72</td>
<td>5.13</td>
<td>5.81</td>
<td>8.27</td>
<td>40.10</td>
</tr>
<tr>
<td>P_{system} (kPa)</td>
<td>358</td>
<td>336</td>
<td>337</td>
<td>335</td>
<td>338</td>
</tr>
<tr>
<td>ΔT (K)</td>
<td>15.00</td>
<td>10.0</td>
<td>15.0</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>W_{pump} (mW)</td>
<td>1.66</td>
<td>1.37</td>
<td>1.90</td>
<td>2.68</td>
<td>113.96</td>
</tr>
</tbody>
</table>

- **79.61%** better than baseline (unidirectional straight channels)
- **16.35%** better than 1st place in ICCAD 2015 Contest
Experimental Results – Thermal Gradient Minimization

<table>
<thead>
<tr>
<th>Case #</th>
<th>Baseline</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Ours</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_{sys} (kPa)</td>
<td>T_{max} (K)</td>
<td>W_{pump} (mW)</td>
<td>ΔT (K)</td>
<td>P_{sys} (kPa)</td>
<td>T_{max} (K)</td>
<td>W_{pump} (mW)</td>
<td>ΔT (K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>26.08</td>
<td>316</td>
<td>42.0</td>
<td>8.75</td>
<td>16.51</td>
<td>338</td>
<td>5.67</td>
<td>5.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14.43</td>
<td>309</td>
<td>37.0</td>
<td>5.42</td>
<td>8.96</td>
<td>319</td>
<td>5.66</td>
<td>3.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17.82</td>
<td>316</td>
<td>43.0</td>
<td>11.42</td>
<td>11.46</td>
<td>327</td>
<td>6.56</td>
<td>7.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26.51</td>
<td>308</td>
<td>43.4</td>
<td>4.76</td>
<td>13.80</td>
<td>321</td>
<td>4.16</td>
<td>3.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.81</td>
<td>338</td>
<td>148.2</td>
<td>26.48</td>
<td>40.06</td>
<td>338</td>
<td>113.80</td>
<td>9.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Constraint W_{pump}^* on W_{pump} is set to 0.1% of die power
- 37.27% better than baseline
Experimental Results – Example Temperature Maps

(a) Pumping power minimization

(b) Thermal gradient minimization