Minimizing Thermal Gradient and Pumping Power in 3D IC Liquid Cooling Network Design

Gengjie Chen, Jian Kuang, Zhihong Zeng, Hang Zhang, Evangeline F. Y. Young, Bei Yu
Department of Computer Science and Engineering, The Chinese University of Hong Kong

Introduction

Why 3D IC Liquid Cooling?
> Power is the number one problem in chip design
> 3D IC is promising for increasing computer performance
> But 3D IC worsens power problem by
 > higher heat dissipation density
 > larger thermal resistance from junction to ambient
> Microchannel-based liquid cooling is proposed as a solution

Challenges for 3D IC Liquid Cooling
> Hot downstream and cool upstream
> large thermal gradient
> reliability and timing issues
> limited channel diameter
> high pumping requirement
> overhead to whole system
> No considering thermal gradient
> Assuming unidirectional straight channels
> Assuming unrealistic constant-temperature heat source

Thermal Modeling

Most existing models assume unidirectional straight channels
> 4-register model (4RM) in 3D-ICE (Bransh, 2009)
> 4RM Model
 > Thermal cell = basic cell
 > Solid-liquid: vertical heat transfer between two adjacent thermal cells
> Solid-solid: horizontal heat transfer between two adjacent thermal cells

4RM Model
> No conforming channel geometry
> larger and fewer thermal cells
> speed-up

Problem Formulations

Decision variables
> Cooling network topology \(N \)
> System pressure drop \(P_{sys} \)

Metrics
> Pumping power \(W_{pump} \)
> \(Q_{sys} \): system flow rate; \(\eta \): efficiency term
> Thermal gradient \(\Delta T \)
> \(\Delta T \): range of node temperatures in the source layer
> Peak temperature \(T_{max} \)

Design Rules
> TSV positions are at alternating basic cells in both dimensions
> Inlets and outlets can only occur at edges of channel layer
> At most one "continuous" inlet and outlet on each side

Problem 1: Pumping Power Minimization

\[
\min W_{pump} \quad \text{s.t. } \begin{cases} P_{sys} \in \mathbb{R}^+ \wedge N \in \mathbb{N}^+ \wedge T_{max} \leq T_{mean} \wedge \Delta T \leq \Delta T^*
\end{cases}
\]

Problem 2: Thermal Gradient Minimization

\[
\min \Delta T \quad \text{s.t. } \begin{cases} P_{sys} \in \mathbb{R}^+ \wedge N \in \mathbb{N}^+ \wedge T_{max} \leq T_{mean} \wedge \Delta T \leq \Delta T^*
\end{cases}
\]

Pumping Power Minimization

The problem is divided into two levels:
> Inner: \(P_{sys} \) varied to minimize \(W_{pump} \)
> Outer: \(W_{pump} \) is solved using SA searches for a good \(N \)

Overall Flow of Pumping Power Minimization

Input:
> \(N_{sys}, \Delta T_{sys}, T_{mean} \)
Output:
> \(N, P_{sys} \)

General considerations
> \(W_{pump} \) vs. \(T_{max} \) is a simple trade-off under a specific \(N \)
> Liquid cooling alleviates \(T_{max} \) and worsens \(\Delta T \)

Three inducing factors for \(\Delta T \)
1. Temperature rise of coolant
2. Non-uniform power source distribution
3. Non-uniform channel distribution

Factor 3 can be used to compensate for factors 1 & 2

Thermal Gradient Minimization

Similar to solving pumping power minimization with some optimization

Special cases
> \(f(P_{sys}) \) = \(P_{sys} \)

Network Topology Optimization

Stage 1: \(f(P_{sys}) \) is used as cost function to accelerate
Stage 2: more rounds are performed to fully explore solution space

Eight types of global flow directions are attempted

Network Evaluation

\(f(P_{sys}) \) is simplified form becomes:

\[
\min f(P_{sys}) \quad \text{s.t. } P_{sys} \in \mathbb{R}^+ ; \quad P_{sys} \leq P_{sys}^* \quad \text{(4)}
\]

Solving (4) is simpler:
> If \(P_{sys}^* \) locates on falling side of \(f \), it is optimal already
> Otherwise, adopt golden section search

Experimental Results

Faster 4RM Model

5 benchmarks, 40 network samples, 6 thermal cell sizes and 13 pressures

Tree-like Liquid Cooling Network
> Regional tree-like structure is simple and can balance cooling
> Between upstream and downstream (factor 1)
> Among different thermal cells (factor 2)

Pumping Power Minimization

40 min for cases 1-3 and 240 min for case 4
> 79.61% better than baseline (unidirectional straight channels)
> 16.35% better than 1st place in ICCAD 2015 Contest

Thermal Gradient Minimization

Minimizing \(W_{pump} \) under a fixed \(P_{sys} \) is an issue of cost function optimization

E-Mail: gchen@cse.cuhk.edu.hk