Incremental Layer Assignment for Critical Path Timing

Derong Liu, Bei Yu, Salim Chowdhury, and David Z. Pan

ECE Dept., University of Texas at Austin; †CSE Dept., Chinese University of Hong Kong; ‡Oracle Corp.

Motivation and Problem

- Layer assignment assigns segments to metal layers after 2-D global routing.

CPLA Algorithms

ILP Formulation

\[
\min \sum_{(i,j) \in E} \sum_{q \in Q} t_{ij}(q) x_{ij} + \sum_{p \in P} \sum_{q \in Q} t_{p}(q) y_{pq}
\]

Binary variables: \(x_{ij} \) represents segment \(i \) assigned on layer \(j \);
\(y_{pq} \) represents the via connecting segment \(p \) from layer \(j \) to layer \(q \), which is equal to the product of \(x_{ij} \) and \(x_{jq} \).

Constraints

- Each released segment to be assigned.
 \[
 \sum_{j \in J(i)} x_{ij} = 1, \quad \forall i \in \mathbb{N}(N) \setminus \{s_1\}
 \]

- Edge capacity constraint:
 \[
 \sum_{(i,j) \in E} x_{ij} + x_{jq} \leq \text{cap}(j), \quad \forall j \in \mathbb{N}(J) \setminus \{s_1, s_2, s_3\}
 \]

- Via capacity constraint:
 \[
 \sum_{(p,q) \in V} y_{pq} \leq \text{cap}(p), \quad \forall p \in \mathbb{N}(P) \setminus \{s_1, s_2, s_3\}
 \]

Overall Algorithm Flow

Post mapping transfers continuous solutions into discrete assignment result.

Experimental Results

- CPLA implemented in C++, Gurobi as the MILP solver and CSDP as the SDP solver.
- Linux machine with 2.9GHz Intel(R) Core and 192GB memory.
- Initial routing and layer assignment result from NCTU-GR and NVM tool.

Semidefinite Programming Relaxation

The proposed self-adaptive partition provides an opportunity for further speed-up. Semidefinite programming (SDP) is solvable in polynomial time while providing a theoretically better solution than Linear Programming (LP).

- The objective function:
 \[
 \min \{T(X)\}
 \]

- Matrix \(T \) = (S, L)-dimension symmetric matrix representing timing costs.
- Matrix \(X \) = (S, L)-dimension symmetric matrix representing variables.

\[
T = \begin{pmatrix}
 & X_{11} & X_{12} & \cdots & X_{1L} \\
 & \vdots & \vdots & \ddots & \vdots \\
 & X_{L1} & X_{L2} & \cdots & X_{LL}
\end{pmatrix}
\]

Semidefinite Programming Example

Cost matrix \(T \) and solution matrix \(X \) of this example:

\[
T = \begin{pmatrix}
 35 & 58 & 6.7 \\
 58 & 35 & 6.7 \\
 6.7 & 6.7 & 23.9
\end{pmatrix}, \quad X = \begin{pmatrix}
 0.01 & 0 & 0 \cdots 0 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\
 0 & 0 & 0 \cdots 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

Segment \(S2 \) overlaps with other segments, resulting in continuous solutions.

Therefore, post mapping is required to provide integer solutions.

Conclusion

This work is supported in part by NSF, Oracle, and CIUHK Direct Grant for Research.