Concurrent Guiding Template Assignment and Redundant Via Insertion for DSA-MP Hybrid Lithography

Jiaojiao Ou1, Bei Yu2, David Z. Pan1

1ECE Department, University of Texas at Austin
2CSE Department, Chinese University of Hong Kong

This work is supported in part by NSF and SRC
Outline

- Introduction
- Problem Formulation
- Algorithms
- Experimental Results
- Conclusion
What is Directed Self-Assembly?

♦ Self Assembly
 › Enabled by block copolymers (BCPs)

♦ Block Copolymers (BCPs)
 › Polymers composed of 2 or more homopolymer
 › Micro-phase separation through annealing
 › Morphology is determined by several factors

Polymer A
Polymer B

Lamellae
Cylinders
What is Directed Self-Assembly?

- **Direct** the Self Assembly process
 - No orientational order of the material
 - Given additional driving force to thermodynamics
 - Turn random “finger print” to oriented and aligned pattern

Figure source: J.W. Lee et al., DONGJIN SEMICHEM co., Ltd
Why DSA?

- Multiply pitch of line/hole patterns
- High throughput
- Potentially extend 193i lithography to 7nm at lower cost

Typical DSA manufacturing process:

1. **Spin-on-carbon**
2. **Resist**
3. **Substrate**
4. **193i**
5. **Dry Etch**
6. **Anneal**
7. **Pattern Transfer**
8. **BCP**
DSA Pattern Properties

- Within-group contact/via distance
- Complex shapes are difficult to print
- Unexpected holes and placement error of holes for some patterns
- Pre-defined DSA pattern set to improve robustness
Design Co-optimization of DSA Lithography

- To best use of DSA patterns
- To find optimal DSA-compatible design
- Previous related work on DSA co-design
 - Cut-mask optimization
 - [Xiao+, SPIE’13], [Ou+, GLSVLSI’15], [Lin+, ASPDAC’16]
 - Via layer optimization in standard cell library design
 - [Du+, ICCAD’13]
 - Mask decomposition
 - [Badr+, DAC’15], [Kuang+, ASPDAC’16], [Xiao+, ASPDAC’16]
 - Redundant via insertion
 - [Fang+, ICCAD’15]
 - Etc.
Redundant Via Insertion (RVI)

- Insert an extra via near a single via
- Prevent via failure
- Improve circuit yield and reliability
Multiple Patterning (MP) for Via Layer

- LELE or LELELE is required for advanced technology node
- Mask cost increases
DSA + MP for Via Layer

- Reduce the number of masks
 - DSA guiding template assignment (GTA)
 - Mask decomposition
Conventional RVI does not consider DSA pattern
 > More masks may be required
Consider “DSA + MP” in redundant via insertion stage
Previous work does not consider MP during RVI
Problem Formulation

♦ Input
 › Post-routing layout
 › Pre-defined DSA pattern set
 › Mask number for via layer

♦ Objective
 › Maximize redundant via insertion rate
 › Maximize number of vias patterned by DSA
Search all possible DSA group combinations for each via

Construct bipartite graph
Design Rule Constraints

♦ Guiding template violation:
 › overlaps
 › minimum distance

♦ Edge color assignment
 › Assign same color to edges which connects any two violated guiding templates
Design Rule Constraints

♦ Overlaps

Overlap
Design Rule Constraints

♦ Overlaps

Overlap
Design Rule Constraints

- Overlaps

Overlap
Design Rule Constraints

- **Adjacent design rule violations**

 - **Overlap**
 - **Adjacent**
Design Rule Constraints

- Adjacent design rule violations

Overlap

Adjacent
Design Rule Constraints

- Adjacent design rule violations

Overlap

Adjacent
Design Rule Constraints

- At most 1 edge can be selected for the same color group
Double DSA guiding patterns to indicate the masks they are assigned

- \(t \): mask 1
- \(t' \): mask 2
Design Rule Constraints – Double Patterning

- At most 1 edge can be selected for overlapping group
- At most 2 edges can be selected for every 2 edges in different masks for adjacent group
Design Rule Constraints – Double Patterning

- At most 1 edge can be selected for overlapping group
- At most 2 edges can be selected for every 2 edges in different masks for adjacent group
- At most 1 edge can be selected for overlapping group
- At most 2 edges can be selected for every 2 edges in different masks for adjacent group
DSA Guiding Pattern Weight

- To balance between insertion rate and number of vias patterned by DSA
- Assign higher weight to edges connecting with template with redundant via

![Diagram showing via connections and weights]

Larger weight
Constrained Bipartite Graph Matching

- Maximize the cost function
 - Maximize the number of edges (DSA coverage)
 - Edges with redundant via has higher priority (insertion rate)
- ILP formulation

\[
\begin{align*}
\text{maximize} & \quad \alpha \sum_{e_{ij} \in E_w} x_{e_{ij}} + \beta \sum_{e_{ij} \in E_{wo}} x_{e_{ij}} \\
\text{subject to} & \quad x_{e_{ij}} + x_{e_{ij}^-} \leq 1, \quad \forall e_{ij} \in E, \forall e_{ij}^- \in EO_{ij} \\
& \quad x_{e_{ij}} + x_{e_{ij}^-} \leq 2, \quad \forall e_{ij} \in E, \forall e_{ij}^- \in EV_{ij} \\
& \quad x_{e_{ij}} + x_{e_{ij}^-} \leq 1, \quad \forall e_{ij} \in E, \forall e_{ij}^- \in EV_{ij}, j \neq j \\
& \quad x_{e_{ij}} \in \{0, 1\}
\end{align*}
\]
LP Relaxation

- Relax integer to continuous variables

\[
\begin{align*}
\text{maximize} \quad & \alpha \sum_{e_{ij} \in E_w} x_{e_{ij}} + \beta \sum_{e_{ij} \in E_{wo}} x_{e_{ij}} \\
\text{s.t.} \quad & x_{e_{ij}} + x_{e_{ij}^{-}} \leq 1, \quad \forall e_{ij} \in E, \forall e_{ij}^{-} \in EO_{ij} \\
& x_{e_{ij}} + x_{e_{ij}^{-}} \leq 2, \quad \forall e_{ij} \in E, \forall e_{ij}^{-} \in EV_{ij}, j \neq j \\
& x_{e_{ij}} + x_{e_{ij}^{-}} \leq 1, \quad \forall e_{ij} \in E, \forall e_{ij}^{-} \in EV_{ij}, j = j \\
& x_{e_{ij}} \in [0, 1]
\end{align*}
\]
Rounding Algorithm

- LP result
- Trim LP solution: remove 0-value edges/nodes
- Update solution set: add 1-value edges
- Rounding (tight vertex):
 - 1: $x_e > 0.5$
 - 0: $x_e < 0.5$
Speed-up Algorithm

Overall Flow
Experimental Environment

- Implemented in C++
- 8-Core 3.4GHz Linux Server
- 32GB RAM
- ILP/LP solver: CBC
Benchmarks and Compared Algorithms

OpenSPARC T1 design

<table>
<thead>
<tr>
<th>Bench</th>
<th>efc</th>
<th>ecc</th>
<th>ffu</th>
<th>alu</th>
<th>byp</th>
<th>mul</th>
</tr>
</thead>
<tbody>
<tr>
<td>#vias</td>
<td>4983</td>
<td>5523</td>
<td>7026</td>
<td>7046</td>
<td>28847</td>
<td>62989</td>
</tr>
</tbody>
</table>

Algorithms

- Conventional RVI: Un-Constrained (UC)
- DSA+Single Patterning: SP-ILP
- DSA+Double Patterning: DP-ILP, DP-Ap
- DSA+Triple Patterning: TP-ILP, TP-Ap
- UC is thought to have highest insertion rate.
- DSA+DP and DSA+TP have almost the same insertion rate with UC.

Insertion Rate Comparison

ILP failed to finish
DSA Coverage Rate

- Coverage rate: \#patterned via/\#total via
- DP-ILP and TP-ILP can reach 100% coverage

![DSA Coverage Rate Comparison graph]

ILP failed to finish
Approximation algorithm is 20x faster than ILP
Conclusion

- Directed Self-Assembly is a promising candidate for next generation lithography
- We proposed a general ILP formulation and a speed-up algorithm to solve the DSA aware redundant via insertion with MP simultaneously
- The experimental results demonstrate the effectiveness of our algorithm

Future work:
 - DSA+RVI during routing
 - New ways of hybrid?
Thank you!

Q&A