
TILA: Timing-Driven Incremental Layer Assignment
Bei Yu1,2, Derong Liu1, Salim Chowdhury3, and David Z. Pan1

1ECE Department, University of Texas at Austin, Austin, TX, USA
2CSE Department, Chinese University of Hong Kong, NT, Hong Kong

3Oracle Corp., Austin, TX, USA
{bei, deronliu, dpan}@cerc.utexas.edu, salim.chowdhury@oracle.com

Abstract—As VLSI technology scales to deep submicron and be-
yond, interconnect delay greatly limits the circuit performance. The
traditional 2D global routing and subsequent net by net assignment
of available empty tracks on various layers lacks a global view for
timing optimization. To overcome the limitation, this paper presents
a timing driven incremental layer assignment tool, TILA, to reassign
layers among routing segments of critical nets and non-critical nets.
Lagrangian relaxation techniques are proposed to iteratively provide
consistent layer/via assignments. Modeling via min-cost flow for layer
shuffling avoids using integer programming and yet guarantees integer
solutions via uni-modular property of the inherent model. In addition,
multiprocessing of K×K partitions of the whole chip provides run time
speed up. Certain parameters introduced in the models provide trade-off
between timing optimization and via count. Experimental results in both
ISPD’08 and industry benchmark suites demonstrate the effectiveness of
the proposed incremental algorithms.

I. INTRODUCTION

As VLSI technology scales to deep submicron and beyond, in-
terconnect delay plays a determining role in timing [1]. Therefore,
interconnect synthesis, including buffer insertion / sizing and timing-
driven routing, becomes a critical problem for achieving timing
closure [2]. Global routing is an integral part of a timing convergence
flow to determine the topologies and layers of nets, which greatly
affect the circuit performance [3]–[9]. In emerging technology nodes,
back-end-of-line (BEOL) metal stack is with heterogeneous routing
resources, i.e., dense metal at the lower layers and wider pitches
at the upper layers. Fig. 1 gives one example of cross section of IC
interconnection stack in advanced technology nodes [10], where wires
and vias on top metal layers are much wider and much less resistive
than those on lower metals. Besides, the normalized pitch lengths of
different metal layers from [11] are also listed. Therefore, advanced
routing algorithms should not only be able to achieve routability,
but also intelligently assign layers to overcome interconnect timing
issues.

Layer assignment is an important step in global routing to assign
each net segment to the corresponding metal layer. It is commonly
generated during or after the wire synthesis to meet tight frequency
targets, and to reduce interconnect delay on timing critical paths
[12]. In layer assignment, wires on thick metals are much wider
and thus, less resistive than those on thin metals. If timing critical
nets are assigned to lower layers, it will make timing worse due
to narrower wire width/spacing. Although top metal layers are less
resistive than those in lower (thin) metals, it is impossible to assign
all wires to top layers. That is, layer assignment should satisfy the
capacity constraints on thick metals. If excessive number of wires
are assigned to a particular layer, it will aggravate congestion and
crosstalk. In addition, the delay due to vias cannot be ignored in
emerging technology nodes [1].

Recently, layer assignment has been considered in two design
stages, i.e., buffered tree planning, and 3D global routing. Some
studies consider layer assignment during buffer routing trees design

Wire

Via

Metal 1

Lower
Metal Layers

Intermediate
Metal Layers

Top
Metal Layers

Layer Capacitance
M10 1.00
M9 1.00
M8 0.63
M7 0.63
M6 0.63
M5 0.63
M4 0.63
M3 0.33
M2 0.35
M1 0.33

Fig. 1. The cross section of IC interconnection stack in advanced technology
nodes [10], where wires and vias on top metal layers are much wider and
much less resistive than those on lower metals. The normalized pitch lengths
of different metal layers are listed in the table (source: [11]).

[12]–[14]. Li et al. [12] proposed a set of heuristics for simultaneous
buffer insertion and layer assignment. Hu et al. [13], [14] proved
that, even if buffer positions are determined, the layer assignment
with timing constraints is NP-complete. During 3D global routing,
layer assignment is a popular technique for via minimization. [3]
proposed an integer linear programming (ILP) based method to solve
the layer assignment problem. Since via minimization is the major
objective of this work, all wires tend to be assigned onto the lower
layers. [15], [16] applied dynamic programming to solve optimal
layer assignment for single net. To overcome the impact of net order,
different heuristics or negotiation techniques are proposed in [17],
[18]. Ao et al. [18] considered the delay in layer assignment, but
since via capacity was not considered, more segments can be illegally
pushed onto higher routing layers. A min-cost flow based refinement
was developed in [19] to further reduce the via number.

Existing layer assignment studies suffer from one or more of the
following limitations: (1) Most works only target at via number
minimization, but no timing issues are considered. Since timing
requirements within a single net are usually different for different
sinks, assigning all segments of a set nets on higher metal layers is
not the best use of critical metal layer resources. That is, intelligent
layer assignment should not blindly assign all segments of a net
to a set (a pair, for example) of higher metal layers. It should be
aware of capacitive loading of individual segments within a net to
achieve better timing with the limited available higher metal layer
resources. (2) In emerging technology nodes, the via delays contribute
a significant part of total interconnect delay. But the delay impact
derived from vias is usually ignored in previous layer assignment
works. (3) The net-by-net strategy may lead to local optimality, i.e.,
for some nets the timings are over-optimized, while some other nets

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 110

(a)

(b)

Fig. 2. Net delay distribution for benchmark adeptect2. (a) Result by layer
assignment solver NVM [17]; (b) Result by our timing-driven incremental
layer assignment solver TILA, where 5% most critical nets are reassigned
layers.

may have no enough resources in high layers. To close on timing
for critical nets that need to go long distances, layer assignment
needs to be controlled by multi-net global optimization. For example,
Fig. 2 compares the delay distributions of benchmark ‘adeptect2’
by conventional layer assignment solver [17] and our incremental
timing-driven solution. We can see that, since conventional layer
assignment only targets at via minimization, the maximum delay can
be very huge. Since our timing-driven planner is with global view, the
maximum delay can be much better, i.e., the normalized maximum
delay can be reduced from 144× 105 to 23× 105.

For very large high-performance circuits, either long computation
times have to be accepted or routing quality must be compromised.
Therefore, an incremental layer assignment to iteratively improve
routing quality is a must. In this paper, we propose an incremental
layer assignment framework targeting at timing optimization. Incre-
mental optimizations or designs are very important in physical design
and CAD field to achieve good timing closure [20]. Fast incremental
improvements are developed in different timing optimization stages,
such as incremental clock scheduling [21], [22], incremental buffer
insertion [23], and incremental clock tree synthesis [24]. To further
improve timing, incremental placement is also a very typical solution
[25], [26]. Besides, there are several incremental routing studies (e.g.
[27]) to introduce cheap and incremental topological reconstruction.

In this paper, we propose a comprehensive study to the timing-
driven incremental layer assignment problem. To the best of our
knowledge, this work is the first incremental layer assignment work
integrating via delay and solving all the nets simultaneously. A
multilayer global router can either route all nets directly on multilayer
solution space [4], [5] or one layer routing followed by post-
stage layer assignment [6]–[9]. Note that as an incremental layer
assignment solution, our tool can smoothly work with either type of
global router. Our contributions are highlighted as follows.

• A mathematical formulation to give the layer assignment solu-
tions with optimal total wire delays and via delays.

M9
M8
M7
M6

(a) (b)

Fig. 3. Layer design and grid models. (a) A design with four routing layers
{M6, M7, M8, M9}; (b) Grid model with preferred routing directions.

• A Lagrangian relaxation based optimization to iteratively im-
prove the layer assignment solution.

• Lagrangian relaxation subproblem (LRS) is solved via min-cost
flow model.

• Multiprocessing of K×K partitions of the whole chip provides
run time speed up.

• Both ISPD’08 and industry benchmarks demonstrate the effec-
tivenesses of our framework.

The remainder of this paper is organized as follows. Section II
provides some preliminaries and the problem formulation. Section
III gives mathematical formulation, and also proposes sequence of
multi-threaded min-cost flow algorithm to achieve further speed-up.
Section IV reports experimental results, followed by conclusion in
Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we introduce the graph model and the timing model
applied in this paper. Then the problem formulation of timing-driven
incremental layer assignment is provided.

A. Graph Model

Similar to the 3D global routing problem, layer assignment prob-
lem can be modeled on a 3D grid graph, where each vertex represents
a rectangular region of the chip, so called a global routing cell (G-
Cell), while each edge represents the boundary between two vertices.
In the presence of multiple layers, the edges in the z-direction
represent vias connecting different layers. Fig. 3(a) shows a grid
graph for routing a circuit in multi-metal layer manufacturing process.
Each metal layer is dedicated to either horizontal or vertical wires.
The corresponding 3D grid graph is shown in Fig. 3(b).

To model the capacity, for each edge, we denote its maximum
routing capacity as ce. Besides, the via capacity of each vertex,
denoted by cv , is computed as in [28]. In brief, the via capacity
refers to the available space for vias passing through the cell, and
is determined by the available routing capacity of those two edges
connected with the vertex.

B. Timing Model

We are given a global routing of nets, where each net is a tree
topology with one source and multiple sinks. Based on the topology,
for each net we have a set of segments S. Here we give an example
of net model in Fig. 4, where each net contains two segments. To
evaluate the timing of each net, we adopt Elmore delay model, which
is widely used during interconnect synthesis in physical design, as
the delay model. The delay of a segment si on a layer l, denoted by
de(i, l), is computed as follows:

de(i, l) = Re(l) · (C(l)/2 + Cdown(si)) (1)

111

S1 S2

S3

S4 Buffer

Driver

Fig. 4. Example of net model.

where Re(l), C(l) refer to the edge resistance on layer l, and edge
capacitance on layer l, respectively. Cdown(si) refers to the down
stream capacitance of si. Note that the down stream capacitance
is determined by the assigned layers of down stream segments. To
calculate the down stream capacitance for each si, we traverse the net
tree from sinks to source in a bottom-up manner. Therefore, the down
stream capacitance of the source segment, i.e. the segment connected
with the driver pin, should be calculated after all the other segments
have obtained their down stream capacitances.

For a via vm connecting segments between layers l and l+ 1, its
delay can be calculated as follows.

dv(vm, l) = Rv(l) ·min{Cdown(si), si ∈ N(vm)} (2)

Here Rv(l) is the resistance of via between layers l and l + 1, and
Cdown(si) is the down stream capacitance of segment si. N(vm)
is the set of neighboring segments of via vm. For a via connected
to source or sink, its delay is set to zero due to the zero value of
minimum down stream capacitance.

In addition, buffer positions can be considered in our delay model.
That is, for one segment si, if there is one buffer at its end
point, its down stream capacitance Cdown(si) = 0. As shown in
Fig. 4, Cdown(s2) is set to zero due to the buffer. Therefore, our
framework can handle timing optimization for both pre-buffered and
post-buffered designs.

C. Problem Formulation

Based on the grid model and timing model discussed in the
preceding section, we define the timing-driven incremental layer
assignment (TILA) problem as follows:

Problem 1 (TILA). Given a global routing grid, set of net segments
and layer capacity information, timing-driven incremental layer
assignment assigns each segment passing through an edge to a layer,
so that layer assignment costs (weighted sum of segment delays) can
be minimized, while the capacity constraints of each edge on each
layer are satisfied.

One instance of TILA problem with three nets is demonstrated
in Fig. 5, where nets n1 and n2 are non-critical nets, while net n3

is timing critical net. In the initial layer assignment as shown in
Fig. 5(a), net n3 is assigned lower layers. Since the routing resources
are utilized by nets n1 and n2, n3 cannot be shuffled into higher
layers to improve timing. Through a global layer reassignment, a
better timing assignment solution is shown in Fig. 5(b), where both
n1 and n2 release high layer resources to n3.

Naclerio et al. proved that even if no timing is considered, the
decision version of layer assignment for via minimization is NP-
complete [29]. Thus the decision version of TILA problem is NP-
complete as well.

III. TILA ALGORITHMS

In this section, we introduce our framework to solve the TILA
problem. First a mathematical formulation to the TILA problem

n1

n2

n3 n1
n2

n3

Non-Critical Nets: n1 n2 ; Critical Net: n3

Fig. 5. An example of timing driven layer assignment. In initial layer
assignment net n3 is timing critical net. Through resource releasing from
nets n1 and n2, the total timing gets improvement.

will be given. Then a Lagrangian relaxation based optimization
methodology is proposed to solve this problem. For convenience,
some notations used in this section are listed in Table I.

TABLE I
NOTATIONS USED IN THIS PAPER.

L number of layers
S set of all segments
E set of all edges
Ex set of all pairs of crossing segments
V set of all vias

P (si) set of pins in segment si
N(vm) set of neighboring segments of via vm

Se(i) set of segments assigned to the same edge as si
aij binary variable; if i-th segment is assigned to layer j

then aij = 1, otherwise aij = 0

de(i, j) timing cost if si is assigned to layer j
dv(i, p, k) timing cost of via v from layer k to k + 1,

where v ∈ P (si) ∩ P (sp)

ce(i) routing capacity of edge e where si is assigned
cv(k) via capacity of via v on layer k

A. Mathematical Formulation

The mathematical formulation of TILA problem is shown in
formula (3). In the objective function, the first term is to calculate the
cost from segments, while the 2nd term is to calculate the cost from
vias. Here de(i, j) is calculated through Eqn. (1), and dv(i, p, k) is
derived from Eqn. (2).

min
S∑

i=1

L∑
j=1

de(i, j) · aij+

∑
(i,p)∈Ex

L∑
j=1

L∑
q=1

q−1∑
k=j

dv(i, p, k) · aij · apq (3)

s.t.
∑
j

aij = 1, ∀i ∈ [1, S] (3a)∑
si∈Se(i)

∑
j

aij ≤ ce(i), ∀e ∈ E (3b)

∑
(i,p)∈Ex

aij · apq ≤ cv(k), ∀k, j < k < p (3c)

aij is binary (3d)

112

Constraint (3a) is to ensure that each segment of nets would be
assigned to one and only one layer. Each edge e ∈ E is associated
with one capacity ce(i), and constraint (3b) is for the edge capacity
of each layer. Constraint (3c) is for the via number capacity in each
layer.

First, we show that if each Cdown(si) is constant, the TILA can
be formulated as an integer linear programming (ILP), then a mature
ILP solver is possible to be applied. Here Cdown(si) is down stream
capacitance of segment si. We can use a boolean variables γij,pq
to replace each non-linear term aij · apq . Then formula (3) can
be transferred into ILP through introducing the following artificial
constraints: {

aii + apq ≤ γij,pq + 1
aik ≥ γij,pq, ajk ≥ γij,pq

(4)

Due to the computational complexity, ILP formulation suffers from
serious runtime overhead, especially for those practical routing test
cases. A popular speedup technique is to relax the ILP into linear
programming (LP) by removing the constraint (3d). It is obvious
that the LP solution provides a lower bound to the original ILP
formulation. We observe that the LP solution would be like this:
each aij is assigned to 0.5 and each γij,pq is 0. By this way, all
the constraints are satisfied, and the objective function is minimized.
However, all these 0.5 values to aij provide no useful information
in guiding the layer assignment, as we prefer each aij closes to
either 0 or 1. In other words, the LP relaxation is hard to provide
reasonable good solution. Instead of expensive ILP formulation or
its LP relaxation, our framework proposes a Lagrangian relaxation
based algorithm to solve the original formula (3).

B. Lagrangian Relaxation based Optimization

Lagrangian relaxation [30] is a solution technique for solving
optimization problems with difficult constraints, where some or all
hard constraints are moved into objective function. In the updated
objective function, each new term is multiplied with a constant known
as Lagrange multipliers (LM). Our idea is to relax the via capacity
constraint (3c) and incorporate it into the objective function. We
specify each aij,pq a non-negative LM λij,pq , and move the constraint
into objective function. The modified formula is called Lagrangian
relaxation subproblem (LRS), as shown in formula (5).

min
S∑

i=1

L∑
j=1

de(i, j) · aij +
∑

(i,p)∈Ex

L∑
j=1

L∑
q=1

q−1∑
k=j

dv(i, p, k) · aij · apq

+
∑

(i,p)∈Ex

λij,pq(aij · apq − cv(k)) (5)

s.t. (3a)− (3b), (3d)

It is known that for any fixed set of LM λij,pq , the optimal result
to the LRS problem is smaller or equal to the optimal solution
of the original formula (3) [30]. That is, the original formulation
is the primal problem and the Lagrange multiplier optimization is
the dual problem. Therefore, the Lagrangian dual problem (LDP) is
to maximize the minimum value obtained for the LRS problem by
updating LMs accordingly.

Algorithm 1 gives a high level description of our Lagrangian
relaxation based framework to the TILA problem. The inputs are
an initial layer assignment solution and a critical net ratio value α.
Based on the α value we select some critical nets and non-critical
nets (line 1). All the segments belonging to these nets are reassigned
layers by our incremental framework. Please refer to Section III-D for
more details of our critical and non-critical net selection. Based on

Algorithm 1 TILA
Require: Initial layer assignment solution;
Require: Critical net ratio α;

1: Select all segments based on α [Sec. III-D];
2: Initialize Cdown(si) for each segment si;
3: Initialize LMs;
4: while no converge do
5: Solve LRS [Sec. III-C];
6: Update Cdown(si) for all si;
7: Update LMs;
8: end while

the initial layer assignment solution, we initialize all the Cdown(si)
for each selected segment si (line 2). We initialize the LMs in line
3. In our implementation, the initial values of all LMs are set to
2000. Our framework iteratively solves a set of Lagrangian relaxation
subproblem (LRS), with fixed LM values (lines 4–8). In solving LRS,
we minimize the objective function in Eqn. (5) based on the current
set of LMs. The details of solving LRS are discussed in Section III-C.
After solving each LRS, we re-calculate the down stream capacitances
of all the segments Cdown(si) based on Eqn. (1) (line 6). We use
a subgradient-based algorithm [31] to update the LMs to maximize
LDP (line 7). In our implementation, the iteration in line 4 will end
if one of the following two conditions is satisfied: either the iteration
number is larger than 20; or both the wire delay improvement and
the via delay improvement are less than a pre-specified fraction.

C. Solving Lagrangian Subproblem (LRS)

Through removing the constant items in objective function of (5),
we re-write LRS into formula (6).

min
S∑

i=1

L∑
j=1

c(i, j) · ai,j +
∑

(i,p)∈Ex

L∑
j=1

L∑
q=1

c(i, j, p, q) · aij · apq

(6)

s.t. (3a)− (3b), (3d)

where {
c(i, j) = de(i, j)

c(i, j, p, q) =
∑q−1

k=j dv(i, p, k) + λij,pq

Theorem 1. For a set of fixed λij,pq , LRS is NP-hard.

Due to space limit, the detailed proof is omitted. Because of
nonlinear term aij · apq , the proof can be through a reduction from
quadratic assignment problem [32]. In addition, unless P = NP, the
quadratic assignment problem is not approximable in polynomial time
within some finite approximation ratio [33].

We propose the following heuristic to linearize term aij · apq:

c(i, j, p, q) · aij · apq ≈ c(i, j, p, q) · (a′pq · aij + a′ij · apq) (7)

where a′pq is the value of apq in previous iteration, and a′ij is the
value of aij in previous iteration.

Through the linearization technique in Eqn. (7), the objective
function in formula (6) is a weighted sum of all the aij . We will show
that the linearized LRS can be solved through a min-cost network
flow model. The basic idea is that the weighted sum of all the aij
can be viewed as several assignments from segments to layers, while
the weight of each aij is the cost to assign segment i to layer j.
Constraints (3a) and (3b) can be integrated into the flow model
through specified edge capacity. Constraint (3d) is satisfied due to
the inherent uni-modular property [31].

113

s1

e6,1

e8,1

e6,2

e8,2

s2

s3

s4

s t

e7,2

e9,2

Fig. 6. An example of min-cost flow model.

An example of such min-cost flow model is illustrated in Fig. 6.
Given four different segments s1, s2, s3, s4 and several edges, we
build up a directed graph G = (V,E) to represent the layer
assignment relationships. The vertex set V includes four parts: start
vertex s, net vertices VN , layer vertices VL, and end vertex t.
The edge set E is composed of three sets of edges: {s → VN},
{VN → VL}, and {VL → t}. We define all the edge costs as follows:
the cost of one edge from VN to VL is the penalty assigning the
segment to corresponding layer; the costs of all other edges are set
to 0. We define all the edge capacities as follows: the capacity of one
edge from VL to node t is the capacity of the corresponding edge;
while the capacities of all other edges are set to 1.

D. Critical & Non-Critical Net Selection

Given an input ratio value α, our framework would automatically
identify α% of the total nets as critical nets, while other α% of the
total nets as non-critical nets. Both the selected critical nets and the
selected non-critical nets would be reassigned layers. The motivation
of critical net selection is to reassign their layers to improve timing,
while the motivation of non-critical net selection is to release some
high layer resources to the critical nets. By this way, our incremental
layer assignment flow is able to overcome the limitation of any net
order in original layer assignment. In our implementation, the default
value of α is set to 1, which means 1% of nets would be identified as
critical nets, while the other 1% of nets are selected as non-critical
nets.

To identify all the critical nets can be trivial: first all the net delays
in original layer assignment are calculated based on our delay model
as in Section II, then the α% of worst delays are selected. Yet, non-
critical net selection is not so straightforward, as randomly selecting
α% of best timing nets may not be beneficial to improve critical net
timing. Therefore, we prefer to select those nets sharing more routing
resources with the critical nets. In our implementation, we check the
2 ·α best timing nets to associate each net with a score representing
its ability in sharing resources to critical nets. Then we select half of
them with best scores as non-critical nets.

E. Parallel Scheme

Our framework supports parallel scheme that the global routing
graph is divided into K ×K parts. An example of such division is
illustrated in Fig. 7, where K = 4. The timing-driven incremental
layer assignment is solved in each partition separately. The reason
of such division is twofold. Firstly, our Lagrangian relaxation based
optimization is to solve a set of min-cost flow models, as discussed

thread 1 thread 2

thread 3 thread 4

Fig. 7. Our parallel scheme to support multithreading computing on K ×K
partitions. (Here K = 4).

in Section III-B and Section III-C. The runtime complexity to solve
a single flow model is O(|V | · |E|), where |V | and |E| are the
vertex number and the edge number of the graph. Dividing the whole
problem into a set of sub-problems can achieve some speed-up. In
addition, multithreading is applied to provide further speed-up. For
instance, in Fig. 7 four threads are used to solve different regions
simultaneously. Secondly, inspired by the Gauss-Seidel method [34],
when one thread is solving flow model in one partition, the most
recently updated results by peer threads are taken into account, even
if the updating occurs in the current iteration.

IV. EXPERIMENTAL RESULTS

We implemented the proposed timing-driven incremental layer
assignment framework in C++, and tested it on a Linux machine with
eight 3.3GHz CPUs. We selected open source graph library LEMON
[35] as our min-cost network flow solver, and utilized OpenMP [36]
to provide parallel computing. In our implementation, the default K
value is set to 6, and the default thread number is set to 6.

A. Evaluation on ISPD’08 Benchmarks

TABLE II
NORMALIZED CAPACITANCE AND RESISTANCE.

Wire [11] Via
Layer C R Layer R
M1 1.14 23.26 v1,2 25.9
M2 1.05 19.30 v2,3 16.7
M3 1.05 23.26 v3,4 16.7
M4 0.95 5.58 v4,5 16.7
M5 1.05 3.26 v5,6 5.9
M6 1.05 3.26 v6,7 5.9
M7 1.05 3.26 v7,8 5.9
M8 1.00 3.26 v8,9 1.0
M9 1.05 1.00 v9,10 1.0
M10 1.00 1.00 - -

In the first experiment, we evaluate our timing-driven layer as-
signment framework on ISPD’08 benchmarks [37]. The NCTU-GR
2.0 [9] is utilized to generate the initial global routing solutions.
The initial layer assignment results are from NVM [17], which is
targeting at via number and overflow minimization. Our framework
is tested the effectiveness to incrementally optimize the timing. To
calculate the wire delay in Eqn. (1) and via delay in Eqn. (2), all the
metal wire resistances, metal wire capacitances, and via resistances
are listed in Table II. Column C lists the capacitance. Columns R

114

TABLE III
PERFORMANCE COMPARISONS ON ISPD’08 BENCHMARKS

NVM [17] TILA-1% TILA-5%
bench OV# Davg Dmax via# OV# Davg Dmax via# CPU OV# Davg Dmax via# CPU

(103) (103) (105) (103) (103) (105) (s) (103) (103) (105) (s)
adaptec1 48521 7.26 8776.6 19.03 50727 6.90 7184.7 19.49 72.1 57452 6.48 7141.7 20.75 94.5
adaptec2 45667 4.35 14424.9 19.01 41039 3.62 2369.3 19.54 63.9 36113 3.22 2375.8 20.97 91.8
adaptec3 90574 9.70 24998.9 36.29 88626 8.68 7839.1 37.13 288.4 91938 7.97 7841.2 39.87 562.1
adaptec4 76183 6.96 38646.7 31.56 66815 5.90 9703.7 32.80 235.1 56751 5.29 9701.5 35.55 459.8
adaptec5 95971 10.95 9958.0 54.30 97288 10.05 8709.7 56.01 287.2 100175 9.23 8673.3 59.73 357.0
bigblue1 44595 13.50 3675.4 21.25 48377 13.05 3474.5 21.98 87.4 57204 12.27 3411.0 23.41 113.1
bigblue2 105420 3.02 58259.1 42.70 99023 2.64 18279.4 43.82 108.6 97619 2.47 18285.7 45.94 160.6
bigblue3 84329 4.98 3122.2 51.29 76623 4.17 2712.7 53.23 274.0 69064 3.55 2726.3 59.68 541.4
bigblue4 115155 8.22 53401.4 107.65 109037 7.10 35424.8 111.18 401.4 115102 6.11 35414.7 121.32 578.7
newblue1 58578 1.21 670.7 22.03 56607 1.01 565.8 22.52 65.6 52179 0.94 565.6 23.97 82.2
newblue2 72403 4.31 12265.2 28.36 51714 3.97 10569.5 29.34 108.5 24985 3.58 10584.0 31.85 144.7
newblue4 108898 4.17 15478.3 46.85 102261 3.90 8978.7 48.19 204.0 89931 3.59 8969.9 51.42 271.8
newblue5 205297 6.19 11910.3 84.61 182923 5.69 4574.1 88.05 431.8 164212 5.17 4551.6 96.11 650.9
newblue6 115663 7.28 18987.0 77.43 111559 6.63 3969.1 79.36 349.4 117278 6.05 3964.4 83.68 432.0
newblue7 189457 7.01 13416.0 160.57 166207 5.92 12080.8 166.79 630.9 164586 5.08 12052.7 183.35 846.0
average 97114.1 6.61 19199.4 53.5 89921.7 5.95 9095.7 55.30 240.6 86305.9 5.40 9084.0 59.84 359.1

ratio 1.00 1.00 1.00 1.00 0.93 0.90 0.47 1.03 – 0.89 0.82 0.47 1.12 –

(a) (b) (c)

Fig. 8. Performance impact on different ratio values. (c) The impact of ratio on maximum delay; (b) The impact of ratio on average delay; (c) The impact
of ratio on runtime.

list the resistances for wire layers and via layers, respectively. The
resistances and capacitances of wires are directly from [11], while
the via resistance values are normalized from industry settings in
advanced technology nodes.

Table III compares NVM [17] with our incremental layer assign-
ment tools TILA-1% and TILA-5%. In “TILA-1%” and “TILA-
5%” the ratio value α are set to 1% and 5%, respectively. For
each methodology, columns “OV#”, “Davg”, “Dmax”, and “via#” list
the overflow number, average delay, maximum delay, and total via
number, separately. Besides, “CPU(s)” reports the runtime in seconds.
We do not test our tools on test case “newblue3” as NCTU-GR [9]
cannot generate global routing solution with zero edge overflow. We
also can not report the results from another recent work [18], as for
this benchmark suite their binary gets assertion fault before dumping
out results.

From Table III we can see that in TILA-1%, when 1% of the most
critical nets are shuffled layers, maximum delay can be reduced by
53% on the ISPD’08 benchmarks. Meanwhile, the overflow number
and the average delay are reduced by 7% and 10%, respectively.
The penalty of such timing improvement is that the via number is
increased by only 3%. On the average, TILA-1% requires around
240 seconds for each test case. Compared with extreme fast net-by-

net solver NVM, although our planner solves a global optimization
problem, its runtimes are reasonable. For instance, based on [17],
for test cases “adaptec1” and “adaptec5”, NVM needs around 80
and 230 seconds, respectively. Our planner needs around 72 and 287
seconds, respectively. In TILA-5%, when 5% of the most critical
nets are reassigned layers, the maximum delay is reduced by 53%.
Meanwhile, the overflow number and the average delay are reduced
by 11% and 18%, respectively. The penalty of TILA-5% is that the
via number is increased by 12%. From Table III we can see that even
small amount of critical nets (e.g. 1%) are considered, the maximum
delay can be effectively optimized. When more nets are inputted
in our planner, better average delay and less overflow number are
expected. In addition, our framework is with good scalability, i.e.,
with problem size increases fivefold, the runtime of TILA-5% is just
around one and half times of TILA-1%.

Critical net ratio α is a user-defined parameter to control how many
nets are released to incremental layer assignment. In Table III, ratio α
is set to 1% and 5%. Fig. 8 analyzes the impact of ratio value to the
performance of incremental layer assignment framework. Fig. 8(a)
shows the impact of ratio value on the maximum delay, where we
can see that the maximum delays are kept the same. This means for
these test cases, releasing 1% of critical nets is enough for maximum

115

(a)

(b)

(c)

(d)

Fig. 9. Evaluation thread number impact on three test cases in ISPD’08
benchmark suite. (a) The impact on maximum delay; (b) The impact on
average delay; (c) The impact on overflow; (d) The impact on runtime.

delay optimization. Fig. 8(b) shows the impact of ratio value on the
average delay, where we can see increasing the ratio value can slightly
improve the average delay. Fig. 8(c) is the impact on the runtime,
where we can see that the runtime increases along with the increase
of ratio value. From this figures we can see that the ratio value can
provide a trade-off between average delay and the speed of our tool.

Our incremental layer assignment utilizes OpenMP [36] to im-
plement multithreading. Fig. 9 analyzes the performance of our layer
assignment framework under different thread numbers. From Fig. 9(a)
and Fig. 9(b) we can see that the impact of thread number on both
maximum delay and average delay is insignificant. Similarly, through
Fig. 9(c) we can see the impact on overflow is also negligible. From
Fig. 9(d) we can observe that more thread number can achieve more

speed-up. However, when thread number is larger or equal to 8, the
benefit to runtime is not clear. Therefore, in our implementation the
thread number is set to 6.

B. Evaluation on 20nm Industry Benchmarks

In the second experiment, we test our incremental layer assignment
framework on eight 20nm industry benchmarks (“Industry1” to
“Industry8”). We called an industry tool to generate initial global
routing and layer assignment solutions. Different from the preceding
experiment, here we use industry resistance and capacitance values to
calculate the wire delays and the via delays. Table IV lists the details
of performance evaluation, where for each method columns “OV#”,
“Davg”, “Dmax”, and “via#” provide the overflow number, average
delay, maximum delay, and total via number. Since all the critical
nets are provided in the benchmarks, the critical and non-critical
selection phases are skipped in this benchmark suite. We can see that
compared with industry layer assignment solution, our framework can
achieve 60% maximum delay improvement and 34% average delay
improvement. The total via number after our iterative optimization
is very similar to initial solution, i.e., 2% improvement. The initial
layer assignment solution is with zero overflow, and our framework
can also maintain such zero overflow performance. In summary, from
Table IV we can see our incremental layer assignment framework can
achieve significant timing improvement.

V. CONCLUSION

In this paper we have proposed a set of algorithms to the timing-
driven incremental layer assignment problem. At first the mathemat-
ical formulation is given to search for optimal total wire delays and
via delays. Then Lagrangian relaxation based method is proposed
to iteratively improve the timing of all the nets. The Lagrangian
relaxation subproblem (LRS) is modeled through min-cost flow model
to provide effective integral solutions. In addition, multiprocessing
of K × K partitions of the whole chip provides run time speed
up. Our incremental layer assignment tool, TILA, is verified in both
ISPD’08 and industry benchmark suites, and has demonstrated its
effectiveness. As in emerging technology nodes, the routing algorithm
should be able to adapt the heterogeneous layer structures, we believe
this paper will stimulate more research for timing improvement in
advanced routing.

ACKNOWLEDGMENT

This work is supported in part by NSF, Oracle, and Chinese
Government Award for Outstanding Self-Financed Students Abroad.
The authors would like to thank Shiyan Hu at Michigan Technological
University and Wen-Hao Liu at Cadence Design Systems for helpful
discussions and comments.

REFERENCES

[1] J. H.-C. Chen, T. E. Standaert, E. Alptekin, T. A. Spooner, and
V. Paruchuri, “Interconnect performance and scaling strategy at 7
nm node,” in IEEE International Interconnect Technology Conference
(IITC), 2014, pp. 93–96.

[2] J. Cong, “An interconnect-centric design flow for nanometer technolo-
gies,” Proceedings of the IEEE, vol. 89, no. 4, pp. 505–528, 2001.

[3] M. Cho and D. Z. Pan, “BoxRouter: a new global router based on box
expansion and progressive ILP,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 26, no. 12, pp.
2130–2143, 2007.

[4] J. Roy and I. Markov, “High-performance routing at the nanometer
scale,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 27, no. 6, pp. 1066–1077, 2008.

116

TABLE IV
PERFORMANCE COMPARISONS ON 20NM INDUSTRY BENCHMARKS

bench Industry Layer Assignment TILA
OV# Davg Dmax via# OV# Davg Dmax via# CPU(s)

Industry1 0 6204.0 68444.6 51805.0 0 3643.5 28565.7 49453.0 6.2
Industry2 0 6049.6 68713.0 52996.0 0 3750.0 27962.6 50676.0 6.7
Industry3 0 6025.4 81030.3 53905.0 0 3862.8 36434.6 51860.0 8.1
Industry4 0 5702.8 58478.5 56393.0 0 3621.9 24271.4 54145.0 9.4
Industry5 0 5531.4 78391.4 58944.0 0 3740.6 34766.2 56747.0 12.0
Industry6 0 5443.5 77803.0 60082.0 0 3633.6 34287.7 57879.0 14.2
Industry7 0 5066.0 114597.7 70658.0 0 3648.4 28844.7 71230.0 48.5
Industry8 0 4096.4 46893.7 75790.0 0 3034.9 20662.7 80500.0 120.3
average 0 5514.9 74294.0 60071.6 0 3616.9 29474.4 59061.3 28.2

ratio 0 1.00 1.00 1.00 0 0.66 0.40 0.98 -

[5] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Global routing via
integer programming,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 30, no. 1, pp. 72–84,
2011.

[6] M. D. Moffitt, “MaizeRouter: Engineering an effective global router,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 27, no. 11, pp. 2017–2026, 2008.

[7] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang, “Multilayer global routing
with via and wire capacity considerations,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 29, no. 5, pp. 685–696, 2010.

[8] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P.-C. Wu, and T.-C. Wang, “NTHU-
Route 2.0: a robust global router for modern designs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 29, no. 12, pp. 1931–1944, 2010.

[9] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0:
multithreaded collision-aware global routing with bounded-length maze
routing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 32, no. 5, pp. 709–722, 2013.

[10] “ITRS,” http://www.itrs.net.
[11] M.-K. Hsu, N. Katta, H. Y.-H. Lin, K. T.-H. Lin, K. H. Tam, and K. C.-

H. Wang, “Design and manufacturing process co-optimization in nano-
technology,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2014, pp. 574–581.

[12] Z. Li, C. J. Alpert, S. Hu, T. Muhmud, S. T. Quay, and P. G.
Villarrubia, “Fast interconnect synthesis with layer assignment,” in ACM
International Symposium on Physical Design (ISPD), 2008, pp. 71–77.

[13] S. Hu, Z. Li, and C. J. Alpert, “A polynomial time approximation scheme
for timing constrained minimum cost layer assignment,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2008,
pp. 112–115.

[14] ——, “A faster approximation scheme for timing driven minimum cost
layer assignment,” in ACM International Symposium on Physical Design
(ISPD), 2009, pp. 167–174.

[15] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer assignment for
via minimization in global routing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 27, no. 9,
pp. 1643–1656, 2008.

[16] K.-R. Dai, W.-H. Liu, and Y.-L. Li, “NCTU-GR: efficient simulated
evolution-based rerouting and congestion-relaxed layer assignment on
3-D global routing,” IEEE Transactions on Very Large Scale Integration
Systems (TVLSI), vol. 20, no. 3, pp. 459–472, 2012.

[17] W.-H. Liu and Y.-L. Li, “Negotiation-based layer assignment for via
count and via overflow minimization,” in IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC), 2011, pp. 539–544.

[18] J. Ao, S. Dong, S. Chen, and S. Goto, “Delay-driven layer assignment
in global routing under multi-tier interconnect structure,” in ACM
International Symposium on Physical Design (ISPD), 2013, pp. 101–
107.

[19] T.-H. Lee and T.-C. Wang, “Simultaneous antenna avoidance and via
optimization in layer assignment of multi-layer global routing,” in
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2010, pp. 312–318.

[20] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, “Incremental CAD,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2000, pp. 236–244.

[21] C. Albrecht, “Efficient incremental clock latency scheduling for large
circuits,” in IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE), 2006, pp. 1–6.

[22] H.-Y. Chang, I.-R. Jiang, and Y.-W. Chang, “Timing ECO optimization
via Bézier curve smoothing and fixability identification,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 31, no. 12, pp. 1857–1866, 2012.

[23] S. K. Karandikar, C. J. Alpert, M. C. Yildiz, P. Villarrubia, S. Quay, and
T. Mahmud, “Fast electrical correction using resizing and buffering,”
in IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC), 2007, pp. 553–558.

[24] S. Roy, P. M. Mattheakis, L. Masse-Navette, and D. Z. Pan, “Clock
tree resynthesis for multi-corner multi-mode timing closure,” in ACM
International Symposium on Physical Design (ISPD), 2014, pp. 69–76.

[25] J. A. Roy and I. L. Markov, “ECO-system: Embracing the change in
placement,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 26, no. 12, pp. 2173–2185, 2007.

[26] T. Luo, D. A. Papa, Z. Li, C. N. Sze, C. J. Alpert, and D. Z. Pan,
“Pyramids: an efficient computational geometry-based approach for
timing-driven placement,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2008, pp. 204–211.

[27] Y. Zhang and C. Chu, “GDRouter: Interleaved global routing and de-
tailed routing for ultimate routability,” in ACM/IEEE Design Automation
Conference (DAC), 2012, pp. 597–602.

[28] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang, “Multi-layer global routing
considering via and wire capacities,” in IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2008, pp. 350–355.

[29] N. J. Naclerio, S. Masuda, and K. Nakajima, “The via minimization
problem is NP-complete,” IEEE Transactions on Computers, vol. 38,
no. 11, pp. 1604–1608, 1989.

[30] A. P. Ruszczyński, Nonlinear Optimization. Princeton university press,
2006, vol. 13.

[31] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice Hall/Pearson, 2005.

[32] R. G. Michael and S. J. David, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[33] M. Queyranne, “Performance ratio of polynomial heuristics for triangle
inequality quadratic assignment problems,” Operations Research Letters,
vol. 4, no. 5, pp. 231–234, 1986.

[34] A. D. Gunawardena, S. Jain, and L. Snyder, “Modified iterative methods
for consistent linear systems,” Linear Algebra and its Applications, vol.
154, pp. 123–143, 1991.

[35] “LEMON,” http://lemon.cs.elte.hu/trac/lemon.
[36] “OpenMP,” http://www.openmp.org/.
[37] G.-J. Nam, C. Sze, and M. Yildiz, “The ISPD global routing benchmark

suite,” in ACM International Symposium on Physical Design (ISPD),
2008, pp. 156–159.

117

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

