High Performance Dummy Fill Insertion with Coupling and Uniformity Constraints

Yibo Lin, Bei Yu, David Z. Pan
Electrical and Computer Engineering
University of Texas at Austin
Outline

- Introduction
- Problem Formulation
- Algorithms
- Experimental Results
- Conclusion
Chemical Mechanical Polishing (CMP)

Example of CMP [source: www.ntu.edu.sg]
Uniformity

Layout uniformity for CMP

Uneven density distribution

Even distribution

Coupling capacitance
Related Works

- Minimize density variation and number of fills
 - Linear Programming (LP)
 - [Kahng+, TCAD’99]
 - [Tian+, TCAD’01]
 - [Xiang+, TCAD’08]
 - Monte Carlo and heuristic approaches
 - [Chen+, ASPDAC’00]
 - [Chen+, DAC’00]
 - [Wong+, ISQED’05]

- Minimize density variation with coupling capacitance constraints
 - ILP
 - [Chen+, DAC’03], [Xiang+, ISPD’07]
Holistic Metrics for Uniformity

- Holistic metrics for layout uniformity from IBM (ICCAD 2014 Contest)
 - Variation (standard deviation)
 - Line hotspots
 - Outlier hotspots
Holistic Metrics for Uniformity

- Holistic metrics for layout uniformity from IBM (ICCAD 2014 Contest)
 - Variation (standard deviation)
 - Line hotspots
 - Outlier hotspots
Metrics for Coupling Capacitance

- Coupling capacitance
 - Minimize overlay between layers
Problem Formulation

Based on the ICCAD 2014 contest

- **Input**
 - Layout with fill insertion regions
 - Signal wire density information across each window

- **Quality score**
 - Overlay area (20%)
 - Variation/std. dev. (20%)
 - Line hotspot (20%)
 - Outlier hotspot (15%)
 - File size for dummy fill insertion (5%)

- **Normalization function**
 \[f(x) = \max\left(0, 1 - \frac{x}{\beta}\right) \]

- **Overall score**
 - Quality score (80%)
 - Runtime (15%)
 - Memory usage (5%)

- **Output**
 - Dummy fill positions and dimensions with maximum quality score

The higher score, the better
Outline

- Introduction
- Problem Formulation
- **Algorithms**
- Experimental Results
- Conclusion
Step 1: Density Planning

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

<table>
<thead>
<tr>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_4</td>
<td>d_5</td>
<td>d_6</td>
</tr>
<tr>
<td>d_7</td>
<td>d_8</td>
<td>d_9</td>
</tr>
</tbody>
</table>

Linear scan with a small step to find best target density
Step 1: Density Planning

<table>
<thead>
<tr>
<th>Window ID</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

Linear scan with a small step to find best target density

Searching for Best Target Density t_d (Case II)

- Density Range
- t_d Lower Bound
- t_d Upper Bound

12
Step 1: Density Planning

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

<table>
<thead>
<tr>
<th>Density Range</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
<th>d_7</th>
<th>d_8</th>
<th>d_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Linear scan with a small step to find best target density
Step 1: Density Planning

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

Linear scan with a small step to find best target density

<table>
<thead>
<tr>
<th>0.3</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Step 1: Density Planning

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

Linear scan with a small step to find best target density

<table>
<thead>
<tr>
<th>0.3</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Step 1: Density Planning

- Given density ranges of each window
- Find target density t_d for each window
- Maximize density scores

<table>
<thead>
<tr>
<th>0.3</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Linear scan with a small step to find best target density

![Graph showing searching for best target density t_d (Case II)]
Step 2: Candidate Fill Generation

- Generate candidate fills with minimum overlay
- With the guidance of target density
- A final fill is a rectangle within a candidate fill
Step 2: Candidate Fill Generation

- Generate candidate fills with minimum overlay
- With the guidance of target density
- A final fill is a rectangle within a candidate fill

\[q = -\frac{\text{fill overlay}}{\text{fill area}} + \gamma \cdot \frac{\text{fill area}}{\text{window area}} \]
Step 3: Dummy Fill Insertion (1)

- Given a set of candidate fills
- Determine dimension of fills
- Under DRC constraints
- Minimize overlay area and density variation

Solve in an iterative manner
Step 3: Dummy Fill Insertion (2)

An example of the mathematical formulation in one iteration

\[
\text{min } |(x_2 - x_1) \cdot h_A + (x_4 - x_3) \cdot h_B - t_{d1} \cdot A_{\text{win}}| + |(x_6 - x_5) \cdot h_C - t_{d2} \cdot A_{\text{win}}| \\
+ (x_2 - x_5) \cdot h_{AC} + (x_6 - x_3) \cdot h_{BC}
\]

s.t.
\[
\begin{align*}
 x_2 - x_1 & \geq W_{\text{min}} \\
 x_4 - x_3 & \geq W_{\text{min}} \\
 x_6 - x_5 & \geq W_{\text{min}} \\
 x_3 - x_2 & \geq S_{\text{min}} \\
 (x_2 - x_1) \cdot h_A & \geq A_{\text{min}} \\
 (x_4 - x_3) \cdot h_B & \geq A_{\text{min}} \\
 (x_6 - x_5) \cdot h_C & \geq A_{\text{min}} \\
 x_2 - x_5 & \geq 0 \\
 x_6 - x_3 & \geq 0 \\
 l_i & \leq x_i \leq u_i, \quad i = 1, 2, \ldots, 6
\end{align*}
\]

Overview constraints

- Density variation
- Overlay area
- DRC rules

\(A_{\text{win}}\): area of a window
\(W_{\text{min}}\): minimum width
\(S_{\text{min}}\): minimum spacing
\(A_{\text{min}}\): minimum area
Step 3: Dummy Fill Insertion (3)

\[
\min \left| (x_2 - x_1) \cdot h_A + (x_4 - x_3) \cdot h_B - t_{d1} \cdot A_{\text{win}} \right| + \left| (x_6 - x_5) \cdot h_C - t_{d2} \cdot A_{\text{win}} \right| \\
+ (x_2 - x_5) \cdot h_{AC} + (x_6 - x_3) \cdot h_{BC}
\]

- Further relax to remove absolute operation
- Add tighter bound constraints to variables
Step 3: Dual to Min-Cost Flow

Prime

\[
\min_{x_i} \sum_{i=1}^{N} c_i x_i \\
\text{s.t. } x_i - x_j \geq b_{ij}, \ (i, j) \in E, \\
l_i \leq x_i \leq u_i, \ i = 1, 2, \ldots, N, \\
x_i \in Z
\]

- Convert bound constraints to differential constraints
- Dual to min-cost flow

Dual

\[
c'_i = \begin{cases}
 c_i & i = 1, 2, \ldots, N \\
 - \sum_{i=1}^{N} c_i & i = 0
\end{cases}
\]

\[
b'_{ij} = \begin{cases}
 b_{ij} & (i, j) \in E \\
 l_i & i = 1, 2, \ldots, N, j = 0 \\
 -u_i & i = 0, j = 1, 2, \ldots, N
\end{cases}
\]
Overall Flow

Initial Fill Regions → Density Planning

Density Planning → Candidate Fill Generation

Candidate Fill Generation → Density Planning

Density Planning → Dummy Fill Insertion

Dummy Fill Insertion → Output Fills
Experimental Environment

- Implemented in C++
- 8-Core 3.4GHz Linux server
- 32GB RAM
- ICCAD 2014 contest benchmarks
Experimental Results

- Compared with contest winners
 - Quality Scores (13% better than the 1st place winner)
 - Overall Scores (10% better than the 1st place winner)
Experimental Results

Detailed results

<table>
<thead>
<tr>
<th>Design</th>
<th>Team</th>
<th>Overlay*</th>
<th>Variation*</th>
<th>Line*</th>
<th>Outlier*</th>
<th>Size*</th>
<th>Run-time*</th>
<th>Memory*</th>
<th>Testcase Quality</th>
<th>Testcase Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>1st</td>
<td>0.743</td>
<td>0.636</td>
<td>0.733</td>
<td>1.000</td>
<td>0.976</td>
<td>0.877</td>
<td>0.885</td>
<td>0.621</td>
<td>0.797</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>0.743</td>
<td>0.909</td>
<td>0.967</td>
<td>0.975</td>
<td>0.103</td>
<td>0.846</td>
<td>0.831</td>
<td>0.675</td>
<td>0.844</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>0.613</td>
<td>0.985</td>
<td>0.990</td>
<td>1.000</td>
<td>0.158</td>
<td>0.842</td>
<td>0.429</td>
<td>0.676</td>
<td>0.823</td>
</tr>
<tr>
<td></td>
<td>ours</td>
<td>0.723</td>
<td>0.948</td>
<td>0.979</td>
<td>0.994</td>
<td>0.887</td>
<td>0.872</td>
<td>0.818</td>
<td>0.724</td>
<td>0.895</td>
</tr>
<tr>
<td>b</td>
<td>1st</td>
<td>0.748</td>
<td>0.368</td>
<td>0.364</td>
<td>0.871</td>
<td>0.924</td>
<td>0.515</td>
<td>0.891</td>
<td>0.473</td>
<td>0.594</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>0.841</td>
<td>0.381</td>
<td>0.534</td>
<td>0.000</td>
<td>0.053</td>
<td>0.513</td>
<td>0.828</td>
<td>0.354</td>
<td>0.472</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>0.576</td>
<td>0.485</td>
<td>0.601</td>
<td>0.000</td>
<td>0.568</td>
<td>0.554</td>
<td>0.339</td>
<td>0.361</td>
<td>0.461</td>
</tr>
<tr>
<td></td>
<td>ours</td>
<td>0.685</td>
<td>0.499</td>
<td>0.470</td>
<td>0.953</td>
<td>0.765</td>
<td>0.351</td>
<td>0.852</td>
<td>0.512</td>
<td>0.607</td>
</tr>
<tr>
<td>m</td>
<td>1st</td>
<td>0.598</td>
<td>0.462</td>
<td>0.486</td>
<td>0.204</td>
<td>0.941</td>
<td>0.556</td>
<td>0.845</td>
<td>0.387</td>
<td>0.513</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>0.668</td>
<td>0.460</td>
<td>0.618</td>
<td>0.000</td>
<td>0.000</td>
<td>0.780</td>
<td>0.761</td>
<td>0.349</td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>0.510</td>
<td>0.509</td>
<td>0.689</td>
<td>0.000</td>
<td>0.807</td>
<td>0.748</td>
<td>0.772</td>
<td>0.382</td>
<td>0.533</td>
</tr>
<tr>
<td></td>
<td>ours</td>
<td>0.493</td>
<td>0.643</td>
<td>0.766</td>
<td>0.088</td>
<td>0.905</td>
<td>0.750</td>
<td>0.786</td>
<td>0.439</td>
<td>0.591</td>
</tr>
</tbody>
</table>
Conclusion

- Methodology for fill optimization with holistic and multiple objectives
- Validated on industry benchmarks
 - ICCAD 2014 contest benchmark
- Future work
 - Lithography related impacts
Thank you!