
LLMShare: Optimizing LLM Inference Serving with Hardware
Architecture Exploration

Hongduo Liu1, Chen Bai2, Peng Xu1, Lihao Yin3, Xianzhi Yu3,
Hui-Ling Zhen3, Mingxuan Yuan3, Tsung-Yi Ho1, Bei Yu1

1CUHK 2HKUST 3Huawei Technologies

Abstract—Large Language Models (LLMs) have revolutionized lan-
guage tasks but pose significant deployment challenges due to their
substantial computational demands during inference. The hardware
configurations of existing LLM serving systems do not optimize for the
different computational and bandwidth needs of the prefill and decoding
phases in LLM inference, leading to inefficient resource use and increased
costs. In this paper, we systematically investigate promising hardware
configurations for LLM inference serving. We develop a simulator that
models the performance and cost across different hardware solutions and
introduce a customized design space exploration framework to identify
optimal setups efficiently. By aligning hardware capabilities with the
specific demands of the prefill and decoding phases, we achieve 13% cost
savings and over 4× throughput improvements compared to conventional
serving system setups.

I. INTRODUCTION

Large Language Models (LLMs), such as GPTs [1], [2] and
Llamas [3], [4], have achieved unprecedented performance in lan-
guage understanding, generation, and complex reasoning tasks. These
models have become integral to numerous applications, including
chatbots [5], code generation [6], [7], and intelligent assistants [8].
As the scale of these models continues to grow, the scaling law has
emerged: larger models can deliver better performance across a broad
spectrum of tasks [9], [10].

However, deploying these large-scale models for inference-serving
systems in real-world applications poses significant challenges. The
computational demands of LLM inference require substantial GPU
resources to meet stringent service-level objectives (SLOs) regarding
latency and throughput. Efficiently providing LLM inference systems
with performance guarantees and reducing deployment costs has
become a critical problem for researchers and industry practitioners.

To address these challenges, previous research has explored various
optimization strategies for LLM inference serving. Scheduling-level
approaches [11]–[13] aim to maximize GPU utilization through
efficient scheduling algorithms. For instance, Orca [11] introduces
continuous batching at the token level, dynamically integrating new
requests into the batch to improve throughput. Memory management
techniques [14]–[16] focus on optimizing the use of GPU memory
resources. For example, PagedAttention [14] manages the key-value
(KV) cache using non-contiguous memory blocks to reduce memory
fragmentation and waste.

While these approaches have made significant strides in optimizing
LLM inference serving, they largely focus on software-level optimiza-
tions but merely consider the hardware configurations underlying the
serving system. Recognizing this gap, a recent work Splitwise [17]
proposes to split the prefill and decoding phases of LLM inference
across machines with different hardware capabilities. They observe
that the prefill phase is significantly more compute-intensive than
the decoding phase, suggesting that using high-end GPUs like the
NVIDIA H100 for both phases can lead to underutilization of
hardware resources during decoding. Fig. 1 lists comparison between
NVIDIA A100 cluster and H100 cluster with 8 GPUs on Llama-
70B [3] without batching, where the statistics is from [17]. As we can

TFLOPS HBM Size Cost PT DT
0

1

2

3

1 1 1 1 1

3.43

1

2.16

1.85

1.43

A100 H100

Fig. 1 Comparison of NVIDIA A100 and H100 cluster with 8
GPUs on Llama-70b without batching. ‘PT’ denotes prefill phase
throughput, and ‘DT’ denotes decoding phase throughput.

see, although the H100 offers substantial throughput improvements
(1.85×) during the prefill phase due to its increased computational
power, the performance gains during the decoding phase are relatively
marginal (1.43×). The discrepancy arises because the H100 exhibits
limited improvements in memory size and bandwidth over the A100.
This observation prompts a critical question: If we can adjust the
computation capacity or memory throughput of the H100, can we
achieve a better performance-cost tradeoff?

Existing hardware solutions with fixed configurations, such as
A100 and H100 clusters, may not perfectly match the specific
computational and memory requirements of the different phases of
LLM inference. This mismatch can lead to suboptimal hardware
utilization and increased costs. Therefore, we are motivated to explore
whether customizing hardware configurations to better align with the
distinct computation and memory demands of the prefill and decoding
phases can optimize both performance and cost.

In this work, we introduce LLMShare, a framework that optimizes
large language model (LLM) inference serving through hardware ar-
chitecture exploration. Our approach involves developing a simulator
that models the performance and cost of different hardware configu-
rations within an LLM serving system. Given the vast design space of
LLM serving systems and the time-consuming nature of performance
evaluations, we also introduce a customized design space exploration
algorithm to efficiently identify optimal hardware configurations. By
aligning hardware capabilities with the specific requirements of each
inference phase, we achieve a 13% cost reduction and a 4× throughput
improvement compared to traditional GPU setups.

The main contributions of this paper are as follows:

• We develop a simulator that models the behavior of an LLM
serving system, enabling the assessment of performance and cost
across various hardware configurations.

• We propose an effective design space exploration framework to
identify Pareto-optimal hardware configurations within a large
design space.

• We demonstrate that customized hardware configurations can
achieve significant cost savings and throughput improvements
over conventional GPU configurations in LLM serving.

LLM LLM

1st iter 2nd iter 3rd iter

LLM

KV Cache

“AI is short for” “Artificial”

“Artificial” “Intelligence”

“Intelligence” <EOS>

<EOS>

Token and
Positional

 Embedding

Multi-head
Attention

Feed-forward
Network

Linear and
Softmax

<latexit sha1_base64="GMHpDWCKnYfN95ZUBQlDHv10plg=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4ComIeix48VjBfkAbyma7aZduNmF3IpTQH+HFgyJe/T3e/Ddu2hy09cHA470ZZuaFqRQGPe/bWVvf2NzaruxUd/f2Dw5rR8dtk2Sa8RZLZKK7ITVcCsVbKFDybqo5jUPJO+HkrvA7T1wbkahHnKY8iOlIiUgwilbq9FHE3FQHtbrnenOQVeKXpA4lmoPaV3+YsCzmCpmkxvR8L8UgpxoFk3xW7WeGp5RN6Ij3LFXUbgny+bkzcm6VIYkSbUshmau/J3IaGzONQ9sZUxybZa8Q//N6GUa3QS5UmiFXbLEoyiTBhBS/k6HQnKGcWkKZFvZWwsZUU4Y2oSIEf/nlVdK+dP1r13+4qjfcMo4KnMIZXIAPN9CAe2hCCxhM4Ble4c1JnRfn3flYtK455cwJ/IHz+QPos486</latexit>⇥N

Input Sequence

Output Token
Prefill Stage Decoding Stage

Fig. 2 The inference process of LLMs.

II. PRELIMINARIES

A. Overview of LLM inference

Fig. 2 illustrates the inference process of decoder-only LLMs.
These mainstream LLMs are predominantly constructed from mul-
tiple Transformer blocks [18], each comprising a self-attention-based
multi-head attention (MHA) mechanism followed by a feed-forward
network (FFN).

In the Transformer architecture, the initial step involves applying
three different weight matrices to encoded embeddings of the input
text sequence, which computes the queries Q, keys K, and values V
matrices for each token. The self-attention mechanism then utilizes
these matrices to calculate attention scores, allowing each token to
focus on different parts of the sequence, which is given by

Attention(Q,K,V) = softmax
(
QK⊤
√
d

)
V , (1)

where d is the dimension of the token embeddings. By employing
multiple attention heads, the model can capture different types of
relationships in parallel. The outputs from these multiple attention
heads are concatenated and passed through a feed-forward network,
which refines the information and enables the model to learn complex
patterns and dependencies.

The inference process of LLMs can be systematically divided into
two primary stages: the prefill phase and the decoding phase. During
the prefill phase, the model processes the entire input prompt, which
establishes the initial context for the LLM and generates the first
token. As depicted in Fig. 2, when the LLM processes the input
sequence “AI is short for”, it computes the internal representations
necessary to generate the next token, “Artificial”. A crucial opti-
mization in this process is the caching of the key-value (KV) pairs
generated by each transformer block for each token. By storing the
KV cache in memory, the model enhances computational efficiency
by avoiding recomputation of these representations during subsequent
decoding steps.

Following the prefill phase, the decoding phase begins, during
which the model generates output tokens one at a time in an
autoregressive manner. In each decoding step, the LLM predicts the
next token based on both the original prompt and the sequence of
tokens generated thus far. Simultaneously, it generates new KV pairs
for use in subsequent iterations. For example, at the beginning of
the decoding phase, the model uses the cached KV pairs to predict
the next token “Intelligence”. This autoregressive process ends until
the LLM generates an end-of-sequence token <EOS>, signaling the
completion of the generated output. By utilizing the cached KV pairs
and processing tokens autoregressively, the model efficiently gener-
ates sequences without redundant computations, which is essential for
handling long prompts and making real-time interactions feasible.

Parameter Notation Value Range #

Server Count sc 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 10
Device Count dc 4, 8, 12, 16 4

Link Count Per Device lc 6, 12, 18, 24 4
Main Memory (GB) mm 40, 64, 80, 96, 112, 128 6
Global Buffer (MB) gb 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 10

Core Count cc 72, 96, 108, 132, 156, 180 6
Local Buffer (KB) lb 64, 128, 192, 256, 320, 384, 448, 512 8

Lane Count lc 1, 2, 4, 8 4
Array Height ah 16, 32, 64, 128 4
Vector Width vw 16, 32, 64, 128 4

TABLE I Design space of the prefill and decoding pools. Each pool
has a design space size of approximately 3× 107. Consequently, the
entire design space of an LLM serving system is nearly 9× 1014.

B. LLM Serving Framework

Fig. 3 illustrates the framework of a general LLM serving system.
The system includes a prefill pool and a decoding pool, each
consisting of multiple servers for parallel processing. The prefill
pool manages the prefill phase of a request, while the decoding
pool handles the completion of the decoding phase, with KV cache
transfer bridging the two stages. Separating prefill and decoding
servers can optimize performance [17], [19], [20], as these stages have
different computational and memory communication characteristics.
For instance, the prefill stage is computation-intensive and requires
limited batch sizes to maintain performance, whereas the decoding
phase can handle larger batch sizes, enabling higher throughput [17].

The serving system also includes a request scheduler that assigns
tasks to the prefill and decoding pools. Additionally, the scheduler
controls a router that dynamically reallocates server instances. If there
are pending tasks in the prefill pool and no tasks in the decoding
pool, instances can be moved from the decoding pool to the prefill
pool. Conversely, if the prefill pool has available servers and there are
blocked tasks in the decoding pool, instances can be transferred from
the prefill pool to the decoding pool. Within each pool, additional
scheduling handles the batching and execution of prefill or decoding
tasks.

Each server (e.g., an NVIDIA DGX node) in the prefill and de-
coding pool comprises multiple devices connected via an inter-device
interconnect (e.g., NVLink). Each device (e.g., a GPU) contains
multiple cores, a shared global buffer, and off-chip main memory. The
global buffer (e.g., L2 cache in NVIDIA GPUs) connects to both the
main memory and the cores. Each core (e.g., a Streaming Multipro-
cessor in NVIDIA GPUs) includes multiple lanes that share a local
buffer (e.g., L1 cache in NVIDIA GPUs). The local buffer connects to
the global buffer through an on-chip interconnect. Each lane includes
its vector unit, systolic or multiply-accumulation array, registers, and
control logic. Here we follow the idea of LLMCompass [21] to
use aforementioned general device template to describe mainstream
accelerators used for LLM inference, such as NVIDIA H100 [22],
AMD MI210 [23], and Google TPUv3 [24]. This description is
universal because these accelerators share a similar architectural
hierarchy.

This hardware template enables various LLM serving system
configurations. As shown in TABLE I, we have a total design space
of nearly 9 × 1014 configurations for the complete serving system.
Here we only consider the server count range from 1 to 10, it can be
scaled proportionally for large serving systems.

C. Problem Formulation

Definition 1 (LLM Serving System Design Space). An LLM serving
system design combines a prefill pool and a decoding pool, each with
design spaces detailed in TABLE I. We denote a system configuration
as x ∈ X, where X represents the complete design space.

Prefill Pool

…

KV Cache
Transfer

Server Server Server

Decoding Pool

…Server Server Server

Server

Server

Requests
Scheduler

Scheduler

Scheduler

Requests
Router

…
…

…

…

…

…

…

… …

…

……

device

Server

device device

devicedevice
inter-device link

Vector Unit

Systolic Array

Lane

Vector Unit

Systolic Array

Lane

…

Local Buffer

Core

Vector Unit

Systolic Array

Lane

Vector Unit

Systolic Array

Lane

…

Local Buffer

Core

…

Global Buffer Main Memory

Device

Fig. 3 Overview of a LLM serving system.

Decode Time

batching info

Cost
Simulator

Latency
SimulatorLLM Info

Server Info

Server Cost

Prefill Time

Requets Trace Request
Scheduler

Schedule Info

Server CountSystem Config
Cost

Serving
Time

Batching Info

LLM Serving Simulator

 Initial Configs

 Sampled Config

 Bayesian Optimization

Design Space

 Optimal Configs
Y

N

 Serving Simulator

Stop

Fig. 4 The overview of LLMShare.

Definition 2 (Pareto Optimality). Given a stream of requests and an
LLM, each configuration x has associated objectives: serving time
ft(x) and cost fc(x). A design x∗ ∈ X is Pareto optimal if there is
no other design x ∈ X such that:

ft(x) ≤ ft(x
∗) and fc(x) ≤ fc(x

∗),

and at least one of the inequalities is strict: ft(x) < ft(x
∗) or

fc(x) < fc(x
∗).

The design of LLM serving systems involves optimizing both
serving time and cost. These objectives are inherently conflicting as
reducing serving time typically requires additional servers, thereby
increasing costs. Consequently, we focus on identifying Pareto-
optimal designs.

Problem 1 (LLM Serving System Design Space Exploration). Given
a design space X, the goal of design space exploration is to identify
a subset X∗ ⊂ X containing all Pareto-optimal configurations.

III. LLMSHARE

A. Overview of LLMShare

Fig. 4 illustrates the overall workflow of LLMShare, which com-
prises an LLM serving simulator and a design space exploration
framework. The simulator outputs the cost and serving time for a
given LLM serving system configuration, providing essential feed-
back to the design space exploration process.

The simulator takes three main inputs: the serving system con-
figuration, LLM information, and the request trace. The system
configuration includes data on the number of servers in the prefill and
decoding pools, as well as their specific configurations, as detailed
in TABLE I. The LLM information covers attributes like the number
of layers, the attention head count of multi-head self-attention, and
hidden dimension size. The request trace details the arrival time, input
token size, and output token size for each request. The cost simulator
calculates the cost of a server based on its configuration, including
the die costs of chips and main memory costs. By aggregating

the costs of the servers in the prefill and decoding pools, the cost
simulator determines the total cost of the serving system. Using the
LLM information and request trace, the request scheduler decides on
request batching and assigns tasks to the prefill and decoding pools.
The latency simulator then calculates the prefill and decode times
for each request. By considering additional scheduler details like KV
cache transfer time and request pending time in the batching info
reported by the request scheduler, the simulator ultimately determines
the system’s overall serving time. We use LLMCompass [21] for
cost and latency simulation, which achieves less than a 5% error rate
compared to real-world hardware. For request scheduling, we use the
simulator proposed in Splitwise [17].

We adopt Bayesian optimization for design space exploration.
It begins with a predefined design space, where Memory-Centric
Initialization (Section III-B) is employed to generate initial configu-
rations. Specifically, the memory size of the serving system guides
the sampling of these initial designs. These configurations are then
evaluated using our LLM serving simulator to obtain serving time
and cost metrics based on various system configurations. To identify
the optimal configurations, a deep tree kernel-based (Section III-C)
Bayesian optimization algorithm is utilized to find configurations that
optimize a specified acquisition function. Subsequently, the selected
designs are re-evaluated through the simulator to obtain updated
serving time and cost data, which are used to refine the surrogate
model. Ultimately, LLMshare outputs a set of Pareto optimal designs
based on the explored configurations, including initial configurations
and sampled configurations during Bayesian optimization.

B. Memory-Centric Initialization (MCI)

Initial sampling involves selecting a small subset of configura-
tions, denoted as Dx ⊂ X, to evaluate before commencing the
iterative Bayesian optimization process. These initial points lay the
groundwork for constructing the surrogate model. Evaluating each
LLM serving system configuration requires processing a request trace
comprising thousands of requests. Even with request batching, the
simulation time remains substantial due to the frequent invocation of
a computationally intensive latency simulator. Consequently, only a
limited number of points are feasible for initialization.

For effective optimization, it is imperative that the initial designs
are diverse and representative to ensure comprehensive coverage
of the entire design space. Traditional approaches have employed
random sampling [25] or orthogonal designs [26] due to their sim-
plicity. More recently, transductive experimental design (TED) [27]
has gained popularity for selecting the most representative and
challenging-to-predict designs as initial points in high-level synthe-
sis [28] and CPU microarchitecture design space exploration [29].

However, these methods do not account for the unique characteristics
of LLM serving systems, leading to suboptimal initial sets.

To overcome the limitations of existing initialization methods
in the context of LLM serving systems, we propose a memory-
centric initialization approach. This approach is motivated by the
critical role that memory configuration plays in both serving time
and cost. Firstly, modern accelerators designed for LLM inference
often employ high-bandwidth memory (HBM) to facilitate rapid data
communication. While HBM offers substantial performance benefits,
it also significantly increases the total cost of servers due to its high
expense. Secondly, the memory capacity directly impacts the number
of requests that can be batched and processed simultaneously. Larger
memory allows for higher batching capability, which can dramatically
increase throughput. Therefore, our memory-centric initialization
method selects initial configurations that are more representative of
the performance and cost trade-offs inherent to the LLM serving
system.

Algorithm 1 Memory-Centric Initialization

Input: • U: unsampled design space with n configurations;
• t: total number of initial configurations to select;
• u: number of groups used during sampling.

Output: Dx with |Dx| = t ▷ Selected initial designs
1: Compute the total main memory size for each design:
2: for i = 1 to n do

ci = xp
i,sc · x

p
i,dc · x

p
i,mm + xd

i,sc · xd
i,dc · xd

i,mm;

3: Determine percentiles: P =
{

100×j
u

∣∣∣ j = 0, 1, . . . , u
}
;

4: Compute bin edges for the percentiles of {ci}ni=1:

B =
{
bj = Percentile({ci}ni=1, pj)

∣∣∣ j = 0, 1, . . . , u
}
;

5: Compute base sample count per group: q ←
⌊
t

u

⌋
;

6: Compute remainder: r ← t mod u;
7: Initialize Dx ← ∅;
8: for j = 1 to u do
9: Gj =

{
i
∣∣∣ bj−1 ≤ ci < bj

}
;

10: if j ≤ r then
11: sj ← q + 1;
12: else
13: sj ← q;
14: Select sj samples from Gj : Sj = TED(Gj , sj);
15: Dx ← Dx ∪ Sj ;
16: return Dx

Algorithm 1 presents our memory-centric initialization method. For
each configuration, xi, a composite metric ci is computed using main
memory-related features. Specifically, ci represents the total main
memory size of configuration i,

ci = xp
i,sc · x

p
i,dc · x

p
i,mm + xd

i,sc · xd
i,dc · xd

i,mm, (2)

where xp
i,sc denotes the server count of the prefill pool of i-th

configuration while xd
i,sc indicates the server count of the decoding

pool of i-th configuration. The abbreviation of other features can
be referred to TABLE I. Once these total memory sizes are com-
puted, the algorithm determines percentiles to divide the range of
memory sizes into equal intervals. For each interval defined by these
percentiles, the algorithm identifies all designs whose total memory
sizes fall within that interval. It then samples configurations using a
basic sampling method like TED [27] from each interval. Finally, t

server device

device count

core

core count

global buffer

lane

local buffer size

array height

vector width

lane count main memory size link count

server count

prefill pool

decode pool

system

Fig. 5 Tree structure of the design space, where each leaf node repre-
sents a design parameter. Design parameters at the same hierarchical
level are marked with the same color. The subtree for the decode
pool is omitted as it mirrors the prefill pool’s subtree.

samples with representative memory sizes can be obtained.

C. Deep Tree Kernel (DKL)

After sampling the initial serving system configurations Dx, we
can utilize the simulator as shown in Fig. 4 to get serving time
and cost, denoted as Dy . Due to the time-consuming nature of
metric evaluation, we aim to construct a surrogate model M that
describes the relationship between the design space X and the target
space Y based on the currently selected samples (Dx,Dy). This
surrogate model guides the selection of the next design by predicting
function values at unobserved points and estimating the associated
uncertainties. It is updated as the labels of newly selected samples
are obtained. In this paper, we use a Gaussian process (GP) [30]
as our surrogate model due to its flexibility and modeling for both
predictions and uncertainty estimates, which has wide application in
various design space exploration tasks [31]–[33]. A Gaussian process
defines a prior over value function f(x) such that any finite set of
function values follows a multivariate Gaussian distribution. Formally,
a GP is specified by its mean function m(x) and kernel function
k(x,x′):

f(x) ∼ GP
(
m(x), k(x,x′)

)
. (3)

Given observed data D = {(xi, yi)}ni=1, where yi = f(xi) + ϵi
and ϵi is Gaussian noise with variance σ2

e , we consider the joint
distribution of the function values at the observed points f =
[f(x1), . . . , f(xn)]

⊤ and the function value at a new point x∗,
denoted f∗. This joint distribution is given by:[

f
f∗

]
∼ N

([
m
m∗

]
,

[
KXX + σ2

eI kXx∗

kx∗X kx∗x∗

])
, (4)

where m = [m(x1), . . . ,m(xn)]
⊤, m∗ = m(x∗), KXX is

the covariance matrix between the observed inputs with entries
(KXX)ij = k(xi,xj), kXx∗ = [k(x1,x∗), . . . , k(xn,x∗)]

⊤,
kx∗x∗ = k(x∗,x∗), I is the identity matrix, and σ2

e represents the
variance of the observation noise.

Choosing an appropriate kernel is crucial for the accuracy of the
Gaussian process. As our design space exhibits a hierarchical tree
structure as illustrated in Fig. 5, we propose a deep tree kernel tailored
to capture the hierarchical structure of the hardware configuration
design space for LLM serving systems. Let T = (V,E) denote a tree-
structured configuration, where V is the set of nodes and E ⊂ V×V

is a set of directed edges that establish a parent-child relationship.
Each node v ∈ V can be either a leaf node, having no children, or
an internal node, with one or more children. The tree also includes
a designated root node vr ∈ V, which has no parent. The root
node of the tree represents the whole serving system, while each
leaf node indicates a design parameter of the system. Our objective
is to compute an embedding hT that leverages the features of the

leaf nodes x and the hierarchical structure of the tree. Let L ⊆ V

denote the set of leaf nodes of T . For an internal node v ∈ V \ L,
the embedding hv is computed based on the embeddings of its child
nodes. Let C(v) = {u1, u2, . . . , ukv} denote the set of child nodes
of node v, where kv is the number of children of v. The embedding
hv is computed as

hv = ϕv

(
concat

(
hu1 ,hu2 , . . . ,hukv

)
; θv
)
, (5)

where ϕv is an embedding function (e.g., an MLP) for internal node
v, θv denotes its parameters, and concat(·) denotes the concatenation
operation. The recursive computation proceeds in a bottom-up man-
ner, starting from the lowest level and moving upwards through the
root. At each step, we compute the embeddings of internal nodes only
after computing the embeddings of all their child nodes. Finally, the
embedding of the tree is given by the embedding of the root node:

hT = hvr . (6)

For example, the lowest-level features such as array height xah and
vector width xvw, associated with a lane, are first transformed into
lane embeddings hlane using an embedding function ϕlane parameter-
ized by θlane:

hlane = ϕlane (concat (xah,xvw) ; θlane) . (7)

This recursive embedding culminates in the system-level embedding
hsystem, which is obtained by combining the embeddings of the prefill
pool hprefill and decoding pool hdecode using the embedding function
ϕsystem parameterized by θsystem:

hsystem = ϕsystem(hprefill,hdecode; θsystem). (8)

The deep tree kernel kt between two system configurations xi and
xj is then defined as the kernel function applied to their respective
system-level embeddings:

kt(xi,xj) = k
(
h

(i)
system,h

(j)
system

)
, (9)

where k is a traditional kernel function, such as the radial basis
function. h(i)

system and h
(j)
system denotes the system-level embedding of

two configuration xi and xj respectively. This customized deep
kernel effectively measures the similarity between different hardware
configurations by leveraging the hierarchical relationships and depen-
dencies inherent in the tree-structured design space.

D. Multi-objective Bayesian Optimization

For the design space exploration of the LLM serving system, we
aim to find solutions that balance trade-offs between serving time and
cost, which are two conflicting objectives. The set of these optimal
trade-off solutions is known as the Pareto front. A solution is consid-
ered Pareto-optimal if improving any one objective would lead to the
degradation of at least one other objective. The Pareto Hypervolume is
a quantitative metric that measures the volume (or area in two dimen-
sions) of the objective space dominated by the Pareto front, bounded
by a predefined reference point. Mathematically, consider a set of
n objective vectors P = {y(1),y(2), . . . ,y(n)} in an d-dimensional
objective space, where each y(i) = [y

(i)
1 , y

(i)
2 , . . . , y

(i)
d] represents

the objective values of configuration i. Let r = [r1, r2, . . . , rd] be
the reference point, which is chosen to be worse than any objective
values in P (for minimization problems). The Pareto hypervolume

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Cost

N
or
m
al
iz
ed

S
er
v
in
g
T
im

e Design Space
A100-A100
A100-H100
H100-A100
H100-H100

Fig. 6 The effectiveness of LLM serving system design space
exploration

HV(P) is defined as:

HV(P) = λ

(
n⋃

i=1

[y(i), r]

)
, (10)

where λ(·) denotes the Lebesgue measure (length, area, volume, etc.,
depending on d) and [y(i), r] represents the hyper-rectangle (in d-
dimensional space) bounded by y(i) and r.

With the Pareto hypervolume defined, we can now discuss how
it guides the selection of new design points in our multi-objective
Bayesian optimization framework. We employ the Expected Hyper-
volume Improvement (EHVI) [34], [35] as our acquisition function
to strategically explore the design space. The EIPV quantifies the
expected increase in the hypervolume that would result from sam-
pling a new design point, integrating over the uncertainty in the
predictions provided by the Gaussian process (GP) surrogate model.
Mathematically, for a candidate design x∗, the expected hypervolume
improvement EHV(x∗) is computed as:

EHVI(x∗) =

∫
y

max (HV(P ∪ {y})− HV(P), 0) p(y | x∗,D) dy,

(11)
where P is the current set of Pareto-optimal objective vectors
observed so far, HV(P) is the current Pareto Hypervolume, and
p(y | x∗,D) is the predictive posterior distribution of the objective
vector y at x∗ given the surrogate model and observed data D.

During the search process of Bayesian optimization, we identify
the candidate design x∗ that maximizes the EHVI:

x∗ = argmax
x∈X

EHVI(x). (12)

IV. EXPERIMENTS

A. Experiemtal Settings

We validate our methods using a 2-minute serving trace containing
2454 requests, with GPT3-175B [1] as the underlying LLM of the
serving system. The distribution of input and output token sizes is
derived from a Microsoft Azure production trace [36], reflecting real-
world LLM serving demands.

As shown in TABLE I, the complete design space of an LLM
serving system approaches 9× 1014 configurations. Given the time-
consuming nature of the simulation pipeline, exhaustively evaluating
the entire design space is impractical. Therefore, we construct an
offline dataset comprising 1,055 designs through random sampling
from the complete design space. For design space exploration (DSE),
we initialize with 10 sampled designs and perform 20 exploration
steps. u is set to 5 for Algorithm 1.

We compare LLMShare to state-of-the-art DSE methods.
DAC’16 [26] uses an AdaBoost-based strategy to selectively simulate
informative designs, reducing simulation costs. ASPDAC’20 [37] em-
ploys an XGBoost model for flow parameter tuning. ICCAD’21 [29]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Cost

N
or
m
al
iz
ed

S
er
v
in
g
T
im

e Design Space
SVR
DAC’16
ASPDAC’20
ICCAD’21
Ours

Fig. 7 Learned Pareto optimal set of LLMShare and other baseline
methods.

TABLE II Comparison of different algorithms.
Algorithms Normalized ADRS Hypervolume (108)
SVR [38] 0.1811 4.9593
DAC’16 [26] 0.1718 4.9714
ASPDAC’20 [37] 0.1805 4.9513
ICCAD’21 [29] 0.2059 4.8134
LLMShare 0.1589 5.0552

integrates active learning for initial sample generation with deep-
kernel learning in a Gaussian process to explore optimal RISC-V CPU
designs. Additionally, a Support Vector Regression (SVR) [38] based
greedy search is used as another baseline. For a fair comparison, we
conduct experiments on each baseline algorithm 10 times and report
the averages.

We evaluate our design space exploration method using two met-
rics: hypervolume, as defined in Equation (10), and Average Distance
to Reference Set (ADRS). The hypervolume metric measures the size
of the objective space dominated by the obtained Pareto front and
bounded by a reference point. ADRS quantifies the proximity between
a learned Pareto optimal set and the ground truth Pareto optimal set.
The ADRS is formally defined as:

ADRS(S,R) =
1

|S|

|S|∑
i=1

min
r∈R

d(si, r), (13)

where S denotes the learned Pareto optimal set, R represents the
groundtruth Pareto optimal set, si refers to each solution in S, and
d(si, r) measures the distance between solution si and true pareto
optimal solution r. Higher hypervolume and lower ADRS indicate
better DSE algorithm performance.

B. Experiemental Results

1) Necessity of Design Space Exploration: Fig. 6 illustrates the
performance comparison between randomly sampled designs from the
complete design space and solutions using existing widely adopted
commercial GPUs. In our notation, A100-A100 represents config-
urations using NVIDIA A100 GPUs for both prefill and decoding
phases, while H100-A100 denotes configurations using NVIDIA
H100 GPUs for prefill and A100 GPUs for decoding. The number
of prefill and decoding servers varies from 1 to 10. Therefore, 100
total possible configurations of GPU clusters are investigated. Our
analysis reveals that certain design configurations consistently out-
perform commercial solutions, achieving lower costs while reducing
serving time. This observation highlights the benefits of exploring
diverse hardware configurations to better accommodate the distinct
computational and memory patterns of LLM prefill and decoding
phases.

2) Performance of Proposed DSE Algorithm: Fig. 7 plots the
learned Pareto optimal sets of LLMShare and other baseline algo-

0 5 10 15 20
0.15

0.2

0.25

0.3

Exploration Steps

A
D
R
S

LLMShare w/o MCI

LLMShare w/o DTK
LLMShare

Fig. 8 Ablation study on the effectiveness of DTK and MCI.

TABLE III Normalized cost and request per second (RPS) of a Pareto
optimal H100 cluster and a Pareto optimal configuration found by
LLMShare. The design parameters are in the same order as TABLE I.

Hardware Config Cost RPS

H100-cluster Prefill 7,8,18,80,50,132,256,4,16,32 1.00 1.00Decode 6,8,18,80,50,132,256,4,16,32

LLMShare Prefill 4,4,24,112,100,156,512,1,128,32 0.87 4.11Decode 6,12,18,80,70,72,448,2,32,16

rithms. We observe that LLMShare obtains a Pareto optimal set closer
to the real Pareto frontier. We also provide a quantitative comparison,
as shown in TABLE II. LLMShare consistently outperforms the
baseline algorithms across both ADRS and hypervolume metrics.
Specifically, LLMShare achieves 12%, 7%, 11%, and 23% ADRS
reduction compared with SVR [38], DAC’16 [26], ASPDAC’20 [37],
and ICCAD’21 [29], respectively. The superior ADRS achieved
by LLMShare demonstrates its effectiveness in providing a set of
solutions that better approximate the true Pareto frontier. Additionally,
LLMShare achieves the highest hypervolume, with a 5% improve-
ment compared to ICCAD’21 [29] and a 2% improvement compared
to other baselines.

Fig. 8 presents an ablation study comparing different configurations
of the LLMShare model over exploration steps, with ADRS on
the y-axis. For LLMShare w/o MCI, we use the TED method
implemented in ICCAD’21 [29] to obtain the initial designs instead
of our Memory-Centric Initialization (MCI) algorithm. Fig. 8 reveals
that the inclusion of MCI allows LLMShare to achieve a set of
representative initial designs, resulting in a notably lower ADRS
as exploration progresses. We also substitute the Deep Tree Kernel
(DTK) with a naive deep kernel that does not consider the hierarchical
design space of the LLM serving system, denoted as LLMShare
w/o DTK. As we can see, DTK enhances the modeling of the design
space, enabling more effective exploration compared to the naive deep
kernel.

TABLE III lists the cost and throughput comparison between a
Pareto optimal H100 cluster among the 100 possible server count
combinations and a Pareto optimal configuration found by LLMShare.
We can see that the learned configuration can achieve 4× throughput
improvement with a 13% reduction in cost.

V. CONCLUSION

In conclusion, this paper explores optimizing LLM inference
serving through hardware design exploration. Our evaluation frame-
work assesses the performance and cost of various configurations,
showing that customized solutions tailored for prefill and decoding
phases significantly enhance throughput and reduce costs compared
to traditional GPUs.

ACKNOWLEDGEMENTS

The project is supported in part by Research Grants Council of
Hong Kong SAR (No. RFS2425-4S02 and No. CUHK14211824),
and the MIND project (MINDXZ202404).

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates,
Inc., 2020, pp. 1877–1901.

[2] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[3] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[4] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The llama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

[5] Chatgpt overview. [Online; accessed 30-October-2024]. [Online].
Available: https://openai.com/chatgpt/overview/

[6] Github copilot. [Online; accessed 30-October-2024]. [Online]. Available:
https://github.com/features/copilot

[7] P. Zehua, H. Zhen, M. Yuan, Y. Huang, and B. Yu, “Betterv: Controlled
verilog generation with discriminative guidance,” in Forty-first Interna-
tional Conference on Machine Learning, 2024.

[8] Google assistant with bard. [Online]. Available: https://blog.google/
products/assistant/google-assistant-bard-generative-ai/

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[10] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling Laws for Neural
Language Models,” arXiv preprint arXiv:2001.08361, 2020.

[11] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca: A
distributed serving system for {Transformer-Based} generative models,”
in 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), 2022, pp. 521–538.

[12] C. Holmes, M. Tanaka, M. Wyatt, A. A. Awan, J. Rasley, S. Rajbhandari,
R. Y. Aminabadi, H. Qin, A. Bakhtiari, L. Kurilenko et al., “Deepspeed-
fastgen: High-throughput text generation for llms via mii and deepspeed-
inference,” arXiv preprint arXiv:2401.08671, 2024.

[13] A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. S. Gulavani,
A. Tumanov, and R. Ramjee, “Taming throughput-latency tradeoff in llm
inference with sarathi-serve,” arXiv preprint arXiv:2403.02310, 2024.

[14] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611–626.

[15] R. Prabhu, A. Nayak, J. Mohan, R. Ramjee, and A. Panwar, “vattention:
Dynamic memory management for serving llms without pagedattention,”
arXiv preprint arXiv:2405.04437, 2024.

[16] C. Hu, H. Huang, J. Hu, J. Xu, X. Chen, T. Xie, C. Wang, S. Wang,
Y. Bao, N. Sun et al., “Memserve: Context caching for disaggregated
llm serving with elastic memory pool,” arXiv preprint arXiv:2406.17565,
2024.

[17] P. Patel, E. Choukse, C. Zhang, A. Shah, Í. Goiri, S. Maleki, and
R. Bianchini, “Splitwise: Efficient generative llm inference using phase
splitting,” in 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2024, pp. 118–132.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[19] Y. Zhong, S. Liu, J. Chen, J. Hu, Y. Zhu, X. Liu, X. Jin, and H. Zhang,
“Distserve: Disaggregating prefill and decoding for goodput-optimized
large language model serving,” arXiv preprint arXiv:2401.09670, 2024.

[20] R. Qin, Z. Li, W. He, M. Zhang, Y. Wu, W. Zheng, and X. Xu,
“Mooncake: Kimi’s kvcache-centric architecture for llm serving,” arXiv
preprint arXiv:2407.00079, 2024.

[21] H. Zhang, A. Ning, R. B. Prabhakar, and D. Wentzlaff, “Llmcompass:
Enabling efficient hardware design for large language model inference,”
in 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2024, pp. 1080–1096.

[22] Nvidia h100. [Online]. Available: https://resources.nvidia.com/
en-us-tensor-core/gtc22-whitepaper-hopper

[23] Advanced Micro Devices, Inc, “Amd cdna™
2 architecture,” AMD, Tech. Rep., 2021. [On-
line]. Available: https://www.amd.com/content/dam/amd/en/documents/
instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf

[24] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young,
N. Jouppi, and D. Patterson, “The design process for google’s training
chips: Tpuv2 and tpuv3,” IEEE Micro, vol. 41, no. 2, pp. 56–63, 2021.

[25] B. C. Lee and D. M. Brooks, “Illustrative design space studies with
microarchitectural regression models,” in 2007 IEEE 13th International
Symposium on High Performance Computer Architecture. IEEE, 2007,
pp. 340–351.

[26] D. Li, S. Yao, Y.-H. Liu, S. Wang, and X.-H. Sun, “Efficient design
space exploration via statistical sampling and adaboost learning,” in
Proceedings of the 53rd Annual Design Automation Conference, 2016,
pp. 1–6.

[27] K. Yu, J. Bi, and V. Tresp, “Active learning via transductive experimental
design,” in Proceedings of the 23rd international conference on Machine
learning, 2006, pp. 1081–1088.

[28] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in Proceedings of the 50th
annual design automation conference, 2013, pp. 1–7.

[29] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “Boom-explorer:
Risc-v boom microarchitecture design space exploration framework,” in
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2021, pp. 1–9.

[30] D. J. MacKay et al., “Introduction to gaussian processes,” NATO ASI
series F computer and systems sciences, vol. 168, pp. 133–166, 1998.

[31] Q. Sun, T. Chen, S. Liu, J. Chen, H. Yu, and B. Yu, “Correlated multi-
objective multi-fidelity optimization for hls directives design,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 27, no. 4, pp. 1–27, 2022.

[32] H. Geng, T. Chen, Y. Ma, B. Zhu, and B. Yu, “Ptpt: Physical design
tool parameter tuning via multi-objective bayesian optimization,” IEEE
transactions on computer-aided design of integrated circuits and systems,
vol. 42, no. 1, pp. 178–189, 2022.

[33] P. Xu, S. Zheng, Y. Ye, C. Bai, S. Xu, H. Geng, T.-Y. Ho, and
B. Yu, “Ranktuner: When design tool parameter tuning meets prefer-
ence bayesian optimization,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2024, pp. 1–7.

[34] S. Daulton, M. Balandat, and E. Bakshy, “Differentiable expected hyper-
volume improvement for parallel multi-objective bayesian optimization,”
Advances in Neural Information Processing Systems, vol. 33, pp. 9851–
9864, 2020.

[35] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fon-
seca, “Performance assessment of multiobjective optimizers: An analysis
and review,” IEEE Transactions on evolutionary computation, vol. 7,
no. 2, pp. 117–132, 2003.

[36] Azure public dataset: Azure llm inference trace 2023.
[Online]. Available: https://github.com/Azure/AzurePublicDataset/blob/
master/AzureLLMInferenceDataset2023.md

[37] Z. Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany, S.-Y.
Fang, J. Hu, Y. Chen, and E. C. Barboza, “Fist: A feature-importance
sampling and tree-based method for automatic design flow parameter
tuning,” in 2020 25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC). IEEE, 2020, pp. 19–25.

[38] M. Awad, R. Khanna, M. Awad, and R. Khanna, “Support vector regres-
sion,” Efficient learning machines: Theories, concepts, and applications
for engineers and system designers, pp. 67–80, 2015.

https://openai.com/chatgpt/overview/
https://github.com/features/copilot
https://blog.google/products/assistant/google-assistant-bard-generative-ai/
https://blog.google/products/assistant/google-assistant-bard-generative-ai/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md

