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The Rise of LLMs

LLMs are getting smarter, but also larger
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Challenges of Serving LLMs

For commercial applications, serving LLMs can be challenging:
¢ Requires substantial hardware resources
¢ Strict service-level objectives

End-to-end latency
Time to first token
Time between tokens
Throughput



LLM Inference Process Overview

¢ Prefill Phase: Process the entire input prompt to set up context.
¢ Decoding Phase: Generate output tokens autoregressively using KV cache.

¢ Prefill and Decoding pose different computation and memory requirements
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Motivation

PD Disaggregation: prefill and decoding are handled by sperate machines

Mismatches between hardware capabilities and P/D requirements still exist
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Comparison of NVIDIA A100 and H100 cluster with 8 GPUs on Llama-70b without batching. ‘PT”
denotes prefill phase throughput, and ‘DT’ denotes decoding phase throughput.



Research Objectives

Can we find a hardware configuration to achieve a better
performance—cost tradeoff?

@ Model the performance and cost of different hardware configurations
¢ A simulator

@ Find a systematic way to explore optimal hardware configurations

® A design space exploration algorithm
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LLM Serving System Modeling

¢ The system is divided into two distinct pools

® A dynamic scheduler reallocates servers between pools based on request load

® The architecture of the device models mainstream accelerators like GPUs and TPUs!
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"Hengrui Zhang et al. (2024). “LLMCompass: Enabling Efficient Hardware Design for Large
Language Model Inference”. In: ISCA. IEEE, pp. 1080-1096.



Design Space

[ Parameter | Notation | Value Range [ # ]
Server Count sc 1,2,3,4,5,6,7,8,9,10 10
Device Count dc 4,8,12,16 4

Link Count Per Device lc 6,12,18,24 4
Main Memory (GB) mm 40, 64, 80,96, 112, 128 6
Global Buffer (MB) gb 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 | 10

Core Count cc 72,96, 108, 132, 156, 180 6
Local Buffer (KB) b 64,128,192, 256, 320, 384, 448, 512 8
Lane Count lc 1,2,4,8 4
Array Height ah 16, 32, 64, 128 4
Vector Width VW 16, 32, 64, 128 4

Table: Design space of the prefill and decoding pools. The entire design space of an LLM
serving system is nearly 9 x 1014
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LLMShare Overview

A LLM serving simulator to get serving time and total cost.

A Bayesian optimization framework to find optimal serving system configurations
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Simulator Framework Overview

Inputs:

Serving system configuration (number of servers, device specs, etc.).
LLM information (e.g., number of layers, attention heads).
Request trace (arrival timings, input/output token sizes).

¢

Outputs: Serving time and total cost.
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( Design Space )

( Initial Configs )

( Serving Simulator )

(Bayesian Optimization)

( Sampled Config )

(_ Optimal Configs )

¢

Initialize with a set of sample designs.
Memory-Centric Initialization
Get simulated cost and serving time by the simulator
Fit a surrogate model
Deep Tree Kernel

Select the most promising design by optimizing the
acquisition function

Update the surrogate model using the selected design

14



Memory-Centric Initialization (MCI)

Algorithm 1 Memory-Centric Initialization
Input: « U: unsampled design space with n configurations;
« {: total number of initial configurations to select;
« u: number of groups used during sampling.
Output: D, with |D;| =1t > Selected initial designs
: Compute the total main memory size for each design:
2: for i =1 to n do

Memory capacity can largely affect
throughput and cost

— P D » d d d .
Ci =Ty @y g " Timm T Tise " Tide " Timm}

w

: Determine percentiles: P = {%l j=0,1,.. .,u} H
4: Compute bin edges for the percentiles of {c;}F::

B= {bJ = Percentile({ci }i=1,p5) |] =0,1,.. ~,U-}§

Divide the design space into groups
based on memory capacity

t
: Compute base sample count per group: g < {;J;

5

6: Compute remainder: 7 « ¢ mod u; Sample in each group using traditional
7% it Ds +— 0 sampling method like transductive

8: for j =1to u do | )

9o 9 =il <<t experimental design (TED)

10: if j <r then

11: si—q+1;

12: else

13: Sj ¢ q;

14: Select s; samples from G;: 8; = TED(G;, s;);

G 150 Da ¢ DaUS;;
~no 16: return D, @
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Surrogate Model

The Gaussian Process is used as the surrogate model

A GP is specified by its mean function m(x) and kernel function k(x, x):
fx) ~ GP (m(x), k(x,x)) . 1)

k(x,x") determines how function values vary when inputs changes

Kernel function is important for the expressiveness of the surrogate model



Deep Tree Kernel (DTK)

Each configuration is represented as a tree

The embedding of a node v is computed based on the embeddings of its child nodes

{ur,uz, ... ug, }
h, = ¢, (concat (hy,, by, ... hy, ) 3 65) )
The deep tree kernel is defined as
ke (xi, xj) =k (hg;stem7 hgy)stem) ) (©)

where x; is the feature vector of configuration i and k is a traditional kernel function
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Multi-Objective Bayesian Optimization

We want to optimize two conflicting objectives

Multi-Objective Bayesian Optimization is used

Expected Hypervolume Improvement (EHVI)? is adopted as our acquisition function

EHVI(x,) = / max (HV(P U {y}) — HV(P), 0) p(y | x., D) dy, 4
y

Search the candidate design x, that maximizes the EHVI:
X, = argmax EHVI(x). ")

2Samuel Daulton, Maximilian Balandat, and Eytan Bakshy (2020). “Differentiable expected
hypervolume improvement for parallel multi-objective Bayesian optimization”. In: NIPS 33,
pp. 9851-9864.
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Experimental Setup

Underlying LLM: GPT-3 175B.

Serving Trace: 2454 requests in 2 mins.
The distribution of token sizes is derived from a Microsoft Azure production
trace

Cost and Prefill/Decoding Time Simulation: LLMCompass®, which only has 5%
simulation error.

Request Scheduler: Splitwise*

Design Space: Subset of 1,055 configurations sampled from the whole design space.

DSE Process: Initialization with 10 samples and perform 20 optimization iterations.

*Hengrui Zhang et al. (2024). “LLMCompass: Enabling Efficient Hardware Design for Large
Language Model Inference”. In: ISCA. IEEE, pp. 1080-1096.

*Pratyush Patel et al. (2024). “Splitwise: Efficient generative 1lm inference using phase
splitting”. In: ISCA. IEEE, pp. 118-132.
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Verification of Motivation

Normalized Serving Time
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The effectiveness of LLM serving system design space exploration
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Results: Comparison of different algorithms

| Algorithms | Normalized ADRS  Hypervolume (10°) |

SVR® 0.1811 49593
DAC’16° 0.1718 49714
ASPDAC’207 0.1805 49513
ICCAD’218 0.2059 48134
LLMShare 0.1589 5.0552

*Mariette Awad et al. (2015). “Support vector regression”. In: Efficient learning machines:
Theories, concepts, and applications for engineers and system designers, pp. 67-80.

®Dandan Li et al. (2016). “Efficient design space exploration via statistical sampling and
AdaBoost learning”. In: DAC, pp. 1-6.

7Zhiyao Xie et al. (2020). “FIST: A feature-importance sampling and tree-based method for
automatic design flow parameter tuning”. In: ASP-DAC. IEEE, pp. 19-25.

Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM microarchitecture design space
exploration framework”. In: ICCAD. IEEE, pp. 1-9.




Results: Pareto Optimal Designs

Table: Normalized cost and request per second (RPS) of a Pareto optimal H100 cluster and
a Pareto optimal configuration found by LLMShare. The design parameters are in the
same order as Table 1.

] Hardware Config | Cost | RPS |
Prefill 7,8,18,80,50,132,256,4,16,32
H100-cluster | 1 4o | 68188050132.2564 1632 | 100 | 100
Prefill | 4,4,04,112,100,156,512,1,128,32
LLMShare | 1 ode | '6.12.18,80,70,72,448232.16 | 087 | 411




Ablation Study
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Ablation study on the effectiveness of DTK and MCI



Conclusion

Developed a simulator to model LLM serving system performance and cost.
Introduced a DSE framework with specialized techniques.

Significant improvements: 13% cost reduction and 4 x throughput gain.
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