LLMShare: Optimizing <u>LLM</u> Inference <u>Serving</u> with <u>Hardware Architecture</u> <u>Exploration</u>

Hongduo Liu¹, Chen Bai², Peng Xu¹, Lihao Yin³, Xianzhi Yu³, Hui-Ling Zhen³, Mingxuan Yuan³, Tsung-Yi Ho¹, Bei Yu¹

¹CUHK ²HKUST ³Huawei Technologies

Introduction

The Rise of LLMs

LLMs are getting smarter, but also larger

Amazon-owned
 Anthropic
 Apple
 Chinese
 Google
 Meta / Facebook
 Microsoft
 OpenAl
 Other

made with VIZ**sweet**

Challenges of Serving LLMs

For commercial applications, serving LLMs can be challenging:

- Requires substantial hardware resources
- Strict service-level objectives
 - End-to-end latency
 - Time to first token
 - Time between tokens
 - Throughput

LLM Inference Process Overview

- **Prefill Phase:** Process the entire input prompt to set up context.
- **Decoding Phase:** Generate output tokens autoregressively using KV cache.
- Prefill and Decoding pose different computation and memory requirements

Motivation

- PD Disaggregation: prefill and decoding are handled by sperate machines
- Mismatches between hardware capabilities and P/D requirements still exist

Comparison of NVIDIA A100 and H100 cluster with 8 GPUs on Llama-70b without batching. 'PT' denotes prefill phase throughput, and 'DT' denotes decoding phase throughput.

Can we find a hardware configuration to achieve a better performance-cost tradeoff?

1 Model the performance and cost of different hardware configurations

- A simulator
- 9 Find a systematic way to explore optimal hardware configurations
 - A design space exploration algorithm

`-------------

Algorithms

LLM Serving System Modeling

- The system is divided into two distinct pools
- A dynamic scheduler reallocates servers between pools based on request load
- The architecture of the device models mainstream accelerators like GPUs and TPUs¹

¹Hengrui Zhang et al. (2024). "LLMCompass: Enabling Efficient Hardware Design for Large Language Model Inference". In: *ISCA*. IEEE, pp. 1080–1096.

Parameter	Notation	Value Range	#
Server Count	SC	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	10
Device Count	dc	4, 8, 12, 16	4
Link Count Per Device	lc	6, 12, 18, 24	4
Main Memory (GB)	mm	40, 64, 80, 96, 112, 128	6
Global Buffer (MB)	gb	20, 30, 40, 50, 60, 70, 80, 90, 100, 110	10
Core Count	cc	72, 96, 108, 132, 156, 180	6
Local Buffer (KB)	lb	64, 128, 192, 256, 320, 384, 448, 512	8
Lane Count	lc	1, 2, 4, 8	4
Array Height	ah	16, 32, 64, 128	4
Vector Width	vw	16, 32, 64, 128	4

Table: Design space of the prefill and decoding pools. The entire design space of an LLM serving system is nearly 9×10^{14} .

LLMShare Overview

- A LLM serving simulator to get serving time and total cost.
- A Bayesian optimization framework to find optimal serving system configurations

The overview of LLMShare.

Simulator Framework Overview

- Inputs:
 - Serving system configuration (number of servers, device specs, etc.).
 - LLM information (e.g., number of layers, attention heads).
 - Request trace (arrival timings, input/output token sizes).
- Outputs: Serving time and total cost.

Design Space Exploration Framework

1) Initialize with a set of sample designs.

- Memory-Centric Initialization
- 2 Get simulated cost and serving time by the simulator
- 8 Fit a surrogate model
 - Deep Tree Kernel
- G Select the most promising design by optimizing the acquisition function
- Output the surrogate model using the selected design

Memory-Centric Initialization (MCI)

Algorithm 1 Memory-Centric Initialization

Input: • U: unsampled design space with n configurations;

• t: total number of initial configurations to select;

• u: number of groups used during sampling. **Output:** \mathcal{D}_r with $|\mathcal{D}_r| = t$ Selected initial designs 1: Compute the total main memory size for each design: 2: for i = 1 to n do $c_i = \boldsymbol{x}_{i,sc}^p \cdot \boldsymbol{x}_{i,dc}^p \cdot \boldsymbol{x}_{i,mm}^p + \boldsymbol{x}_{i,sc}^d \cdot \boldsymbol{x}_{i,dc}^d \cdot \boldsymbol{x}_{i,mm}^d;$

3: Determine percentiles: $P = \left\{ \frac{100 \times j}{u} \mid j = 0, 1, \dots, u \right\};$ 4: Compute bin edges for the percentiles of $\{c_i\}_{i=1}^{n}$: $B = \left\{ b_j = \operatorname{Percentile}(\{c_i\}_{i=1}^n, p_j) \, \middle| \, j = 0, 1, \dots, u \right\};$ 5: Compute base sample count per group: $q \leftarrow \left| \frac{t}{u} \right|$; 6: Compute remainder: $r \leftarrow t \mod u$; 7: Initialize $\mathcal{D}_{\pi} \leftarrow \emptyset$: $(i, s_i);$

- Divide the design space into groups based on memory capacity
- Sample in each group using traditional sampling method like transductive experimental design (TED)

8: for
$$j = 1$$
 to u do
9: $\mathcal{G}_j = \left\{i \mid b_{j-1} \le c_i < b_j\right\};$
0: if $j \le r$ then
1: $s_j \leftarrow q + 1;$
2: else
3: $s_j \leftarrow q;$
4: Select s_j samples from $\mathcal{G}_j: \mathcal{S}_j = \text{TED}(\mathcal{G}_j;$
5: $\mathcal{D}_x \leftarrow \mathcal{D}_x \cup \mathcal{S}_j;$
6: return \mathcal{D}_x

15

- The Gaussian Process is used as the surrogate model
- A GP is specified by its mean function m(x) and kernel function k(x, x'):

$$f(\mathbf{x}) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right).$$
(1)

- k(x, x') determines how function values vary when inputs changes
- Kernel function is important for the expressiveness of the surrogate model

Deep Tree Kernel (DTK)

- Each configuration is represented as a tree
- The embedding of a node v is computed based on the embeddings of its child nodes $\{u_1, u_2, \ldots, u_{k_v}\}$

$$\boldsymbol{h}_{v} = \phi_{v} \left(\operatorname{concat} \left(\boldsymbol{h}_{u_{1}}, \boldsymbol{h}_{u_{2}}, \ldots, \boldsymbol{h}_{u_{k_{v}}} \right); \theta_{v} \right),$$
(2)

• The deep tree kernel is defined as

$$k_t(\boldsymbol{x}_i, \boldsymbol{x}_j) = k\left(\boldsymbol{h}_{\text{system}}^{(i)}, \boldsymbol{h}_{\text{system}}^{(j)}\right), \qquad (3)$$

where x_i is the feature vector of configuration *i* and *k* is a traditional kernel function

Multi-Objective Bayesian Optimization

- We want to optimize two conflicting objectives
 - Multi-Objective Bayesian Optimization is used
- Expected Hypervolume Improvement (EHVI)² is adopted as our acquisition function

$$EHVI(\mathbf{x}_*) = \int_{\mathbf{y}} \max \left(HV(\mathcal{P} \cup \{\mathbf{y}\}) - HV(\mathcal{P}), 0 \right) p(\mathbf{y} \mid \mathbf{x}_*, \mathcal{D}) \, d\mathbf{y}, \tag{4}$$

• Search the candidate design **x**_{*} that maximizes the EHVI:

$$\boldsymbol{x}_* = \arg \max_{\boldsymbol{x} \in \mathcal{X}} \mathrm{EHVI}(\boldsymbol{x}). \tag{5}$$

²Samuel Daulton, Maximilian Balandat, and Eytan Bakshy (2020). "Differentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization". In: *NIPS* 33, pp. 9851–9864.

`-------------

Experimental Results

Experimental Setup

- Underlying LLM: GPT-3 175B.
- Serving Trace: 2454 requests in 2 mins.
 - The distribution of token sizes is derived from a Microsoft Azure production trace
- **Cost and Prefill/Decoding Time Simulation:** LLMCompass³, which only has 5% simulation error.
- **Request Scheduler:** Splitwise⁴
- **Design Space:** Subset of 1,055 configurations sampled from the whole design space.
- DSE Process: Initialization with 10 samples and perform 20 optimization iterations.

³Hengrui Zhang et al. (2024). "LLMCompass: Enabling Efficient Hardware Design for Large Language Model Inference". In: *ISCA*. IEEE, pp. 1080–1096.

⁴Pratyush Patel et al. (2024). "Splitwise: Efficient generative llm inference using phase splitting". In: *ISCA*. IEEE, pp. 118–132.

Verification of Motivation

The effectiveness of LLM serving system design space exploration

Results: Comparison of different algorithms

Algorithms	Normalized ADRS	Hypervolume (10 ⁸)
SVR ⁵	0.1811	4.9593
DAC'16 ⁶	0.1718	4.9714
ASPDAC'20 ⁷	0.1805	4.9513
ICCAD'21 ⁸	0.2059	4.8134
LLMShare	0.1589	5.0552

⁵**Mariette Awad et al. (2015). "Support vector regression".** In: *Efficient learning machines: Theories, concepts, and applications for engineers and system designers,* pp. 67–80.

⁶Dandan Li et al. (2016). "Efficient design space exploration via statistical sampling and AdaBoost learning". In: *DAC*, pp. 1–6.

⁷Zhiyao Xie et al. (2020). "FIST: A feature-importance sampling and tree-based method for automatic design flow parameter tuning". In: *ASP-DAC*. IEEE, pp. 19–25.

⁸Chen Bai et al. (2021). "BOOM-Explorer: RISC-V BOOM microarchitecture design space exploration framework". In: *ICCAD*. IEEE, pp. 1–9.

Table: Normalized cost and request per second (RPS) of a Pareto optimal H100 cluster and a Pareto optimal configuration found by LLMShare. The design parameters are in the same order as Table 1.

Hardware Config			Cost	RPS
H100-cluster	Prefill Decode	7,8,18,80,50,132,256,4,16,32 6,8,18,80,50,132,256,4,16,32	1.00	1.00
LLMShare	Prefill Decode	4,4,24,112,100,156,512,1,128,32 6,12,18,80,70,72,448,2,32,16	0.87	4.11

Ablation Study

Ablation study on the effectiveness of DTK and MCI

Conclusion

- Developed a simulator to model LLM serving system performance and cost.
- Introduced a DSE framework with specialized techniques.
- Significant improvements: 13% cost reduction and $4 \times$ throughput gain.

