LLMShare: OptL\iZiwg—l:l:M—hmi Serving

with Hardware Architecture Exploration

Hongduo Liu!, Chen Bai?, Peng Xu!, LihaoYin®, Xianzhi Yu?,
1i=1] en’ Mingxuan Yuan3, Tsung-Yi Ho!, BeiYu!

ICUHK ; 2HKUST| *Huawei Technologies

TO SYSTEMS

SPONSOREDBY GEBA ?2 a

Outline

@ Introduction

@ Algorithms

@ Experimental Results

Introduction

TO SYSTEMS

é

SPONSOREDBY GEBA ?gﬁa

The Rise of LLMs

LLMs are getting smarter, but also larger

@ Amazon-owned @ Anthropic @ Apple @ Chinese Google @Meta / Facebook @ Microsoft @ OpenAl @ Other

- BlenderBorl @ o o
Bors PLATOXL
billion parameters s

womzo
—

~ @ ’

Gophe
* Exaone ;
o ® G
PanGu-Alpha -
st e o

- o 20 Emie Bot il

o —0 @~ @
s o s @ 7
: Lon N ’Q ..F"v rasy

d Golackca IDEFICS
. Yo

=
S e B e g
Facon LM
GPT-NeoX AlexaTi -
. ° o
/ ©0mGPT 90 44 Doly20 Orazes
Pr2 . B ve 08 o
§ o e M Apaca B MoE
BERT 5 Megatron-11B
N
2 23 2024 e

pre-2020 2020 2

DavidMcCandless, Tom Evans, Paul Barton rce:news reports, LifeAvchitect

Information is Beautiful// UPDATED 20th Mar 24 * = parameters undisclosed // see the data
vaoe i ViZsweet.

Challenges of Serving LLMs

For commercial applications, serving LLMs can be challenging:
¢ Requires substantial hardware resources
¢ Strict service-level objectives

End-to-end latency
Time to first token
Time between tokens
Throughput

LLM Inference Process Overview

¢ Prefill Phase: Process the entire input prompt to set up context.
¢ Decoding Phase: Generate output tokens autoregressively using KV cache.

¢ Prefill and Decoding pose different computation and memory requirements

. Prefill Stage \ ‘ Decoding Stage

|~ OutputToken “I“

| Y KV Cache

Softm: R q

: o [A “Artificial” “Intelligence” <EOS>
| .

I ((Feed-forward | ! A 4

| Network |

! I

: Tl I LLM LLM LLM

| Attention |
|

| . . X

| (Tokenand : Ist iter 2nd iter 3rd iter

| Positional |

| Embedding | \

I\ Input Sequence 1,"| “Alis short for” || “Artificial” “Intelligence” <EOS>!

_______ P

Motivation

PD Disaggregation: prefill and decoding are handled by sperate machines

Mismatches between hardware capabilities and P/D requirements still exist

3.43

= C1A100==H100
3 | .
2.16
s 1.85 |
1.43
1 11 1 1 1
1] H |
L TR [
TFLOPS HBM Size Cost PT DT

Comparison of NVIDIA A100 and H100 cluster with 8 GPUs on Llama-70b without batching. ‘PT”
denotes prefill phase throughput, and ‘DT’ denotes decoding phase throughput.

Research Objectives

Can we find a hardware configuration to achieve a better
performance—cost tradeoff?

@ Model the performance and cost of different hardware configurations
¢ A simulator

@ Find a systematic way to explore optimal hardware configurations

® A design space exploration algorithm

AY

Algorithms

TO SYSTEMS

é

SPONSOREDBY GEBA ?gﬁa

LLM Serving System Modeling

¢ The system is divided into two distinct pools

® A dynamic scheduler reallocates servers between pools based on request load

® The architecture of the device models mainstream accelerators like GPUs and TPUs!

Prefill Pool

Scheduler
.| Server

KV Cache
Transfer
v AV4

Server
:

Requests ®
Scheduler | Router

—
Requests
—

Server

device | | device

Decoding Pool
Scheduler

) inter-device link)
device | | device

Device

J

Core

Core

Lane

Lane

Lane

Lane

[Vector Unit |

[Vector Unit_|

[Vector Unit |

[Vector Unit |

[systolic Array)

[systolic Array |

[systolic Array)

[systolic Array)

H

[Local Buffer]

(

Local Buffer

)

T
L2

Main Memory ||
(=

Global Buffer

)

e

"Hengrui Zhang et al. (2024). “LLMCompass: Enabling Efficient Hardware Design for Large
Language Model Inference”. In: ISCA. IEEE, pp. 1080-1096.

Design Space

[Parameter | Notation | Value Range [#]
Server Count sc 1,2,3,4,5,6,7,8,9,10 10
Device Count dc 4,8,12,16 4

Link Count Per Device lc 6,12,18,24 4
Main Memory (GB) mm 40, 64, 80,96, 112, 128 6
Global Buffer (MB) gb 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 | 10

Core Count cc 72,96, 108, 132, 156, 180 6
Local Buffer (KB) b 64,128,192, 256, 320, 384, 448, 512 8
Lane Count lc 1,2,4,8 4
Array Height ah 16, 32, 64, 128 4
Vector Width VW 16, 32, 64, 128 4

Table: Design space of the prefill and decoding pools. The entire design space of an LLM
serving system is nearly 9 x 1014

¢

LLMShare Overview

A LLM serving simulator to get serving time and total cost.

A Bayesian optimization framework to find optimal serving system configurations

4
Design Space I

e $
/ +(System Config}—{Server Info C
Initial Configs), ! ¥
.

Serving Simulator

Bayesian Optimization

‘[LLMInfo ey
: @ [Batching Info] (Schedule Info)

e Request
\ kel
\v

Serving
Sampled Config

Time

Optimal Configs) % ;] LLM Serving Simulator
: Q The overview of LLMShare.
‘Fo b,

)

h

Simulator Framework Overview

Inputs:

Serving system configuration (number of servers, device specs, etc.).
LLM information (e.g., number of layers, attention heads).
Request trace (arrival timings, input/output token sizes).

¢

Outputs: Serving time and total cost.

[
[System Config}—{Server Info)

Server Cost

Prefill Time
LLM Info S].‘a“’lncy H
mator

@ [Batching Info] (Schedule Info
Request
e

i

Cost
Simulator

Serving
Time

(Design Space)

(Initial Configs)

(Serving Simulator)

(Bayesian Optimization)

(Sampled Config)

(_ Optimal Configs)

¢

Initialize with a set of sample designs.
Memory-Centric Initialization
Get simulated cost and serving time by the simulator
Fit a surrogate model
Deep Tree Kernel

Select the most promising design by optimizing the
acquisition function

Update the surrogate model using the selected design

14

Memory-Centric Initialization (MCI)

Algorithm 1 Memory-Centric Initialization
Input: « U: unsampled design space with n configurations;
« {: total number of initial configurations to select;
« u: number of groups used during sampling.
Output: D, with |D;| =1t > Selected initial designs
: Compute the total main memory size for each design:
2: for i =1 to n do

Memory capacity can largely affect
throughput and cost

— P D » d d d .
Ci =Ty @y g " Timm T Tise " Tide " Timm}

w

: Determine percentiles: P = {%l j=0,1,.. .,u} H
4: Compute bin edges for the percentiles of {c;}F::

B= {bJ = Percentile({ci }i=1,p5) |] =0,1,.. ~,U-}§

Divide the design space into groups
based on memory capacity

t
: Compute base sample count per group: g < {;J;

5

6: Compute remainder: 7 « ¢ mod u; Sample in each group using traditional
7% it Ds +— 0 sampling method like transductive

8: for j =1to u do |)

9o 9 =il <<t experimental design (TED)

10: if j <r then

11: si—q+1;

12: else

13: Sj ¢ q;

14: Select s; samples from G;: 8; = TED(G;, s;);

G 150 Da ¢ DaUS;;
~no 16: return D, @

v

®

Ao

Surrogate Model

The Gaussian Process is used as the surrogate model

A GP is specified by its mean function m(x) and kernel function k(x, x):
fx) ~ GP (m(x), k(x,x)) . 1)

k(x,x") determines how function values vary when inputs changes

Kernel function is important for the expressiveness of the surrogate model

Deep Tree Kernel (DTK)

Each configuration is represented as a tree

The embedding of a node v is computed based on the embeddings of its child nodes

{ur,uz, ... ug, }
h, = ¢, (concat (hy,, by, ... hy,) 3 65))
The deep tree kernel is defined as
ke (xi, xj) =k (hg;stem7 hgy)stem)) (©)

where x; is the feature vector of configuration i and k is a traditional kernel function

decode pool

global buffer
system SCRVC{COUNt local buffer size
prefill pool dev1ce count Soreleoling vector width
server device core lane

G array height
N link count main memory size lane count @

Multi-Objective Bayesian Optimization

We want to optimize two conflicting objectives

Multi-Objective Bayesian Optimization is used

Expected Hypervolume Improvement (EHVI)? is adopted as our acquisition function

EHVI(x,) = / max (HV(P U {y}) — HV(P), 0) p(y | x., D) dy, 4
y

Search the candidate design x, that maximizes the EHVI:
X, = argmax EHVI(x). ")

2Samuel Daulton, Maximilian Balandat, and Eytan Bakshy (2020). “Differentiable expected
hypervolume improvement for parallel multi-objective Bayesian optimization”. In: NIPS 33,
pp. 9851-9864.

Experimental
Results

¢

TO SYSTEMS

. Si
SPONSOREDBY GEEM@A @]aa

Experimental Setup

Underlying LLM: GPT-3 175B.

Serving Trace: 2454 requests in 2 mins.
The distribution of token sizes is derived from a Microsoft Azure production
trace

Cost and Prefill/Decoding Time Simulation: LLMCompass®, which only has 5%
simulation error.

Request Scheduler: Splitwise*

Design Space: Subset of 1,055 configurations sampled from the whole design space.

DSE Process: Initialization with 10 samples and perform 20 optimization iterations.

*Hengrui Zhang et al. (2024). “LLMCompass: Enabling Efficient Hardware Design for Large
Language Model Inference”. In: ISCA. IEEE, pp. 1080-1096.

*Pratyush Patel et al. (2024). “Splitwise: Efficient generative 1lm inference using phase
splitting”. In: ISCA. IEEE, pp. 118-132.

20

Verification of Motivation

Normalized Serving Time

1
‘g Design Space
0.8 R |~ A100-A100
% 4 »A100-H100
06 | N B OHlOO‘AlOO
% ﬁ % «H100-H100
0.4 3 § % % .
0.2+ § % ‘ *
§ 7
0 ! ! ! ! 9
0 0.2 0.4 0.6 0.8 1

Normalized Cost

The effectiveness of LLM serving system design space exploration

(2)

Results: Comparison of different algorithms

| Algorithms | Normalized ADRS Hypervolume (10°) |

SVR® 0.1811 49593
DAC’16° 0.1718 49714
ASPDAC’207 0.1805 49513
ICCAD’218 0.2059 48134
LLMShare 0.1589 5.0552

*Mariette Awad et al. (2015). “Support vector regression”. In: Efficient learning machines:
Theories, concepts, and applications for engineers and system designers, pp. 67-80.

®Dandan Li et al. (2016). “Efficient design space exploration via statistical sampling and
AdaBoost learning”. In: DAC, pp. 1-6.

7Zhiyao Xie et al. (2020). “FIST: A feature-importance sampling and tree-based method for
automatic design flow parameter tuning”. In: ASP-DAC. IEEE, pp. 19-25.

Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM microarchitecture design space
exploration framework”. In: ICCAD. IEEE, pp. 1-9.

Results: Pareto Optimal Designs

Table: Normalized cost and request per second (RPS) of a Pareto optimal H100 cluster and
a Pareto optimal configuration found by LLMShare. The design parameters are in the
same order as Table 1.

] Hardware Config | Cost | RPS |
Prefill 7,8,18,80,50,132,256,4,16,32
H100-cluster | 1 4o | 68188050132.2564 1632 | 100 | 100
Prefill | 4,4,04,112,100,156,512,1,128,32
LLMShare | 1 ode | '6.12.18,80,70,72,448232.16 | 087 | 411

Ablation Study

0.3 - LLMShare w/o MCI
—— LLMShare w/o DTK
@ 0.25 - -| — LLMShare
A
< 02| .
0.15 [! ! ! L

0 5 10 15 20
Exploration Steps

Ablation study on the effectiveness of DTK and MCI

Conclusion

Developed a simulator to model LLM serving system performance and cost.
Introduced a DSE framework with specialized techniques.

Significant improvements: 13% cost reduction and 4 x throughput gain.

Al Security

Systems

EDA

Design Lis

TO SYSTEMS

SPONSORED BY

	Introduction
	Algorithms
	Experimental Results

