
Divergent Thoughts toward One Goal: LLM-based Multi-Agent Collaboration
System for Electronic Design Automation

HaoyuanWu♠ Haisheng Zheng♡ Zhuolun He♠,♣ Bei Yu♠

♠ The Chinese University of Hong Kong, Hong Kong SAR ♡ Shanghai Artificial Intelligent Laboratory, China ♣ ChatEDA Tech, China

Introduction

𝐁𝐚𝐜𝐤𝐠𝐫𝐨𝐮𝐧𝐝:
Electronic design automation (EDA) is indispensable for the design of inte-
grated circuits (ICs). EDA tools are integrated into a complex design flow and
utilize programming interfaces to control the design process. EDA platforms
such as OpenROAD and iEDA, consist of complex procedures with various
configurations.
𝐂𝐡𝐚𝐥𝐥𝐞𝐧𝐠𝐞:

Although LLMs excel at understanding natural language, they lack
specialized knowledge of EDA tool usage.
Errors may occur in intermediate steps during a long-chain tool-calling
process, introducing instability into the EDA flow automation.

𝐂𝐨𝐧𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧:

We develop the ChipLlama-powered agent, collaborating with few-shot
CoT prompts, to develop the performance and portability of the
single-agent system;
Propose EDAid, a multi-agent system that collaborates multiple agents
including divergent-thoughts agents and a decision-making agent for EDA
flow automation;
Perform extensive evaluations, which demonstrate the SOTA performance
of ChipLlama models, the effectiveness of the few-shot CoT prompting, and
the superior performance of our EDAid for EDA flow automation.

ChipLlama-powered Agent

def floorplan(
 self,
 core_utilization: float = None,
 core_aspect_ratio: float = None,
 core_margins: int = None,
 macro_place_halo: int = None,
 macro_place_channel: int = None,
):
Run floorplan.

def placement(
 self,
 density: float = 0.7
):
Run placement.

Task Planning

Script Generation
EDA API Document

Planning Steps

EDA Script

CoT Prompt

EDA Task
ChipLlama

Figure 1. Overview of the ChipLlama-powered agent for task planning and EDA script
generation.

System:
You are an AI assistant, capable of
utilizing numerous tools and functions.
User will give you a task. Your job is to
generate a Python script to complete the
task using the provided tools and
functions. While performing the task
think step-by-step and justify your
steps. You have access to the following
tools and functions:
<<<APIs Document>>>

User: <<<EDA Task>>>
Assistant:
<<<Task Planning and Script Generation>>>

EDAInstruct

MathInstruct

CodeInstruct

ChipLlama
(8B, 70B)

Instruction
Fine-Tuning

Llama3 Models
(8B, 70B)

Figure 2. Overview of hybrid instruction tuning.

System: You are an AI assistant, capable of utilizing numerous tools
and functions. User will give you a task. Your job is to generate a Python
script to complete the task using the provided tools and functions. While
performing the task think step-by-step and justify your steps. You have
access to the following tools and functions:
<<<APIs Document>>>

User: <<<EDA Task 1>>>
Assistant: <<<Solution 1>>>

User: <<<EDA Task 2>>>
Assistant: <<<Solution 2>>>

User:
For the "aes" circuit, I want to run the steps from setup to detailed
routing on the platform "asap7"?
Let's first describe and explain what the task is asking. Then, analyze how
to complete the task step by step using the provided tools and functions.
Finally, generate the Python script according to your analysis.
Assistant:

Figure 3. Few-shot CoT prompt template utilized in ChipLlama-powered agent.

Multi-Agent Collaboration System

EDA Script B
(correct)

stepstep
….

step
(wrong)

step
(wrong)

step
….

step
(wrong)

stepstep
….

….
step

EDA Script A
(wrong)

EDA Script C
(wrong)

EDA Script B
(correct)

EDA Flow
Automation

stepstep
….

step
(wrong) EDA Script

(wrong)

EDA Tools

ERRRTL

ChipLlama

Divergent-Thoughts Agent Decision-Making Agent

EDA Tools

GDSIIRTL

EDA Flow Automation

Multi-Agent Collaboration System

ChipLlama

Divergent
Thoughts

Single
Thought

Decision Making

Figure 4. Overview of EDAid, the multi-agent collaboration system. Given an EDA task,
multiple agents (including divergent-thoughts agents (role 𝑅0) and a decision-making agent
(role 𝑅1)) collaborate to generate the EDA script. Finally, the generated EDA script will
automate the EDA flow interfacing the EDA tools via APIs.

EDA Tool Usage Demo 1:
I would like to perform detailed
routing on the …
To accomplish detailed routing,
execute the following steps: …
<Script>
def perform_detail_routing():

EDA Tool Usage Demo 2:
Help me to execute detail
routing …
The user requires the execution
of detail routing on…
<Script>
def execute_detail_routing():

EDA Tool Usage Demo K:
Prepare a Python script to carry
out global routing …
The user needs to execute global
routing…
<Script>
def perform_global_routing():

…

EDA Tool Usage
Demo Database

EDA Task

Relevant Demos

Demo Group A

Few-shot
CoT prompt

Demo Group B

Retrieval

Few-shot CoT
Prompt Groups

Mapping

EDA Script A

Planning Steps A

System: You are an AI assistant, capable of
utilizing numerous tools and functions.
<<<System Prompt>>>
User: EDA Task: <<<EDA Task>>>
EDA Script: <<<EDA Script>>>
Assistant: <<<Analysis>>>.
The answer is: yes/no

EDA Script C

Planning Steps C

EDA Script B

Planning Steps B

yes Token
Probability

0.82

0.32

0.41

Decision Making

KV Cache

EDA Script
Planning Steps

Divergent Thoughts

EDA Script B
(correct)

Figure 5. Divergent-thoughts agents (role 𝑅0) and decision-making agent (role 𝑅1)).

Evaluation Benchmarks

We utilize a comprehensive evaluation benchmark ChatEDA-bench and iEDA-
bench, both of which comprise 50 distinct tasks, to evaluate the performance
of our EDAid and ChipLlama models. ChatEDA-bench and iEDA-bench use
the accuracy of the generated EDA script as the evaluation metric.
Both benchmarks are comprehensive evaluation benchmarks comprising 50 dis-
tinct tasks including three distinct categories: simple flow calls (30%), complex
flow calls (30%), and parameter flow calls (40%).

Simple flow call requires the successful execution of the whole process,
including evaluation.
Complex flow call requires a higher proficiency in EDA tool usage,
including traversing parameters.
Parameter flow call requires agent systems to provide a parameter-tuning
solution.

Main Experiment Results

System Powered LLM ChatEDA-bench iEDA-bench

ChatEDA GPT-3.5♢ 28% 30%
ChatEDA GPT-4♢ 62% 70%
ChatEDA AutoMage-70B♢ 74% -
ChatEDA AutoMage2-70B♢ 82% -

EDAid ChipLlama-8B 88% 84%
EDAid ChipLlama-70B 100% 100%

♢ The accuracy values of GPT-3.5, GPT-4 and AutoMage models on the ChatEDA-bench are directly cited from the ChatEDA.
Moreover, we can only evaluate AutoMage models on the ChatEDA-bench due to the unavailability of closed-source models.

Table 1. The main results of EDA script generation on ChatEDA-bench and iEDA-bench.

Ablation Studies

System Base LLM Hybrid ChatEDA-bench iEDA-benchInstruction Tuning

Single-Agent Llama3-8B 7 78% 50%
Single-Agent 3 78% 76%

Single-Agent Llama3-70B 7 88% 74%
Single-Agent 3 94% 96%

Table 2. Ablation study on hybrid instruction tuning.

System Powered LLM ChatEDA-bench iEDA-bench

zero-shot few-shot zero-shot few-shot

Single-Agent GPT-3.5 28% 56% 30% 50%
Single-Agent GPT-4 62% 82% 70% 84%

Single-Agent ChipLlama-8B 74% 78% 64% 76%
Single-Agent ChipLlama-70B 90% 94% 90% 96%

Table 3. Ablation study on few-shot prompting and powered LLMs of the single-agent system.

System Powered LLM ChatEDA-bench iEDA-bench

Single-Agent ChipLlama-8B 78% 76%
Multi-Agent 88% 84%

Single-Agent ChipLlama-70B 94% 96%
Multi-Agent 100% 100%

Table 4. Ablation study on single/multi-agent systems powered by different LLMs.

Case Study

EDA Task
Can you help me check whether the provided script can complete the task and
provide the reason.
Here is the task:
I want to perform cts for my design asjdk on nangate45.
Here is the script:
def perform_cts(tns_end_percent):
 eda = chateda()
 # Setup EDA tool
 eda.setup(design_name="asjdk", platform="nangate45")
 # Run logic synthesis
 eda.run_synthesis()
 eda.floorplan()
 # Run placement
 eda.placement(tns_end_percent=tns_end_percent)
 # Run CTS
 eda.cts()
perform_cts(10)
If the script can't complete the task, please provide a script that can complete
the task.

Task Planning Pathway

EDA Script Generation

The task is to perform Clock Tree Synthesis (CTS) for the design named "asjdk" on
the "nangate45" platform. The provided script attempts to do this, but it has an
error in the placement step. The "placement" method does not have a parameter
called "tns_end_percent". The "tns_end_percent" is actually a parameter for the
"cts" method.
Here's the correct way to complete the task:
1. Setup the EDA tool with the design name and platform.
2. Run logic synthesis.
3. Perform floorplanning.
4. Run placement.
5. Run CTS with the desired "tns_end_percent".

def perform_cts(tns_end_percent):
 eda = chateda()
 # Setup EDA tool
 eda.setup(design_name="asjdk", platform="nangate45")
 # Run logic synthesis
 eda.run_synthesis()
 # Run floorplan
 eda.floorplan()
 # Run placement
 eda.placement()
 # Run CTS
 eda.cts(tns_end_percent=tns_end_percent)
perform_cts(10)

Nations of the Americas Chapter of the Association for Computational Linguistics, Albuquerque, NewMexico, Apr. 29–May 4, 2025.

