

Circuit Representation Learning with Masked Gate Modeling and Verilog-AIG Alignment

Haoyuan Wu 1* Haisheng Zheng 2* Yuan Pu 1,3 Bei Yu 1

 1 The Chinese University of Hong Kong 2 Shanghai Artificial Intelligence Laboratory 3 ChatEDA Tech

Introduction

Background:

- Circuits can be formulated as directed acyclic graphs and GNNs can be widely used to learn the characteristics of circuits.
- Self-supervised learning is suitable for circuit representation learning considering that unlabeled circuit data is available and abundant.

Challenge:

Traditional masked graph modeling paradigm can not be applied directly to circuit representation learning which follows strict logical equivalence. In conventional applications, such as social or molecular graphs, masking nodes can provide a unique solution for reconstruction. However, when gates are masked in a circuit, their reconstruction will admit various solutions.

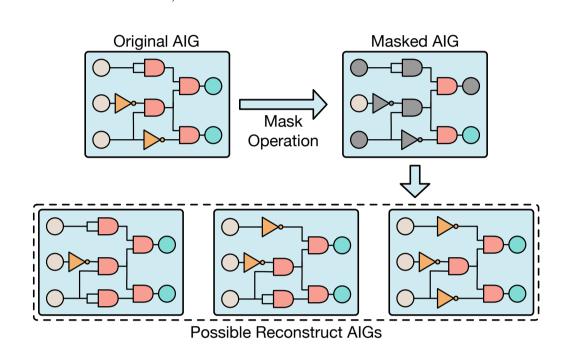


Figure 1. Possible reconstruct AIGs for masked AIG. If circuit gates are masked, there are various logic-correct solutions for reconstruction.

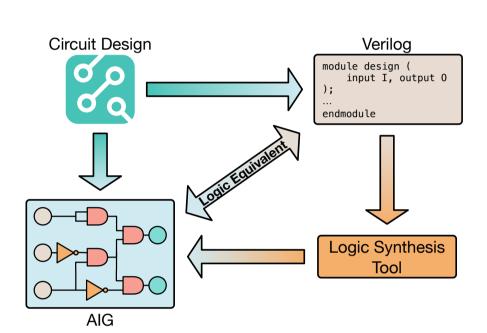


Figure 2. Logic equivalence between Verilog code and AIG. For a circuit design, AIG can be translated from Verilog code.

Contribution:

- Propose masked gate modeling (MGM) for circuit representation learning, enabling GNNs to extract circuit representations with fine-grained structural information.
- Develop the Verilog-AIG alignment (VGA), which employs LLMs as teachers to guide GNNs to extract circuit representations with abstract circuit functions through equivalent AIGs and Verilog codes alignment.
- Conduct extensive evaluations and show superior performance on various logic synthesis tasks including quality of result (QoR) and logic equivalence identification compared to previous state-of-the-art (SOTA) methods.

AIG Autoencoder

Let $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ represent an AIG, where \mathcal{V} denotes the set of N nodes, $v_i \in \mathcal{V}$, categorized into four types: PI, PO, AND, and NOT gates, each labeled by $c_i \in \mathcal{C}, i \in \{1, 2, 3, 4\}$. $\mathcal{A} \in \{0, 1\}^{N \times N}$ is the adjacency matrix, where $\mathcal{A}_{i,j} = 1$ represents an existing edge from v_i to v_j .

For an AIG autoencoder, a GNN encoder, denoted by g_E , encodes \mathcal{G} into a latent space representation $\vec{X} \in \mathbb{R}^{N \times d}$, where d represents the dimension of this representation. The encoding process of an AIG can be formulated as:

$$\vec{X} = g_E(\mathcal{V}, \mathcal{A}). \tag{1}$$

Concurrently, a GNN decoder, g_D , endeavors to reconstruct the AIG $\mathcal G$ from $\vec X$ according to:

$$(\tilde{\vec{X}}, \mathcal{A}) = \tilde{\mathcal{G}} = g_D(\vec{X}, \mathcal{A}), \tag{2}$$

where $\tilde{\mathcal{G}}$ denotes the reconstructed graph.

Masked Gate Modeling

We uniformly sample a subset of gates $\mathcal{V}_{\text{mgm}} \subset \mathcal{V}$ without replacement and replace the remaining nodes with the mask token [MASK], which can be represented by a learnable vector $\vec{m} \in \mathbb{R}^d$. Consequently, the masked node representation $\bar{\vec{x}}_i \in \bar{\vec{X}}_{\text{mgm}}$ for each node v_i is given by:

$$\bar{\vec{x}}_i = \begin{cases} \vec{x}_i, & \text{if } v_i \in \mathcal{V}_{\text{mgm}}; \\ \vec{m}, & \text{if } v_i \notin \mathcal{V}_{\text{mgm}}. \end{cases}$$
 (3)

The $ar{\vec{X}}_{ ext{mgm}}$ is then fed into the decoder g_D to reconstruct the $\mathcal G$

Verilog-AIG Alignment

We uniformly sample a subset of gates $\mathcal{V}_{\text{vga}} \subset \mathcal{V}$ without replacement and replace the node types of remaining nodes with c_m , which represents these nodes are masked in the original AIG. Consequently, for $v_i \in \overline{\mathcal{V}}$ of the masked AIG, the node type c_i can be defined as:

$$c_{i} = \begin{cases} c_{i}, & \text{if } v_{i} \in \mathcal{V}_{\text{vga}}; \\ c_{m}, & \text{if } v_{i} \notin \mathcal{V}_{\text{vga}}. \end{cases}$$

$$(4)$$

The masked AIG $\bar{\mathcal{G}} = (\bar{\mathcal{V}}, \mathcal{A})$ is fed into the encoder g_E to generate the encoded masked AIG representation $\bar{\vec{X}}_{\text{vga}}$. The reconstruction of \mathcal{G} from $\bar{\vec{X}}_{\text{vga}}$ is constrained by equivalent Verilog code to ensure strict logical equivalence.

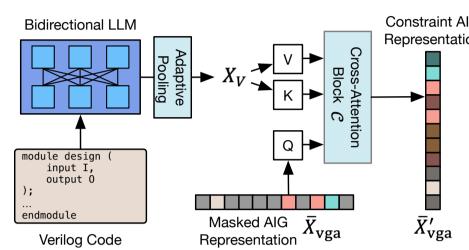


Figure 3. The constraint block for VGA

We feed the \vec{X}_{vga} and Verilog code representation \vec{X}_V into a cross-attention block \mathcal{C} to perform alignment between the masked AIG and Verilog code, with \vec{X}_{vga} being projected to query $Q \in \mathbb{R}^{N \times d}$ and \vec{X}_V being projected to key $K \in \mathbb{R}^{M \times d}$ and value $V \in \mathbb{R}^{M \times d}$.

AIG Reconstruction

- For gate type prediction, \vec{X} is transformed by a mapping function $f_{\text{type}}: \mathbb{R}^d \to \mathbb{R}^C$ into a categorical probability distribution over C classes.
- The gate-level degree prediction involves forecasting the in-degree and out-degree of each masked gate within the AIG. Given the reconstructed node representations $\tilde{\vec{X}}$, in-degree labels $\vec{D}^- \in \mathbb{R}^N$, and out-degree labels $\vec{D}^+ \in \mathbb{R}^N$, we utilize mean squared error as the loss function for degree regression tasks.

Overview of MGVGA

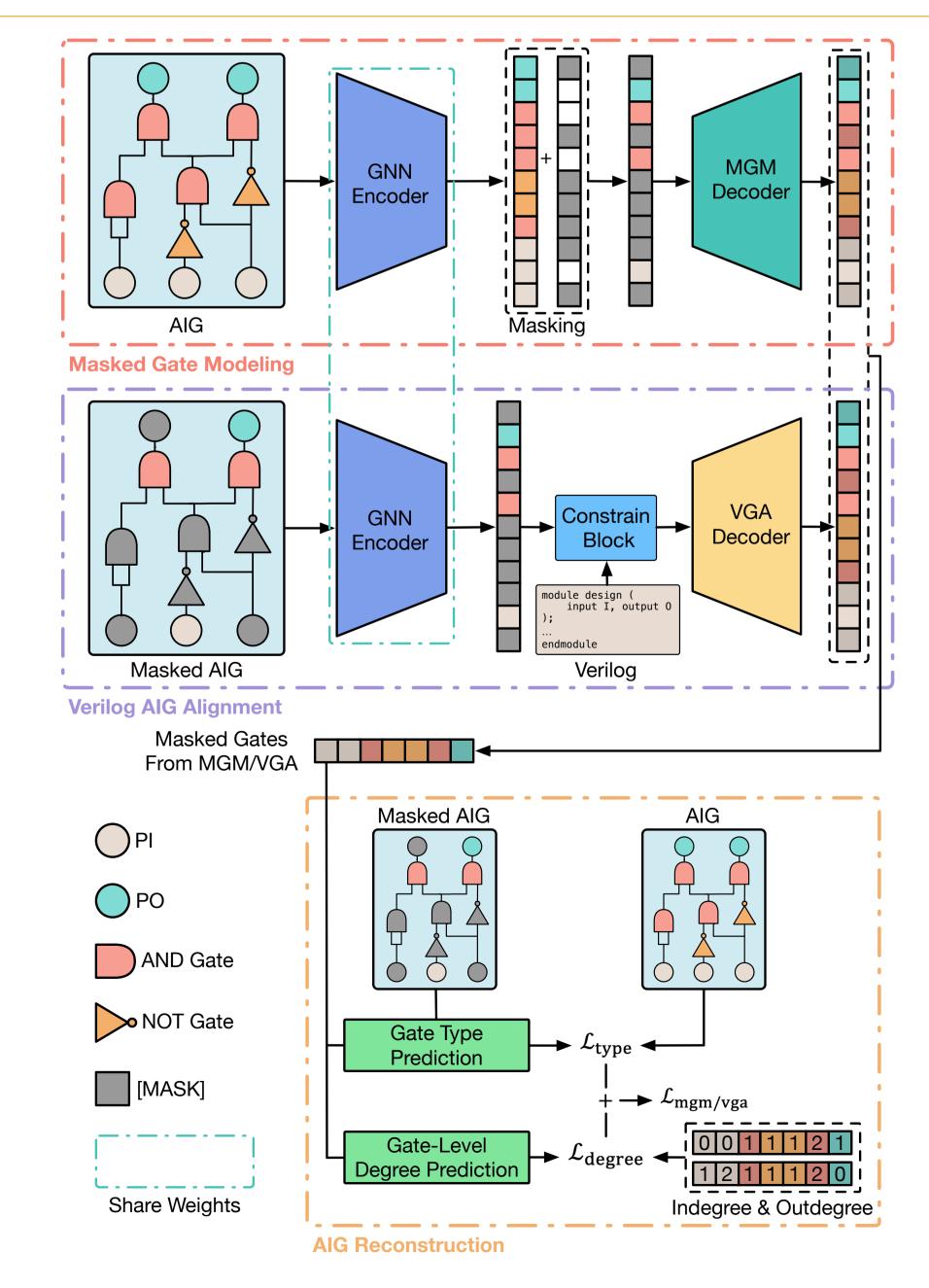


Figure 4. Overview of the MGVGA for circuit representation including masked gate modeling and Verilog-AIG alignment.

Experiment Settings

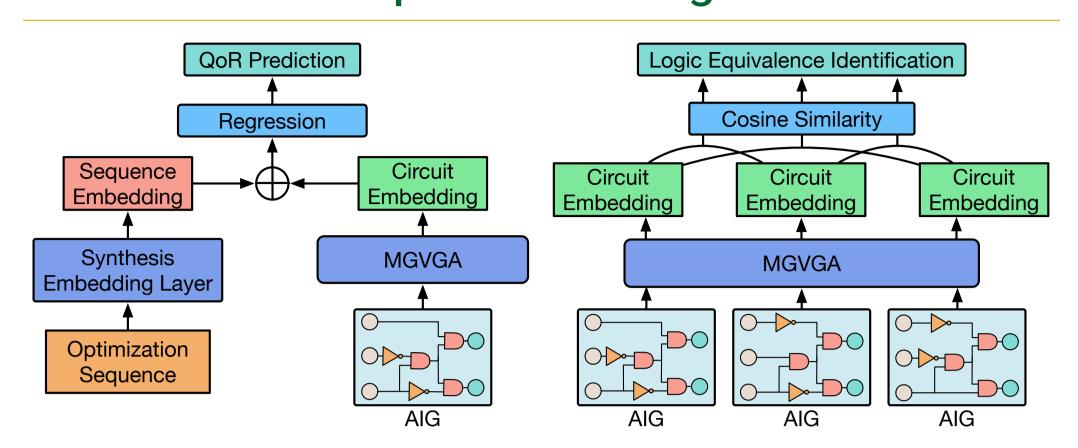


Figure 5. Application of MGVGA in QoR prediction and logic equivalence identification.

Main Experiment Results

Table 1. Performance of DeepGate2 and MGVGA on QoR prediction.

		# PO	# Gates	DeepGate2					MGVGA (Ours)				
Design	# PI			$\overline{\mathrm{NDCG}@k\uparrow}$		$ $ Top- $k\%$ Commonality \uparrow		${\text{NDCG}@k \uparrow}$		Top- $k\%$ Commonality \uparrow			
	, , , , , , , , , , , , , , , , , , ,	• • • • • • • • • • • • • • • • • • • •	.,	k=3	k=5	k=3	k = 5	k=10	k=3	k=5	k=3	k=5	k=10
bc0	21	11	2784	0.331	0.395	0.244	0.227	0.280	0.444	0.560	0.222	0.213	0.320
apex1	45	45	2661	0.645	0.643	0.222	0.333	0.413	0.706	0.716	0.311	0.400	0.513
div	128	128	101698	-0.063	0.029	0.000	0.027	0.133	-0.060	-0.060	0.000	0.013	0.093
k2	45	45	4075	-0.060	0.040	0.022	0.040	0.080	0.902	0.873	0.267	0.320	0.400
i10	257	224	3618	-0.133	-0.080	0.000	0.000	0.027	0.620	0.607	0.289	0.307	0.353
mainpla	26	49	9441	0.674	0.629	0.267	0.293	0.360	0.594	0.598	0.200	0.187	0.233
or1200_cpu	2343	2072	56570	0.498	0.485	0.178	0.267	0.407	0.617	0.613	0.222	0.253	0.367
picorv32	1631	1601	25143	0.563	0.406	0.111	0.173	0.186	0.440	0.457	0.066	0.160	0.180
Rocket	4413	4187	96507	0.578	0.543	0.111	0.186	0.300	0.557	0.607	0.355	0.413	0.467
sqrt	128	64	40920	0.304	0.153	0.000	0.027	0.080	0.577	0.401	0.000	0.040	0.080
Average				0.334	0.324	0.116	0.157	0.226	0.540	0.537	0.193	0.231	0.301

Table 2. Performance of DeepGate2 and MGVGA on logic equivalence identification.

		DeepC	Gate2		MGVGA (Ours)				
Design	Precision	Recall	F1-Score	AUC	Precision	Recall	F1-Score	AUC	
bc0	0.199	0.930	0.327	0.813	0.274	0.715	0.396	0.817	
apex1	0.133	0.680	0.223	0.601	0.273	0.710	0.394	0.826	
div	0.203	0.980	0.337	0.814	0.197	0.670	0.305	0.725	
k2	0.171	0.720	0.276	0.695	0.336	0.920	0.492	0.919	
i10	0.414	0.940	0.575	0.918	0.699	0.950	0.805	0.985	
mainpla	0.178	0.790	0.290	0.732	0.167	0.900	0.281	0.746	
or1200_cpu	0.451	0.790	0.575	0.823	0.356	0.950	0.518	0.929	
picorv32	0.448	0.870	0.592	0.918	0.440	0.960	0.604	0.941	
Rocket	0.346	0.930	0.504	0.892	0.388	1.000	0.559	0.952	
sqrt	0.189	0.740	0.302	0.721	0.199	0.720	0.312	0.770	
Average	0.295	0.841	0.424	0.804	0.336	0.848	0.470	0.862	

Analysis of Masking Ratio

Table 3. Performance of MGVGA on QoR prediction and logic equivalence identification with different masking ratios of MGM and VGA.

Maskin	g Ratio		Q	oR Pro	ediction	Logic Equivalence Identification				
MGM	VGA	NDCO	G@k ↑ k=5	-	e% Com: k=5	monality \uparrow $k=10$	Precision	Recall	F1-Score	AUC
0.3	0.3	0.517	0.505	0.158	0.199	0.272	0.300	0.844	0.430	0.846
0.3	0.5	0.540	0.537	0.193	0.231	0.301	0.336	0.848	0.470	0.862
0.3	0.7	0.498	0.514	0.178	0.223	0.299	0.316	0.823	0.441	0.820
0.5	0.3	0.439	0.445	0.149	0.187	0.271	0.274	0.821	0.402	0.821
0.5	0.5	0.438	0.470	0.169	0.204	0.288	0.331	0.829	0.450	0.836
0.5	0.7	0.385	0.415	0.140	0.168	0.247	0.304	0.833	0.433	0.817
0.7	0.3	0.347	0.367	0.127	0.160	0.242	0.292	0.871	0.421	0.828
0.7	0.5	0.400	0.366	0.111	0.175	0.228	0.313	0.823	0.433	0.832
0.7	0.7	0.366	0.359	0.138	0.169	0.226	0.305	0.794	0.425	0.822

Generalization on Various GNNs

Table 4. Generalization on various GNNs, including GraphSAGE and graph transformer.

		Q	oR Pr	ediction	Logic Equivalence Identification				
GNNs		G@k ↑ k=5	_		monality \uparrow $k=10$	Precision	Recall	F1-Score	AUC
DeepGate2	0.334	0.324	0.116	0.157	0.226	0.295	0.841	0.424	0.804
GraphSAGE	0.469	0.479	0.153	0.224	0.314	0.329	0.811	0.455	0.841
Graph Transformer	0.452	0.470	0.154	0.212	0.311	0.324	0.789	0.450	0.831
DeepGCN (Ours)	0.540	0.537	0.193	0.231	0.301	0.336	0.848	0.470	0.862