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Abstract—With the shrinking technology nodes, timing opti-
mization becomes increasingly challenging. Approximate logic
synthesis (ALS) can perform local approximate changes (LACs)
on circuits to optimize timing with the cost of slight inaccuracy.
However, existing ALS methods that focus solely on critical path
depth reduction or area minimization are not optimal in timing
optimization. This paper proposes an effective timing-driven
ALS framework, where we employ a double-chase grey wolf
optimizer to explore and apply LACs, simultaneously bringing
excellent critical path shortening and area reduction under error
constraints. Subsequently, it utilizes post-optimization under area
constraints to convert area reduction into further timing improve-
ment, thus achieving maximum critical path delay reduction.
According to experiments on open-source circuits with 28nm
technology, compared to the SOTA method, our framework can
generate approximate circuits with greater critical path delay
reduction under different error and area constraints.

I. INTRODUCTION

Timing optimization is crucial in VLSI design. As the
CMOS technology nodes continue to shrink, timing improve-
ments caused by traditional methods, including gate sizing and
logic restructure, are limited [1], [2]. With the rising demand
for error-tolerant applications such as machine learning and
image processing, approximate computing [2], which effec-
tively balances accuracy and performance, has garnered great
attention. It can significantly reduce circuit delay, area, and
power with the cost of slight computational imprecision.

Recently, approximate logic synthesis (ALS) has been pro-
posed as an automated approximate computing paradigm. It
can optimize timing under a relaxed error bound by reducing
the depth of critical paths and enhancing the drive strength of
gates on critical paths [3]. Based on optimization approaches,
existing ALS methods can be divided into two categories:
(1) depth-driven methods [4]–[6] and (2) area-driven methods
[7]–[10]. Depth-driven methods perform local approximate
changes (LACs) to simplify gates on critical paths, providing
direct timing improvement. As shown in Fig. 1, LACs are
applied to critical paths 1 and 2. By omitting certain gates,
both paths become shallower and faster with the cost of
slight error. HEDALS [6] proposes a critical error graph to
accelerate critical path depth reduction and strictly control the
introduced errors. Area-driven methods select LACs with great
area reduction potential to minimize circuit area. SEALS [8]
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Fig. 1 Optimizing circuit by wire-by-wire (substitute a wire
with another wire in circuits) and wire-by-constant (substitute a
wire with constant logic value ‘0’/‘1’) LACs. Area reductions
are converted into drive strength enhancement of gates.

and VECBEE-SASIMI [9] combine fast error estimation with
greedy algorithms to select such LACs, efficiently reducing
area. Fig. 1 also illustrates that these area reductions can be
converted into the enhancement of gate drive strength by post-
optimization, leading to further timing improvement.

However, achieving ALS with optimal timing optimization
is challenging for previous methods. Depth-driven methods
inadequately reduce area, leading to difficulties in maximizing
the drive strength of gates on critical paths. Area-driven meth-
ods simplify many gates on non-critical paths, which makes it
difficult to obtain the optimal critical path depth. Therefore, it
is necessary for timing-driven ALS to simultaneously optimize
both critical path depth and area. In this scenario, conventional
gradient-based optimizers, including greedy algorithm, genetic
algorithm, and traditional grey wolf optimizer (GWO) [11]
using a single-chase strategy, cannot finely partition the sam-
pled approximate solutions. Thus, solutions are dispersed in
the solution space. This dispersion causes an excessive num-
ber of gradients for further optimization. It makes solutions
easily move along the gradient with the current fastest critical
path depth shortening or area reduction. Finally, traditional
optimizers fall into local optima [12], [13].

In this work, we propose a timing-driven ALS framework.
As shown in Fig. 2, it consists of three main steps, including
circuit representation, the double-chase grey wolf optimizer
(DCGWO), and post-optimization. Firstly, adjacency lists are
constructed based solely on gate fan-in relationships to enable
fast circuit structure storage and LACs application. Then,
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Fig. 2 The overall flow of our timing-driven approximate logic synthesis framework based on double-chase grey wolf optimizer.

DCGWO efficiently optimizes both critical path depth and area
under error constraints. Subsequently, post-optimization under
area constraints converts the area reduction into further timing
optimization. Our contributions are summarized as follows:

• We propose a framework for deeply exploiting timing
improvement inherent in the reduction of critical path
depth and the enhancement of gate drive strength.

• We represent accurate and approximate circuits based on
gate fan-in adjacency lists to improve storage efficiency
and accelerate timing optimization.

• We present a DCGWO to effectively select approximate
actions for reducing critical path depth and area. Building
upon traditional GWO, it divides the generated approxi-
mate circuit population into finer hierarchies and precisely
formulates appropriate optimization gradients for each
hierarchy, improving the efficiency in finding the global
optimal approximate circuit.

• The experimental results demonstrate that our framework
achieves an average 27.13% and 31.35% critical path
delay reduction respectively, under a 5% error rate con-
straint and under a 2.44% normalized mean error distance
constraint, outperforming the state-of-the-art method.

II. PRELIMINARIES

A. Error Metrics
Error metrics used in our work are error rate (ER) and

normalized mean error distance (NMED). For a circuit with
m primary inputs (PIs) and n primary outputs (POs), we
assume the probability of input vector Ii occurring is pi
(1 ≤ i ≤ 2m). ER is the probability that the approximate
circuit output differs from the accurate one, calculated by
Equation (1), where Oapp

i and Oori
i are output vectors of the

approximate circuit and accurate circuit for input vector Ii.

ER =

2m∑
i=1

(Oapp
i ̸= Oori

i )× pi. (1)

Error distance is the difference between the integer values of
Oapp

i and Oori
i . NMED is the mean error distance normalized

by the maximum output value, defined in Equation (2).

NMED =

2m∑
i=1

∣∣int(Oori
i )− int(Oapp

i )
∣∣

2n − 1
× pi. (2)

B. Problem Formulation

Since timing improvements are inherent in critical path
depth reduction and the enhancement of gate drive strength,
the timing-driven ALS problem can be formulated as follows:

Problem 1 (Timing-driven ALS). Given a post-synthesis
netlist of the accurate circuit with timing, area, and logic
information, use an approximate optimizer simultaneously
optimizing both critical path depth and area under error
constraints to generate the final approximate circuit with
maximum critical path delay reduction.

III. PROPOSED FRAMEWORK

Fig. 2 gives the overall flow of our framework. In Step
1, the accurate gate-level netlist is represented by gate fan-
in adjacency lists. In Step 2, DCGWO efficiently explores
approximate circuit with optimal critical path depth and area
reduction. In Step 3, by performing dangling gates deletion and
remaining gates sizing under area constraint Areacon on the
generated optimal approximate circuit, the final approximate
netlist with minimum critical path delay can be obtained.

A. Circuit Representation

We construct adjacency lists storing the circuit structure
based solely on fan-in relationships between gates. By discard-
ing wire information, wire-by-wire [14] and wire-by-constant
[15] LACs (shown in Fig. 1) can be easily implemented by
changing the gate fan-in adjacency. This operation mode en-
ables us to efficiently assess the impact of LACs and generate
corresponding approximate netlist. To check for circuit loop
violations, we further label each gate with a unique integer ID.
Fig. 3 shows an example of circuit representation, the circuit
on the left is stored as fan-in adjacency lists on the right.

To accommodate this circuit representation method, we
update the related definitions of above two LACs: the gate to
be changed is called target gate, while the gate used for change
(constant ‘0/1’ are also treated as gates) is called switch gate.

B. Double-chase Grey Wolf Optimizer

In DCGWO, we first generate initial approximate circuits
population P0: {∀ci ∈ P0} by performing LACs on randomly
selected target gates of the accurate circuit. Each approximate
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Fig. 3 Circuit representation based on gate fan-in adjacency.

circuit in P0 is evaluated for fitness (defined in section III-B
as function Fit), which is composed of critical path depth and
area. Circuits with higher Fit indicate better quality.

Circuit Optimization. A double-chase strategy is performed
iteratively to optimize approximate circuits in the population.
Its preliminary work involves the population division shown in
Fig. 4, which divides the population into leader circuit cl, elite
circuits Ge, and ω circuits group Gω based on fitness values. cl
is the approximate circuit with the highest fitness. It guides Ge

with fitness ranks 2, 3, and 4 in Chase 1. Elite circuits in Ge

guide Gω in Chase 2. For each Chase, two approximate actions
are designed: circuit searching and circuit reproduction.
They are used alternately to generate new approximate circuits
along suitable optimization gradients.

Circuit searching essentially uses wire-by-wire and wire-
by-constant to shorten critical paths. Specifically, we first use
PrimeTime [16] to obtain the critical paths with maximum
propagation time from PIs to POs. Then, for each critical path,
all gates on it are stored in the targets set Tc and undergo
uniform (0,1) distribution sampling. Tc also accepts fan-ins of
sampled gates with a probability greater than 0.5. Target gate is
randomly selected from Tc. To limit introduced error, switch
gate is selected based on similarities, i.e., the percentage of
cycles when output of target gate holds the same value with
output of each gate in its transitive fan-in (TFI) or the constant
logic value ‘0’, ‘1’. The gate or constant logic value with the
highest similarity is selected to substitute the target gate.

Fig. 5 shows circuit searching examples. For obtaining cs1
from cp1, Path1 is the critical path. Thus we select ID8 gate
(outputs: 14 cycles of ‘0’ and 2 cycles of ‘1’) as the target
gate, and constant logic value ‘0’ with the highest similarity
0.875 as the switch gate. In this case, the fan-in adjacency
of the ID11 gate is changed from (5, 8) to (5, con0), greatly
decreasing the Path1 depth. Similarly, for obtaining cs2 from
cp2, the fan-in adjacency of ID15 PO is changed from 12 to
10, decreasing the Path3 depth.

Inspired by a crossover in genetic algorithm [17], circuit
reproduction is designed to aggregate well-optimized path
sets with low errors from two selected approximate circuits,
generating a reproduced circuit with better quality. Specifically,
we first divide each selected circuit according to the POs and
corresponding TFI. Then, for each PO, we use its maximum
arrival time Ta and the error generated on it Error to form the

cl

Fit(ci) rank 2, 3, 4

leader
cl

Elite circuits
（Quantity is 3）

 e

ω circuits group
（Contains a quantity of N-4 ω circuits）

 e
Fit(ci) rank 1

Remaining circuits

 ω

Chase 2

Searching

Reproduction
＋

Chase 1

Reproduction (W > Se)

Searching (W ≤ Se)

or

 ω
(W ≤ Sω)

(W > Sω)

Searching

Reproduction
or

Fig. 4 Population division. Population is divided into leader
cl, elite circuits Ge, and ω circuits group Gω based on fitness,
with each hierarchy engaging in distinct chase operations.

PO-TFI pair evaluation function Level in Equation (3), where
wt and we are the weights of Ta and Error respectively.

Level(POi) = wt ×
1

Ta(POi)
+ we ×

1

Error(POi)
. (3)

Subsequently, we choose PO-TFI pairs with higher Level
from two selected circuits to form the reproduced circuit. Some
gates are shared by different PO-TFI pairs. Thus, gates in
the reproduced circuit only accept adjacency information from
the first write-in. Taking circuits cp1 and cp2 in Fig. 5 as an
example, by comparing their Level, we select PO2-TFI, PO3-
TFI pairs from cp1, and PO1-TFI pair from cp2, to form circuit
cr1. Since gates with IDs 8, 10 and 12 are not in any PO-TFI
pair, to ensure the completeness of cr1, their information is
selected from cp1 and cp2 to write in cr1.

Fig. 4 illustrates that approximate circuits at different hierar-
chies consult their adjacent higher-hierarchy circuits for circuit
searching and reproduction. Therefore, we design the fitness
distance D, decision parameter W and decision threshold S
for both Ge and Gω . D is calculated by Equation (4), where
rc is a random value between [0, 2]. Since Ge reference the
leader circuit cl for Chase 1, D for elite circuits in Ge include
the fitness of leader circuit Fit(cl). Similarly, Gω reference Ge

for Chase 2. Thus, D for ω circuits in Gω include the average
fitness of elite circuits in Ge. W provides a dynamic correction
to D by adding the encircling coefficient A.

D(ci) =

{
rc × Fit(cl)− Fit(ci) ∀ci ∈ Ge

rc
3

∑
cj∈Ge

Fit (cj)− Fit(ci) ∀ci ∈ Gω

, (4)

W (ci) = A×D(ci), (5)

where A is calculated based on the scaling factor a as:

A = (2× r1 − 1)× a, (6)

where r1 is a random value between [0, 1]. The scaling factor
a balances the global search and local convergence of the
population. It decreases with the increase of iteration iter until
iter reaches the upper limit of iteration Imax:

a = 2− 2× iter

Imax
. (7)

As shown in Fig. 4, the approximate actions are decided by
the relationship between decision parameter W and decision
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thresholds S. Decision thresholds used for Ge and Gω are Se

and Sω , respectively. For circuit ci in Ge, if W (ci) > Se, it
executes circuit reproduction with another circuit of superior
fitness to generate a reproduced circuit. Otherwise, it uses
circuit searching to reduce its critical path depth and area.
Meanwhile, for circuit ci in Gω , if W (ci) > Sω , it performs
both circuit searching and reproduction. Otherwise, it ran-
domly selects either circuit searching or reproduction. When
the double-chase is completed, leader circuit cl conducts circuit
searching to ensure its variability. Then, approximate circuits
before and after double-chase are stored in the candidates’
group Gcand for further evaluation and update.

The lower right corner of Fig. 5 demonstrates that the
double-chase strategy can effectively guide the entire popula-
tion to move along the appropriate gradient with simultaneous
critical path depth and area reductions.

Circuit Fitness Evaluation. The circuit fitness is composed
of critical path depth and area. The depth-related information,
including the maximum critical path depth of each approxi-
mate circuit Depthapp and the maximum path depth of accurate
circuit Depthori, are obtained through static timing analysis
(STA) using PrimeTime [16]. Since the approximate actions
change the connections between gates, some gates become
dangling due to their inability to connect to any PO. Therefore,
the area of approximate circuit Areaapp is the area of accurate
circuit Areaori minus the area of these dangling gates.

The fitness function Fit of approximate circuit ci is defined
in Equation (8), where wd and wa = 1 − wd respectively
denote the weights assigned to the critical path depth and area.
Circuits with higher fitness values indicate better quality.

Fit(ci) = wd ×
Depthori(ci)

Depthapp(ci)
+ wa ×

Areaori(ci)

Areaapp(ci)
. (8)

Circuit Population Update. To select high-quality approxi-

mate circuits under error constraints, a non-dominated sorting
[18] is performed on the evaluated candidates’ group Gcand.
It is achieved based on Pareto dominance between circuits
determined by depth function fd = Depthori

Depthapp
and area function

fa = Areaori
Areaapp

. Firstly, we remove circuits exceeding the error
constraint from Gcand. Then, a dominated list Ld is maintained
for each remaining circuit. For circuits ci and cj , if ci is not
inferior to cj in two functions, and is superior in at least
one of them, then ci dominates cj and is added to Ld of cj .
Circuits with empty Ld are considered Pareto-optimal circuits.
We place them into the 0-ranked Pareto set while removing
them from Gcand and the Ld of other circuits. Subsequently,
new Pareto-optimal circuits with empty Ld emerge, forming
the 1-ranked Pareto set, and undergo the same removal process.
This will repeat until Gcand is empty.

We further sort the approximate circuits within each Pareto
set in descending order of their crowding distance Dist.
With higher Dist, circuits are less likely to overlap in the
objective space, resulting in better optimization efficiency. For
approximate circuit ci in the k-ranked Pareto set, ci−1 and
ci+1 are its adjacent circuits in the objective space determined
by fd and fa. In this case, Dist is calculated by Equation (9).

Dist(ci) =
∑

x=d,a

fx(ci−1)− fx(ci+1)

maxk(fx)−mink(fx)
. (9)

Starting from the 0-ranked Pareto set, we sequentially select
N approximate circuits to form a new population for the next
iteration. Then, we employ a quadratic function scheme (i.e.,
Erroriter = b × iter2 + Error0) to asymptotically increase
the error constraint Erroriter as the iteration iter rises, ulti-
mately relaxing it to the maximum error constraint by setting
appropriate empirical parameter b. This operation prevents
the population from quickly moving to the maximum error
constraint boundary and getting trapped in local optima.



TABLE I The benchmark statistics. CPDori (ps) and Areaori
(µm2) respectively represent the critical path delay and area
of accurate circuit.

Type Circuit #gate #PI/PO CPDori Areaori Description

R./C.

cavlc 573 10/11 186.35 450.31 Coding Cavlc
c880 322 60/26 185.34 177.67 8-bit ALU
c1908 366 33/25 235.14 223.34 16-bit SEC/DED circuit
c2670 922 233/140 218.40 288.71 12-bit ALU and controller
c3540 667 50/22 293.09 459.42 8-bit ALU
c5315 2595 178/123 122.25 1129.55 9-bit ALU
c7552 1576 207/108 282.13 939.33 32-bit adder/comparator

Arith.

int2float 198 11/7 127.02 194.63 int to float converter
c6288 1641 32/32 847.79 687.08 32-bit multiplier
adder 1639 256/129 1394.7 495.78 128-bit adder
barshift 2933 135/128 262.52 1806.69 128-bit shifter
max 2940 512/120 2799.8 954.03 128-bit 4-1 max unit
mult 26429 128/128 4117.5 31635.6 128-bit multiplier
sine 10962 24/25 701.03 4367.27 24-bit sine unit
sqrt 13542 128/64 67929.3 6262.10 128-bit square root unit

C. Post-Optimization

Post-optimization is performed on the optimal approximate
circuit generated by DCGWO. It converts area reductions into
further timing improvements by enhancing the drive strength of
gates. Firstly, dangling gates produced by the approximate ac-
tions are deleted. In this process, we traverse the entire circuit,
identifying and removing gates with empty transitive fan-out
(TFO). For each fan-in of the removed gates, we similarly per-
form identification and removal operations until no gates with
empty TFO remain. Subsequently, for the processed circuit, we
use Design Compiler [19] to resize its remaining gates without
adjusting any circuit structure under area constraints Areacon.
Consequently, the final approximate circuits with minimum
critical path delay CPDapp are obtained.

IV. EXPERIMENTAL RESULTS

We implement our framework in Python. It is tested on the
Linux machine with 32 cores and 4 NVIDIA Tesla V100 GPUs
with 128GB memory. Benchmarks listed in TABLE I are from
ISCAS’85 [20] and EPFL [21]. Each circuit is synthesized into
gate-level netlist by Design Compiler [19] under commercial
28nm technology. Among them, random/control circuits are
optimized under ER constraints, while arithmetic circuits
are optimized under NMED constraints. For approximate
circuits, their timing-related information is obtained through
STA using PrimeTime [16]. The circuit error and similarities
between outputs of gates are obtained using VECBEE based on
Monte Carlo simulation [9]. By setting the number of sampled
input vectors to 1 × 105, this method can achieve fast error
and similarities evaluation with nearly no deviation.

Since our framework focuses on timing optimization, we
use final critical path delay ratio Ratiocpd and runtime to
evaluate its performance. Final critical path delay ratio is the
critical path delay ratio of the final approximate circuit over
the corresponding accurate one (i.e., Ratiocpd =

CPDapp

CPDori
).

A. Parameter Setting

The parameters of our framework are set as follows. The
population size N is 30 and the iteration limit Imax is 20. For
PO-TFI pair evaluation function Level, wt is 0.9 × CPDori
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under both error constraints, while we is respectively 0.1 and
0.2 under ER and NMED constraints. For circuit fitness
Fit, the optimal weights are determined by Ratiocpd. Fig. 6
illustrates that the minimum Ratiocpd are achieved under both
the tightest and loosest error constraints when wd is 0.8 and
wa = 1− wd is 0.2. Therefore, we follow this setting.

B. Optimization Performance

We compare the performance of our framework with: (1)
area-driven methods: VECBEE-SASIMI [9]; (2) depth-driven
methods: Genetic optimization inspired by [5], HEDALS [6];
(3) traditional GWO (single-chase). Approximate circuits gen-
erated by these works also experience post-optimization under
area constraints Areacon to convert area reduction into further
critical path delay reduction by Design Compiler [19].

For random/control circuits, the performance comparison
under a 5% ER constraint is detailed in TABLE II. According
to the results, our framework maximizes the average critical
path delay reduction to 27.13% with shorter runtime. For
arithmetic circuits, the performance comparison under a 2.44%
NMED constraint is listed in TABLE III. The results indicate
that our framework maximizes the average critical path delay
reduction to 31.35% with shorter runtime. Meanwhile, the
runtime rises linearly with the number of circuit’s available
LACs n, exhibiting an O(n) time complexity. As shown in
Fig. 7, post-optimization contributes more to critical path delay
reduction in our framework compared to HEDALS [6]. This
is because our work achieves more area reductions, which are
converted into further gate drive strength enhancements.

We further compare the average Ratiocpd achieved by our
work with HEDALS [6] and traditional GWO under 5 different



TABLE II Comparison of performance between our framework and others under 5% ER constraints. All final generated circuits
experience post-optimization under area constraints Areacon to convert area reduction into further critical path delay reduction.

Circuit Areacon VECBEE-S [9] Genetic [5] HEDALS [6] GWO (single-chase) Ours
(µm2) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s)

cavlc 450.00 0.9219 60.03 0.8745 356.89 0.9071 194.43 0.8963 407.25 0.8602 310.42
c880 177.00 0.9026 43.11 0.9221 227.13 0.8913 104.00 0.9183 201.51 0.8399 193.86
c1908 223.00 0.8679 65.32 0.5166 235.68 0.3372 310.42 0.5021 307.56 0.3865 202.79
c2670 288.00 0.6708 308.16 0.8101 477.92 0.7589 250.28 0.7703 313.99 0.6314 339.63
c3540 459.00 0.9670 391.42 0.9729 435.26 0.9203 373.26 0.9224 479.88 0.8732 324.59
c5315 1129.00 0.9113 1857.32 0.8599 1963.55 0.8270 1662.08 0.8165 1655.07 0.8034 1449.37
c7552 939.00 0.9262 1726.27 0.9133 1336.64 0.7391 1315.85 0.8877 1420.32 0.7063 1279.18
Average 523.57 0.8811 635.94 0.8385 719.01 0.7687 601.47 0.8162 683.65 0.7287 585.69

TABLE III Comparison of performance between our framework and others under 2.44% NMED constraints. All final generated
circuits experience post-optimization under Areacon to convert area reduction into further critical path delay reduction.

Circuit Areacon VECBEE-S [9] Genetic [5] HEDALS [6] GWO (single-chase) Ours
(µm2) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s)

int2float 194.00 0.9331 71.23 0.5047 151.73 0.7649 32.68 0.6010 178.30 0.4496 132.12
c6288 687.00 0.9663 4410.29 0.8696 3279.62 0.6368 2563.41 0.9079 2991.00 0.8313 2103.88
adder 495.00 0.7814 1697.37 0.8133 2083.15 0.7110 1362.70 0.8008 1550.03 0.6917 1193.71
barshift 1806.00 0.8670 2005.14 0.8287 2919.21 0.8025 1370.46 0.8166 1937.60 0.7271 1200.58
max 954.00 0.8809 2600.78 0.8933 3397.50 0.8355 2992.08 0.7517 3121.44 0.6799 2035.62
mult 31635.0 0.9010 17230.16 0.7818 12298.11 0.7068 9677.43 0.7276 9071.60 0.6459 6283.76
sine 4367.00 0.9187 5391.68 0.8326 3872.31 0.7945 3380.52 0.8722 4392.77 0.7603 3176.46
sqrt 6262.00 0.7993 33117.12 0.8011 20160.76 0.7437 11242.29 0.7803 17894.50 0.7058 9950.11
Average 5800.00 0.8809 8315.47 0.7906 6020.30 0.7494 4077.69 0.7823 5142.16 0.6865 3259.53
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Fig. 8 Average critical path delay ratios Ratiocpd generated
by our framework, HEDALS [6] and traditional GWO under
different ER and NMED constraints.

ER constraints (1%, 2%, 3%, 4%, 5%) and 5 different
NMED constraints (0.48%, 0.98%, 1.47%, 1.96%, 2.44%).
According to results in Fig. 8, as ER or NMED constraint
tightens, our framework consistently achieves greater critical
path delay reductions than others. Fig. 9 illustrates how
the average Ratiocpd varies with different area constraints
(0.8× ∼ 1.2× Areacon) under the loosest error constraints.
The results indicate that our framework outperforms other
works in timing optimization across all area constraints. These
achievements demonstrate that our framework can generate
approximate circuits with superior performance while meeting
diverse accuracy and area requirements.

In summary, by leveraging carefully designed approximate
actions and the powerful search capabilities of DCGWO, our
framework can better exploit the timing improvement inherent
in critical path shortening and gate drive strength enhancement.
Additionally, compared to traditional GWO, using the double-
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Fig. 9 Average critical path delay ratios Ratiocpd generated
by our framework, HEDALS [6] and traditional GWO under
different area constraints (Ratio × Areacon).

chase strategy to further formulate the optimization gradients
indeed helps the optimizer find better solutions. Benefiting
from the fast implementation of LACs and inherent parallelism
of GWO, our framework maintains low time consumption
despite using PrimeTime [16] for accurate timing analysis.

V. CONCLUSION

In this work, we propose a timing-driven ALS framework
based on DCGWO to effectively optimize circuit timing under
error constraints. It leverages DCGWO for precise and efficient
generation of approximate circuit with optimal critical path
depth and area reductions, while utilizing post-optimization
under area constraints to convert area reductions into further
timing improvements. Experimental results show that our
framework can achieve more critical path delay reduction
than existing methods within an acceptable time consumption,
while meeting diverse accuracy and area requirements.
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