7“")!“’(

DAj‘E)
* x ¥

&
>
P 4

IRW: An Intelligent Rewriting

Haisheng Zheng! Haoyuan Wu? Zhuolun He* Yuzhe Ma®’ Bei Yu?

IShanghai Artificial Intelligence Laboratory, Shanghai, China
’The Chinese University of Hong Kong, Hong Kong, China
SHong Kong University of Science and Technology, Guangzhou, China

ERY NI N R S

hanghai Artificial Intelligence Laboratory

Highlights Methodology Experimental Results
= We propose iRw, which effectively minimizes node counts in AlGs. Original AIG (Partial) o 2-_-_S_P-_l-?-_"-_i-_r-_c-_‘i%?_-_E?EEE?-EESE,, ___________ R | = Performance Comparison Between iRw and SOTA Rewriting.
1 i 1 i 1 11 Nodes |
= We introduce a subgraph extraction algorithm that efficiently extracts - Qf\} . é\)v T é} |
subcircuits with optimization potential. Q/ Q/ @:1 B chmark Window Rewriting [3] iRw
= We propose a method of machine learning-guided optimization process, @ (@ 4 @ 4@ | Until Convergence | First Iteration |Until Convergence
: : . : : .. : | A AKX AR G M AN
ensuring efficient optimization with minimal runtime overhead. | ®®® fololoR! F@ fololol Name | # Nodes # Nodes Time # Nodes | Time | # Nodes| Time
= Our method outperforms SOTA methods both in quality and runtime. | A g AN LS LWL |
o D | \ 50 | \ N adder | 1020 | 892 | 004 | 892 013 892 | 028
WAL L M M N bar 3,336 | 2,952 3.76 2,952 | 0.62 | 2952 | 1.17
} 13 [1a][1s] 16 i[17] [12] [13] [14] [15] [16]
Related Works e hyp 214,335 204926 2028 204,926 19.90 204,926 40.38
Extract Single-Output Expand to Multi-Output Filter Subcircuits
. . . Subcircuits Subcircuits by Reconvergence e 1,342 1,291 0.10 1,289 0.14 1,273 0.58
subcircuit Extraction. = . © Subcireuits Optimization © Subcircuits Replacement nt2float| 260 | 239 | 0.02 232 009 | 226 | 0.36
- Typically tailored to the needs of rewriting algorithms. T Encoding) | F@ § Nodes 0o 25060 | 29700 (<o 20603 | 519 | 99554 | g cs
= Single-Output Subcircuits. A | F@/’ i 08 ’ ’ ' ’ ' ’ '
(e.g., Cut Enumeration [1], Maximum Fanout-Free Cones [2]) N Y multiplier| 27,062 | 24,566 3.89 24426 | 3.93 | 24426 | 8.80
- Simplifies the optimization process. X sin 5416 | 5,132 1.85 5115 | 1.05 | 5,095 /.73
* Multi-Output Subcircuits. INicIcNoR sart | 24,618 | 18325 | 295 | 18279 242 18236 1617
(e.g., Reconvergence-driven Window [3], Maximum Fanout-Free Window [4]) Pl AN cauare | 18484 | 16606 579 16386 | 204 | 16316 | 647
- Enables exploration of shared logic between outputs, enhancing efficiency. \/ 5 \) d ’ ’ ' ’ ' ’ '
1 S Average = - 9.79% - 10.32% | - | 10.78% -
Subcircuit Optimizaton. RN oo R L Total _ _ 42 20 35 51 i} 110 .49
- The trade-off between optimization quality and computational overhead. __ Initial Optimization Q% OpiGuider Futher Optimization | | ,
| Primary Input [| AND (A, B) [] AND (NOT(A), B) [| AND (A, NOT(B)) [] AND (NoT(A), NoT®)) [|[JL][][JH revelo-5

= I[mpact of Multi-Output Subcircuit Extraction.

Method Advantages & Limitations

v Fast; May provides optimal optimization. Figure 1. Overview of the iRw.

Pre-Computed Library |1, 5 - .
" VLol X Limited to small subcircuits. iRw iteratively processes each node of a given AIG G, excluding primary inputs, as Methoc # Initial Nodes | # Optimized Nodes |Average Improvement
L . v Fast; Can handle larger subcircuits. the pivot node P, with a subcircuit input size limit K, following these stages: b; rs -K 6; rw; rf; 314,793 4.01%
Heuristic Resynthesis [2, 3] . . o . 327,933
X May not deliver optimal optimization. @ Subcircuit Extraction. IRw 304,100 10.32%

v/ Provides the best solutions; Handles large subcircuits. = Single-Output Subcircuits: S = TFI(G, K, P)

Extracts the Transitive Fan-In (TFI) of the pivot node P, ensuring that the
number of inputs in § does not exceed the limit [Inputs(S)| < K.

Exact Resynthesis [6, 7]

X Requires substantial computational resources. = Performance Comparison Between iRw with and without OptGuider.

. o [1 iRww/o OptGuider [] iRw with OptGuider [1] iRww/o OptGuider [] iRw with OptGuider
ML—G.U|§|ed.Opt|m|zat.|on 18, 9]. | o | * Expansion to Multi-Output Subcircuits: S’ = {S; UTFO(S;) | S; € S} - e -, - R_ (i - f - _R _h - d_ |
- Optimization strategies are adapted to the input circuit to enhance efficiency. For each single-output subcircuit S;, explores its Transitive Fan-Out (TFO) to al I I

extend it into a multi-output subcircuit. — 0039 i
References = Filter by Reconvergence: Sgjicreq = {5 | S’ contains reconvergent paths} ol m 091 :)
Retains subcircuits that contain reconvergent paths, as these offer optimization B 1 =4 i I
. potential for observability-based optimizations (e.g., resubstitution). 0.8 |- B
1] Alan Mishchenko et al. DAG-Aware AIG Rewriting: A Fresh Look at o o I i
Combinational Logic Synthesis. In Proc. DAC, 2006. @ Subcircuit Optimization. 0.8 | .
.f o . . O 0.7 | - |
[2] Alan Mishchenko et al. Scalable Logic Synthesis using a Simple Circuit " Initial Optimization: Balance, Resubstitution. 0245
Structure. In Proc. IWLS, 2006. = Further Optimization: Rewrite, Refactor. m 0
. : L e 0.7 —o-—— S T 06 ~ v
[3] Heinz Riener et al. Boolean Rewriting Strikes Back: Reconvergence-Driven) Op’FGgldgr. 'de”“ﬁes,SQbF'TCU'tS that an be optimized by the futher & C xo‘%@* &8 & & e \o‘%%@* SR &
optimization stage, minimizing computational overhead. & = & &

Windowing Meets Resynthesis. In Proc. ASPDAC, 2022.

Xuliang Zhu et al. A Database Dependent Framework for K-Input
Maximum Fanout-Free Window Rewriting. In Proc. DAC, 2023.

Wenlong Yang et al. Lazy Man’s Logic Synthesis. In Proc. ICCAD, 2012.

Node Feature Encoding.

- Edge information is integrated into AND gate representations.
- The logical level of node v in the AlIG Is encoded as:

(a) Node Reduction comparison. (b) Runtime Comparison.

Settings:
- Experiments were run on a 2.6 GHz AMD EPYC /H12 CPU.
- Input size K = 6 was set for all configurable algorithms to ensure fair comparison.

([level(v) level(v) :
PE(U,Qi) — sin (100002i/d> , PE@’%H) — COS (100002i/d) . (1)

Lightweight GNN.
- GraphSAGE [10] is used as the GNN model due to its computational efficiency.

Cost-Sensitive Learning.

- Helps the classifier prioritize subcircuits that impact performance:

= Misclassifying non-optimizable subcircuits increases overhead without
iImproving optimization.

= Overlooking optimizable subcircuits impedes the optimization process.

= Adjusts the weights of classes (Optimizable 1, Non-Optimizable) in the Binary
Cross Entropy loss function.

o U

Heinz Riener et al. On-the-fly and DAG-aware: Rewriting Boolean
Networks with Exact Synthesis. In Proc. DATE, 2019.

Heinz Riener et al. Exact DAG-Aware Rewriting. In Proc. DATE, 2020.

Walter Lau Neto et al. LSOracle: a Logic Synthesis Framework Driven by
Artificial Intelligence. In Proc. ICCAD, 2019.

Xing Li et al. EfiSyn: Efficient Logic Synthesis with Dynamic Scoring and
Pruning. In Proc. ICCAD, 2023.

Will Hamilton et al. Inductive Representation Learning on Large Graphs. In
Proc. NIPS, 2017/.

Conclusion

S

= iRw outperforms Window Rewriting [3] both in node reduction and runtime.

= [Rw achieves better node reduction, demonstrating the effectiveness of

multi-output subcircuit extraction.
[10]

IRw guided by OptGuider achieves significant improvements in runtime, with
only a slight impact on node reduction.

IEEE/ACM Design, Automation and Test in Europe Conference (DATE) 2025, Lyon, France

