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Highlights Methodology Experimental Results
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= I[mpact of Multi-Output Subcircuit Extraction.

Method Advantages & Limitations

v Fast; May provides optimal optimization. Figure 1. Overview of the iRw.
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v/ Provides the best solutions; Handles large subcircuits. = Single-Output Subcircuits: S = TFI(G, K, P)

Extracts the Transitive Fan-In (TFI) of the pivot node P, ensuring that the
number of inputs in § does not exceed the limit [Inputs(S)| < K.

Exact Resynthesis [6, 7]

X Requires substantial computational resources. = Performance Comparison Between iRw with and without OptGuider.
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Node Feature Encoding.

- Edge information is integrated into AND gate representations.
- The logical level of node v in the AlIG Is encoded as:

(a) Node Reduction comparison. (b) Runtime Comparison.

Settings:
- Experiments were run on a 2.6 GHz AMD EPYC /H12 CPU.
- Input size K = 6 was set for all configurable algorithms to ensure fair comparison.

([ level(v) level(v) :
PE(U,Qi) — sin (100002i/d> , PE@’%H) — COS (100002i/d) . (1)

Lightweight GNN.
- GraphSAGE [10] is used as the GNN model due to its computational efficiency.

Cost-Sensitive Learning.

- Helps the classifier prioritize subcircuits that impact performance:

= Misclassifying non-optimizable subcircuits increases overhead without
iImproving optimization.

= Overlooking optimizable subcircuits impedes the optimization process.

= Adjusts the weights of classes (Optimizable 1, Non-Optimizable ) in the Binary
Cross Entropy loss function.
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Conclusion

S

= iRw outperforms Window Rewriting [3] both in node reduction and runtime.

= [Rw achieves better node reduction, demonstrating the effectiveness of

multi-output subcircuit extraction.
[10]

IRw guided by OptGuider achieves significant improvements in runtime, with
only a slight impact on node reduction.
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