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Highlights

We propose iRw, which effectively minimizes node counts in AIGs.

We introduce a subgraph extraction algorithm that efficiently extracts

subcircuits with optimization potential.

We propose a method of machine learning-guided optimization process,

ensuring efficient optimization with minimal runtime overhead.

Our method outperforms SOTA methods both in quality and runtime.

RelatedWorks

Subcircuit Extraction.

- Typically tailored to the needs of rewriting algorithms.

Single-Output Subcircuits.

(e.g., Cut Enumeration [1], Maximum Fanout-Free Cones [2])

- Simplifies the optimization process.

Multi-Output Subcircuits.

(e.g., Reconvergence-driven Window [3], Maximum Fanout-Free Window [4])

- Enables exploration of shared logic between outputs, enhancing efficiency.

Subcircuit Optimization.

- The trade-off between optimization quality and computational overhead.

Method Advantages & Limitations

Pre-Computed Library [1, 5]
3 Fast; May provides optimal optimization.

7 Limited to small subcircuits.

Heuristic Resynthesis [2, 3]
3 Fast; Can handle larger subcircuits.

7 May not deliver optimal optimization.

Exact Resynthesis [6, 7]
3 Provides the best solutions; Handles large subcircuits.

7 Requires substantial computational resources.

ML-Guided Optimization [8, 9].

- Optimization strategies are adapted to the input circuit to enhance efficiency.
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Figure 1. Overview of the iRw.

iRw iteratively processes each node of a given AIG G, excluding primary inputs, as

the pivot node P , with a subcircuit input size limit K , following these stages:

¶ Subcircuit Extraction.

Single-Output Subcircuits: S = TFI(G, K, P )
Extracts the Transitive Fan-In (TFI) of the pivot node P , ensuring that the

number of inputs in S does not exceed the limit |Inputs(S)| ≤ K .

Expansion to Multi-Output Subcircuits: S′ = {Si ∪ TFO(Si) | Si ∈ S}
For each single-output subcircuit Si, explores its Transitive Fan-Out (TFO) to

extend it into a multi-output subcircuit.

Filter by Reconvergence: Sfiltered = {S′ | S′ contains reconvergent paths}
Retains subcircuits that contain reconvergent paths, as these offer optimization

potential for observability-based optimizations (e.g., resubstitution).

· Subcircuit Optimization.

Initial Optimization: Balance, Resubstitution.

Further Optimization: Rewrite, Refactor.

OptGuider: Identifies subcircuits that can be optimized by the futher

optimization stage, minimizing computational overhead.

Node Feature Encoding.

- Edge information is integrated into AND gate representations.

- The logical level of node v in the AIG is encoded as:

PE(v,2i) = sin
(

level(v)
100002i/d

)
, PE(v,2i+1) = cos

(
level(v)

100002i/d

)
. (1)

Lightweight GNN.

- GraphSAGE [10] is used as the GNN model due to its computational efficiency.

Cost-Sensitive Learning.

- Helps the classifier prioritize subcircuits that impact performance:

Misclassifying non-optimizable subcircuits increases overhead without

improving optimization.

Overlooking optimizable subcircuits impedes the optimization process.

Adjusts the weights of classes (Optimizable ↑, Non-Optimizable ↓) in the Binary

Cross Entropy loss function.

Experimental Results

Performance Comparison Between iRw and SOTA Rewriting.

Benchmark
Window Rewriting [3] iRw

Until Convergence First Iteration Until Convergence

Name # Nodes # Nodes Time # Nodes Time # Nodes Time

adder 1,020 892 0.04 892 0.13 892 0.28

bar 3,336 2,952 3.76 2,952 0.62 2,952 1.17

hyp 214,335 204,926 20.28 204,926 19.90 204,926 40.38

i2c 1,342 1,291 0.10 1,289 0.14 1,273 0.58

int2float 260 239 0.02 232 0.09 226 0.36

log2 32,060 29,700 6.59 29,603 5.19 29,556 28.55

multiplier 27,062 24,566 3.89 24,426 3.93 24,426 8.80

sin 5,416 5,132 1.85 5,115 1.05 5,095 7.73

sqrt 24,618 18,325 2.95 18,279 2.42 18,236 16.17

square 18,484 16,606 2.72 16,386 2.04 16,316 6.47

Average - 9.79% - 10.32% - 10.78% -

Total - - 42.20 35.51 - 110.49

Impact of Multi-Output Subcircuit Extraction.

Method # Initial Nodes # Optimized Nodes Average Improvement

b; rs -K 6; rw; rf;
327,933

314,793 4.01%

iRw 304,100 10.32%

Performance Comparison Between iRwwith and without OptGuider.
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(a) Node Reduction comparison.
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(b) Runtime Comparison.

Settings:

- Experiments were run on a 2.6 GHz AMD EPYC 7H12 CPU.

- Input size K = 6 was set for all configurable algorithms to ensure fair comparison.

Conclusion

iRw outperforms Window Rewriting [3] both in node reduction and runtime.

iRw achieves better node reduction, demonstrating the effectiveness of

multi-output subcircuit extraction.

iRw guided by OptGuider achieves significant improvements in runtime, with

only a slight impact on node reduction.
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