WideGate: Beyond Directed Acyclic Graph Learning
in Subcircuit Boundary Prediction

Jiawei Liub2 1, Zhiyan Liu!, Xun He!l, Jianwang Zhail¥, Zhengyuan Shi2:3:T, Qiang Xu?3, Bei Yu?, Chuan Shil+#
Beijing University of Posts and Telecommunications 2 National Center of Technology Innovation for EDA
3The Chinese University of Hong Kong

Abstract—Subcircuit boundary prediction is an important
application of machine learning in logical analysis, effectively
supporting tasks such as functional verification and logic op-
timization. Existing methods often convert circuits into and-
inverter graphs and then use directed acyclic graph neural net-
works to perform this task. However, two key characteristics of
subcircuit boundary prediction do not align with the fundamental
assumptions of directed acyclic graph (DAG) learning, which lim-
its the model’s expressiveness and generalization capabilities. To
break these assumptions, we propose WideGate, which includes
a receptive field generation module that extends beyond the fanin
cone and fanout cone, as well as an adaptive aggregation module
that focuses on boundaries. Extensive experiments show that
WideGate significantly outperforms existing methods in terms of
prediction accuracy and training efficiency for subcircuit bound-
ary prediction. The code is available at https://github.com/BUPT-
GAMMA/WideGate.

I. INTRODUCTION

With the rise of deep learning in logic analysis and design,
subcircuit boundary prediction has become a well-known basic
task with extensive important applications in tasks such as
functional verification, malicious logic detection, and macro-
block optimization [1]. For example, combining subcircuit
boundary prediction with network flow algorithms can be
used to identify subcircuits [1], and when integrated with
XOR and MAJ tasks, it can be utilized for extracting adder
trees [2]. Compared to traditional structural [3] or functional
methods [4], approaches that incorporate subcircuit boundary
prediction have been proven to significantly enhance efficiency
and accuracy in various downstream tasks [1] [2].

Since Boolean circuits can be viewed as directed acyclic
graphs (DAGs), existing methods typically adopt DAG-based
graph neural networks (GNNs) to handle related tasks, in-
cluding the subcircuit boundary prediction task. The earliest
method is ABGNN [1], which aggregates information within
the fanin cone and fanout cone to predict the subcircuit
boundaries in netlists, significantly outperforming traditional
methods [5]-[7]. Since any Boolean circuit can be converted
into an and-inverter graph (AIG), FGNN2 [8] predicts sub-
circuit boundaries on AIGs and improves ABGNN through
unidirectional message passing and pre-training, thereby en-
hancing the model’s functionality modeling capability.

However, are DAG-based GNNs really suitable for the
subcircuit boundary prediction task? In Fig. 1(a), we can

t This work was partly done as an intern at National Center of Technology
Innovation for EDA, P. R. China.
1 Corresponding author: Jianwang Zhai, Chuan Shi.

PO,

PO,

POg

Half Adder |
Full Adder
D Output Boundary
(a) llustration of subcircuits and output boundaries in an AIG.

@ @ @ Boundary
E :Cz'Imercorrelation

St o e B 4 .
= << — Neighbor
1 Heterophily

NOT L>o

1 |
3 @ AND -
= {IFanin Cone

(b) Challenges in subcircuit boundary
prediction task.

Q¢ & DAG-based GNNs (e.g., FGNN2)
@ Slow Training Speed

(@ Reachability Assumption

@ Homophily Assumption
U ? S° WideGate e
QO (© Fast Training Speed | -94.74%
! AR © Boundary-aware Recall
© Heterophily-aware J{43.01%

(c) Model comparisons on subcircuit output
boundary prediction task.

Fig. 1 Illustration, challenges and model comparisons on the
subcircuit boundary prediction task.

observe that the output boundaries of the same subcircuit
often exhibit strong positional correlations, and capturing these
correlations is crucial for accurately identifying subcircuit
boundaries. Additionally, as shown in Fig. 1(b), most boundary
nodes have non-boundary nodes as their direct neighbors,
which is commonly referred to as neighbor heterophily [9].
However, most previous methods hold two prior assumptions
of DAG learning: the reachability assumption [10] and the
homophily assumption [9]. In the reachability assumption,
DAG learning posits that valuable information is often located
within the fanin cone [8] or fanout cone [1], thus existing
methods overlook the intercorrelations between boundaries.
In the homophily assumption, DAG learning assumes that
neighboring nodes often belong to the same class, leading
existing methods to make the representations of boundary
nodes and non-boundary nodes overly similar. As shown
in TABLE II, FGNN2 [8] performs poorly in situations with
low label ratio, indicating that its expressiveness and gen-
eralization capabilities are still limited. Considering that the
two important characteristics of boundary intercorrelation and
neighbor heterophily contradict the fundamental assumptions
of DAG learning, we believe this might be the fundamental
reason limiting the predictive capability of existing methods.

Therefore, to enhance the model’s predictive capability, the
key lies in breaking the two assumptions of DAG learning
while maintaining structural and functional modeling.

To avoid being constrained by these two assumptions, this
paper proposes a novel approach called WideGate. Firstly, to
capture the boundary intercorrelation, we break the limitation
that reachability can only be searched forward or backward,
employing bidirectional search to ensure that the receptive
fields of boundary nodes include other boundary nodes in
the same subcircuit. During the bidirectional search process,
we distinguish the direction information of each edge and
incorporate this information into the subsequent GNN learning
phase. Secondly, to alleviate the issue of neighbor heterophily,
we weaken the influence of non-boundary nodes on boundary
nodes during the GNN aggregation process through nega-
tive attention, and strengthen the self-influence of boundary
nodes via self-aggregation. Finally, we adopt the synchronous
message-passing to improve the training speed of the model.

The main contributions are summarized as follows:

o This work is the first to investigate the limitations of
DAG-based GNNss in the subcircuit boundary prediction
task and identifies two key challenges: boundary inter-
correlation and neighbor heterophily.

o To capture the boundary intercorrelation, we propose
a receptive field generation module that incorporates
bidirectional search, thereby exceeding the scope of the
fanin cone or fanout cone.

o To account for neighbor heterophily, we propose an adap-
tive aggregation module that can integrate more relevant
information for boundary nodes.

« We conduct extensive experiments on subcircuit bound-
ary prediction tasks. The experimental results show that
WideGate significantly improves prediction accuracy and
training efficiency compared to existing methods. For
example, as shown in Fig. 1(c), WideGate improves pre-
diction Recall by 43.01% over FGNN2, with a reduction
in training time of 94.74%.

II. PRELIMINARIES AND RELATED WORKS
A. Boolean Networks and And-inverter Graphs
Boolean networks refer to networks composed of logical gates
such as AND, OR, and NOT. Due to the ability to transform
any Boolean network into AIGs using De Morgan’s laws,
AlGs are widely used during the logic synthesis and formal
verification phases. The properties of AIGs can be character-
ized from both structural and functional perspectives, which
has inspired two traditional approaches to AIG processing:
structural hashing [3] [5] and functional propagation [4] [5].
However, these methods face challenges in scalability and are
difficult to adapt to modern computing resources [2], which
have driven the development of AIG learning [1] [2].

B. DAG Learning for AIG-related Tasks

Due to the DAG nature of AIGs, existing methods typically
use DAG-based GNNs to learn node representations. One
representative method is DAGNN [11], which defines the
reachability scope of message passing based on partial order-

ing, corresponding to the fanin cone in AIGs. DeepGate [12]
builds upon DAGNN by improving it to consider the re-
convergent structure characteristics of circuits and applies
it to the signal probability prediction task. DeepGate2 [13]
further decouples structural representation from functional
representation, developing a circuit pretraining model that sup-
ports Boolean satisfiability (SAT)-related downstream tasks.
FGNN2 [8] integrates DAGNN with contrastive learning for
circuit pretraining, significantly outperforming baseline meth-
ods like ABGNN [1] in subcircuit boundary prediction task.

However, DAG-based GNNs have some limitations, such
as the time-consuming nature [10] of asynchronous message
passing and strong assumptions about reachability [10] and ho-
mophily [14]. Therefore, recent methods have begun to explore
learning architectures that surpass DAG-based GNNs. For
example, Gamora [2] combines synchronous message passing
with multi-task learning, effectively supporting the adder tree
extraction task. HOGA [15] proposes a non-GNN model that
transforms GNN message passing into data preprocessing
and then uses a hop-wise attention mechanism to learn the
intrinsic relationships between nodes at different distances. Po-
larGate [16] employs synchronous message passing combined
with logical operators to break the functionality representation
bottleneck. These methods significantly improve the training
efficiency and scalability of GNNs. However, they are not
customized for the subcircuit boundary prediction task and
ignore its important characteristics.

C. Problem Definition

An AIG consists of AND gates, NOT gates, and the inter-
connects between them. In an AIG, a subcircuit refers to a
functional block that performs simple arithmetic operations,
such as full adders and half adders. Typically, our goal is to
predict whether each gate is located on the boundary of a
subcircuit. Following the setup of previous works [1] [8], we
focus on predicting the boundaries of adders, which are the
primary functional subcircuits.

Problem 1 (Subcircuit Boundary Prediction). Given an AIG,
predict whether each gate is located on the boundaries of any
adder.

Based on the relationship between the gate’s output wire
and the subcircuit, this problem can be further divided into
two tasks: subcircuit input boundary prediction (IBP) and
subcircuit output boundary prediction (OBP).

III. THE PROPOSED WIDEGATE

A. Graph Construction and Feature Initialization Module

Before diving into the detailed algorithm, we introduce the
graph construction, feature initialization, and corresponding
notation used in this paper. Let G = (V, &) denote an AIG,
where V = {v1,...,vun} represents N nodes, and € denotes
the directed edges pointing from source nodes to target nodes.
Additionally, all edges collectively form the adjacency matrix
A, where A;; = 1if (i,5) € &, and A;; = 0 otherwise.
Following the setup of related works [2] [8] [15], we define
the AIG as a graph consisting only of primary inputs (PIs),

[AND Gate (Non-Boundary) [NOT Gate
[AND Gate (Boundary) --» NOT Edge

Full Adder Boundary Node @ Non-Boundary Node ﬁ Wi

Features

PO, PO,

PO PO, i(a) Graph Construction and Feature Initialization Modulei!

\r

Functional
Information

I
I

I

I

|

| * PI/PO/AND nodes

i * NOT edges

I

I

|

Structural
Information
AIG Topology

Receptive Field

O Predecessor
O Successor
O Boundary

|f‘> Forward Search

1 Layer &

Backward Search

ESE

©

Attention Score a € [~1,1]

O

5 e
CD

@l oy
! I
! I
! Il
D |
Forward Search Backward Search
2,4 Layer 4%
k¢, Layer R

AIG () Adaptive Aggregation Module

Fig. 2 Illustration of WideGate.

AND gates and primary outputs (POs) as nodes, while NOT
gates are defined as edges. Therefore, we use A;; = —1 to
indicate a NOT gate on the edge.

As for node features, we follow the approach used by
Gamora [2] and HOGA [15] by considering the impact of
both node types and edge types. The construction of the 3-
dimensional feature vector is as follows: the first dimension
records whether the node is an AND node, and the second
and third dimensions record whether the two input edges have
NOT edges. For example, in Fig. 2(a), node 8 and node 7
are internal nodes with zero and two NOT edge(s), so their
feature vectors are [1, 0, 0] and [1, 1, 1], correspondingly.
Then, for any node 7, the feature vector x; is mapped to obtain
the initialized embedding hY = o (:ciW(O)), where o is an
activation function, and W) is a parameter matrix.

B. Receptive Field Generation Module: Beyond Fanin Cones
In Fig. 1(a), we observe that multiple boundary nodes of the
same subcircuit are often not within each other’s fanin cone
or fanout cone but share a special positional correlation. To
leverage this boundary intercorrelation, we design a special-
ized receptive field generation module as shown in Fig. 2(b).

The core of WideGate’s receptive field generation method
lies in bidirectional search. Existing GNN methods only per-
form forward or backward search [1] [8], which confines their
receptive fields to the fanin cone or fanout cone. In contrast,
WideGate conducts both forward and backward searches in
each step, thereby efficiently placing multiple boundary nodes
within each other’s receptive fields. For example, in Fig. 2(b),
node 9 first obtains information about node 8 through a for-
ward search and then gets information about node 10 through
a backward search. Similarly, node 10 needs only a forward

followed by a backward search to obtain information about
node 9. Note that bidirectional search is not the same as non-
directional search. For instance, when using non-directional
search, node 6 (non-boundary node) and node 10 (boundary
node) would be equally considered second-order neighbors
of node 9, thus making it impossible to distinguish between
them during the GNN learning process. Bidirectional search,
however, records that node 6 is reached through two forward
searches, whereas node 10 is reached through one forward
search and one backward search.

Additionally, bidirectional search can be efficiently inte-
grated into the GNN learning framework through distinguish-
able matrix operations and parameter matrices. For clarity,
we mark A as A_,, and its transposed matrix Al as A_.
Without loss of generality, we use hz(;) = A_,hz(.O)WL}) and
hE}_) = A<_h§0)W<(_1) [17] to denote information aggregated
from the two directions, where W) and W) are different
parameter matrices. Then, we sum them to serve as the input
hgl) = h1(1_)> +h§2 for the next layer of the GNN. This update
process can be seen as performing forward and backward
searches for the target node 7, and it can be extended to multi-
layer GNNs. For example, after two layers of GNN, the node
representations can be expanded as follows:

R =a. A h"WOWD 1A A BOWHWS
+A A BOWOIWD LA A BOWEIWD,

Note that four terms in Equation (1) correspond to the four
combinations of performing forward or backward searches
in two steps. In other words, the first two terms contain

information from the fanin cone and fanout cone, while the
latter two terms can capture information beyond the fanin cone

ey

> ey
g S 0.8
e 0.8 B
3 0.2424 3 0.1877 o7
aQ @
S 06 H 06
= = 05
ey 04 ay 0.4
S 3
g 0.0386 2 0.1366 03
3 0.2 3
o @ 0.2
Non-Boundary Boundary Non-Boundary Boundary

(a) Input Boundary CM (b) Output Boundary CM

Fig. 3 The compatibility matrix (CM) and the neighbor het-
erophily in subcircuit boundary prediction task.

and fanout cone. Additionally, since the bidirectional searches
for each node do not interfere with each other, this process can
be executed in parallel. This significantly improves training
efficiency compared to FGNN2 [8], which requires each node
to wait for updates from its predecessors.

C. Adaptive Aggregation Module: Focusing on Boundaries

As shown in Fig. 3, neighbor heterophily is another impor-
tant characteristic of the subcircuit boundary prediction task.
However, based on the homophily assumption [9], existing
methods typically use averaging [1] or weighted averaging
based on edge types [8], which makes the representations of
boundary nodes too similar to those of their non-boundary
neighbors. To make the representations of boundary nodes
more distinguishable from non-boundary nodes, we break the
homophily assumption of GNNs, thereby allowing boundary
nodes to focus more on information from other boundary
nodes, as shown in Fig. 2(c).

Firstly, since boundary nodes are certainly of the same
category as itself, we incorporate self-information aggregation
at each layer of the GNN, which can reduce the risk of the
node being affected by its non-boundary neighbors. Secondly,
because the categories of neighboring nodes are unknown, we
employ a negative attention mechanism to adaptively adjust
the influence of neighbor information, making it more likely
for boundary node information to affect other boundary nodes.
Unlike traditional attention mechanisms where scores range
from O to 1, our negative attention scores range from -1 to 1,
which has been proven effective for heterophilic graphs from
a spectral graph theory perspective [14].

Considering both boundary intercorrelation and neighbor
heterophily in the aggregation process of WideGate, we define
the following three messages m:

m® = R,

tanh (aT [h(.l_l) h(.l_l)D
O] L [RGY
J b

S v did; 2)

JEN;
tanh (@ [A{'7", R
m% _ [3 L] h§l_1)7
LR V did;
where d; represents the degree of node i, a is a learnable
attention score, and tanh(-) maps the attention score to the
range [—1,1]. Then, the complete message-passing function

TABLE I The statistics of AIG datasets.

‘ ‘ Architectures ‘ # ‘
Brent-Kung Sklansky
Cond-Sum Block Carry Look-head
Hybrid Carry Look-head
Adder Kogg}l/e—Stone (I:Tery Select 173
Ling Carry-skip
Sklansky Ripple-Carry
Hybrid Brent-Kung
Subtractor Koggle-Stone Cond-Sum 645
Ling Sklansky
Array Overturned-stairs
L. Booth-Encodin: (4,2) compressor
Multiplier Wallace ¢ (7,3) coﬁnter 3788
Dadda Redundant binary addition
Divider Array 1180
Total / 6786

of WideGate is as follows:

h =0 (mOW, + smUwWY + (1 - Hml WD), 6)
where [is a hyperparameter between 0 and 1, defaulting
to 0.5. Ws(gf, WO and W are three different parameter
matrices in the [-th layer, and o is an activation function.

After L layers of aggregation, the embeddings of all layers
are used to generate the prediction value ¢; for any node i:

gi=o ([hgm, o h§“] Wpred) , &)

where o is an activation function, W),,..4 is a parameter matrix.

Considering that the labels for boundary nodes are 1 and
for non-boundary nodes are 0, we use the binary cross-entropy
(BCE) loss £ to train the model:

€= Dlorlos() + (1 -y log1 =g}

IV. EXPERIMENTS

In this section, we investigate the performance of WideGate.
First, we introduce the evaluation tasks, metrics, datasets, and
baselines. Then, we address the following questions:

« (Section I'V-C) Can WideGate support various subcircuit
boundary prediction tasks?

o (Section IV-D) Does WideGate perform well with differ-
ent magnitudes of training data?

o (Section IV-E) Does WideGate perform well with differ-
ent aggregation layers?

e (Section IV-F) Do each of the modules in WideGate
contribute positively to the final model output?

A. Evaluation Tasks and Metrics
To evaluate the model’s performance on the subcircuit bound-
ary prediction task, we conduct experiments on both IBP and
OBP tasks. We use two evaluation metrics from FGNN2 [8]:
Recall and Fl1-score. These two metrics focus only on bound-
ary nodes, which is most meaningful for our task because
they are not affected by the accuracy of non-boundary nodes.
Additionally, the average training time per epoch (i.e., Avg.
Runtime) is used to evaluate the model’s training speed.
Moreover, to provide a more comprehensive comparison,
we introduce two additional evaluation metrics related to non-

TABLE II Results on the subcircuit output boundary prediction (OBP) task. (Label ratio=5%)

Metrics GraphSAGE HOGA RelGCN FGNN2 FGNN2+Pretrain WideGate Improvement (%) ‘
Recall 1 0.6298 0.3900 0.6448 0.5544 0.6806 0.9733 43.01%
F1 score 1 0.7128 0.4925 0.7223 0.6624 0.7522 0.9769 29.87%
TNR t 0.9716 0.9599 0.9710 0.9753 0.9733 0.9960 2.12%
Accuracy T 0.9131 0.8623 09151 0.9032 0.9232 0.9921 7.46%
Avg. Runtime (s) | 1.2705 23797 1.8795 65.3075 63.9194 3.1669 94.74%

TABLE III Results on the subcircuit input boundary prediction (IBP) task. (Label ratio=5%)

Metrics GraphSAGE HOGA RelGCN FGNN2 FGNN2+Pretrain WideGate Improvement (%) ‘
Recall 1 0.8271 0.7040 0.8297 0.8047 0.8781 0.9935 13.14%
F1 score 1 0.8115 0.7623 0.8137 0.8003 0.8412 0.9938 18.14%
TNR t 0.9502 0.9662 0.9506 0.9514 0.9506 0.9986 3.35%
Accuracy T 0.9267 09162 0.9276 0.9234 0.9367 0.9976 6.50%
Avg. Runtime (s) | 1.3063 24101 1.8993 68.5559 67.8344 3.1541 94.85%

boundary nodes: True Negative Rate (TNR) and Accuracy.
TNR calculates the proportion of non-boundary nodes that
are correctly predicted out of all non-boundary nodes, while
Accuracy measures the proportion of nodes that are correctly
predicted out of all nodes. In other words, TNR considers
only non-boundary nodes, whereas Accuracy considers both
boundary and non-boundary nodes.

B. Datasets and Baselines

We use an extended version of the FGNN2 dataset [8],
including adders, subtractors, multipliers, and dividers. These
circuits are synthesized into gate-level netlists using Synopsys
Design Compiler and then converted into AIG format using
ABC [18]. The word lengths of circuits range from 8 bits to
32 bits, and the number of nodes varies from a few hundred
to several thousand. The structures and functionalities of these
circuits span a wide range, making them highly challenging.
The detailed information is provided in TABLE I. In the
experiment, we set the label rate to 0.05, meaning that both
the training set and the validation set each contain 5% of the
data, with the remainder allocated as the test set.

For the baseline models, we choose the current state-of-the-
art model FGNN2 [8] for this task, as well as the strongest
baseline model from the FGNN2 paper, RelGCN [19]. Ad-
ditionally, we add the classic GraphSAGE [20] model and
the latest generalizable circuit learning model HOGA [15] as
baselines. For FGNN2, we compare two versions. FGNN2
refers to the model trained directly on the training data
without considering pretraining. FGNN2+Pretrain indicates
further fine-tuning on the training set using the open-sourced
pretrained FGNN2 model [8]. FGNN2 uses asynchronous
message passing and does not require setting the number of
layers. For all other models, the number of layers defaults to
8, and the final node embedding dimension is 256. All models
are trained using an early stopping strategy on a Linux server
equipped with an NVIDIA 3090 GPU, with a maximum of
200 epochs and the patience is set to 50 epochs.

C. Main Results

TABLE II presents the experimental results of the OBP
task. We have the following observations: Firstly, WideGate
demonstrates the best results across two commonly used
metrics (Recall, F1-score). Compared to the strongest baseline
(FGNN2+Pretrain), WideGate improves Recall by 43.01% and
F1-score by 29.87%, while reducing the average training time
by 94.74%. This showcases the effectiveness and efficiency
of WideGate. Secondly, almost all models perform well in
terms of TNR and Accuracy, because predicting non-boundary
nodes is much easier than predicting boundary nodes, and non-
boundary nodes constitute a large proportion of all nodes.
In some cases, the model’s ability to predict non-boundary
nodes and boundary nodes cannot be achieved simultane-
ously. For example, HOGA performs well on non-boundary
nodes (TNR=0.9599) but poorly on boundary nodes (FI-
score=0.4925). The pretraining step in FGNN2 improves the
Fl1-score but at the cost of a slight decrease in TNR. In con-
trast, WideGate performs best in predicting both non-boundary
and boundary nodes, reflecting the model’s versatility.

Similarly, TABLE III presents the results of the IBP task.
Based on the results, we have the following observations.
Firstly, similar to the OBP task, WideGate surpasses the
baseline models across all metrics. Specifically, for the com-
monly used evaluation metrics Recall and F1-score, WideGate
achieves improvements of 13.14% and 18.14% compared to
FGNN2+Pretrain, with prediction performance approaching
100% (F1-score=99.38%). This demonstrates the high prac-
ticality of WideGate. Secondly, although input boundaries
exhibit stronger heterophily compared to output boundaries
as shown in Fig. 3, the proportion of input boundary nodes
within the entire circuit (19.07%) is higher than that of output
nodes (17.14%). This means that more positive class nodes are
available for training, resulting in overall better performance
of all models on the IBP task compared to the OBP task.

D. Impact of Label Ratio

In the EDA field, obtaining labeled data is often challenging,
so the model’s performance under low label ratios is crucial.

GraphSAGE RelGCN FGNN2-+Pretrain
HOGA FGNN2 WideGate
1.0 1.0
0.81 0.8
2 o
806 506
2 2
= 0.4 w04
0.2 0.2
0.0 0.0
0.01 0.02 0.05 0.1 0.01 0.02 0.05 0.1
Label Ratio Label Ratio
(a) IBP (b) OBP

Fig. 4 Experimental results on different label ratios.

GraphSAGE —+— RelGCN WideGate
1.0 10
0.9
0.9
2 208
3 3
5} B A O
T08 A P %
= = —~ 0.7 Y
= = —
V2 /
07] /. 0.6
y /
051
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
Layer Num Layer Num
(a) IBP (b) OBP

Fig. 5 Experimental results on different GNN layers.

In addition to the default ratio of 0.05, we set three label ratios
for training data: 0.01, 0.02, and 0.10. The ratio of validation
data is the same as training data, with the remaining data
serving as the test set.

Based on the experimental results in Fig. 4, we make the
following observations. Firstly, WideGate exhibits stable and
optimal performance, with an Fl-score significantly higher
than the baseline models. Secondly, WideGate’s advantage is
more pronounced at lower label ratios. For a label ratio of 0.01,
WideGate outperforms the best baseline model by 25.78%
on the IBP task and by 42.60% on the OBP task. Finally,
WideGate surpasses the results of other models trained with
10% of the training data using only 1% of the training data,
demonstrating the model’s strong generalization ability.

E. Impact of Aggregation Layers
To capture information over a broader range, the number of
layers in GNN models can be increased. However, increasing
the number of GNN layers also increases the training time, and
the choice of GNN layers often involves balancing efficiency
and accuracy. As shown in TABLE III and TABLE II, despite
WideGate achieving higher accuracy, its training time at the
same number of layers (8 layers) is slightly longer than
that of some GNN models (e.g., GraphSAGE and RelGCN),
which could limit its applicability. Therefore, we examine
the performance of GNN models at different numbers of
layers to investigate whether WideGate can also achieve good
performance with fewer layers.

We conduct experiments on both IBP and OBP tasks at a
label rate of 0.05 and place the Fl-score results in Fig. 5.
Our observations are as follows: Firstly, WideGate achieves

TABLE IV Ablation results on OBP and IBP tasks.

[OBP IBP |
WideGate (w/o forward search) 0.6960 0.8042
WideGate (w/o backward search) 0.7898 (0.9842
WideGate (w/o self-aggregation) 0.9665 0.9910
WideGate 0.9769 0.9938

significantly higher F1-scores than GraphSAGE and RelGCN
for various layer settings, demonstrating the superiority of
WideGate’s message-passing mechanism. Secondly, although
GraphSAGE is the most efficient model at the same number
of layers, a 2-layer WideGate performs much better than a
9-layer GraphSAGE. Taking the OBP task as an example, the
average runtime of a 2-layer WideGate is just 1.3401 seconds,
even faster than GraphSAGE (1.3873 seconds), and the F1-
score is much higher than that of GraphSAGE. This means that
even in scenarios where training speed is critically important,
WideGate is a better choice than GraphSAGE.

F. Ablation Study

To verify the role of each module, TABLE IV gives the
results of the ablation study. Consistent with TABLE III
and TABLE II, we continue to use a label rate of 0.05 and
an 8-layer model setting. We propose three model variants,
each removing one of the following: forward search (setting
B = 0 in Equation (3)), backward search (setting 8 = 1
in Equation (3)) and self-aggregation (removing the first term
ml(-l)Ws(gf in Equation (3)).

From the experimental results, we make the following
observations: Firstly, the complete model achieves the best
performance, confirming the value of each module. Secondly,
forward search is essential for both tasks, but backward search
plays a significantly larger role in the OBP task than the IBP
task. Finally, even when backward search is removed, the
model still surpasses the baseline models, which means the
adaptive aggregation module enhances the performance.

V. CONCLUSION

Predicting subcircuit boundaries is crucial for several EDA
tasks in logical analysis and design. This paper identifies
two fundamental shortcomings in existing GNN models when
handling this task: the difficulty in considering boundary inter-
correlation and neighbor heterophily, which severely limits the
models’ performance. To address these challenges, we propose
a novel GNN model, WideGate, incorporating a receptive field
generation module and an adaptive aggregation module. We
conduct extensive experiments on subcircuit boundary predic-
tion tasks, and the results validate WideGate’s effectiveness,
efficiency, flexibility, and generalization capabilities.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Program
of China (2022YFB2901100), the National Natural Science
Foundation of China (No. U20B2045, U1936220, 62192784,
62172052, 62002029, 61772082, 62404021), the Beijing Nat-
ural Science Foundation (No. 4244107, QY24204, QY24216),
the General Research Fund of the Hong Kong Research Grants
Council (No. 14212422, 14202824, 14210723, 14211824).

(1]

(2]

[3]

(4]

(5]

(6]

(71

[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Z. He, Z. Wang, C. Bai, H. Yang, and B. Yu, “Graph learning-based
arithmetic block identification,” in IEEE/ACM International Conference
On Computer Aided Design (ICCAD). IEEE, 2021, pp. 1-8.

N. Wu, Y. Li, C. Hao, S. Dai, C. Yu, and Y. Xie, “Gamora: Graph
learning based symbolic reasoning for large-scale boolean networks,” in
ACM/IEEE Design Automation Conference (DAC). IEEE, 2023, pp.
1-6.

W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures
in a sea of bit-level gates,” in 2013 IEEE international symposium on
hardware-oriented security and trust (HOST). 1EEE, 2013, pp. 67-74.
A. Gascon, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanovié,
and S. Malik, “Template-based circuit understanding,” in 2014 Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 2014, pp. 83-90.
P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascén, W. Y. Tan, A. Tiwari,
N. Shankar, S. A. Seshia, and S. Malik, “Reverse engineering digital
circuits using structural and functional analyses,” IEEE Transactions on
Emerging Topics in Computing, vol. 2, no. 1, pp. 63-80, 2013.

X. Wei, Y. Diao, T.-K. Lam, and Y.-L. Wu, “A universal macro block
mapping scheme for arithmetic circuits,” in 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE). 1EEE, 2015, pp.
1629-1634.

A. Fayyazi, S. Shababi, P. Nuzzo, S. Nazarian, and M. Pedram,
“Deep learning-based circuit recognition using sparse mapping and
level-dependent decaying sum circuit representations,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 1EEE,
2019, pp. 638-641.

Z. Wang, C. Bai, Z. He, G. Zhang, Q. Xu, T.-Y. Ho, Y. Huang, and
B. Yu, “Fgnn2: A powerful pre-training framework for learning the logic
functionality of circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2024.

J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” Advances in neural information processing systems,
vol. 33, pp. 7793-7804, 2020.

Y. Luo, V. Thost, and L. Shi, “Transformers over directed acyclic
graphs,” Advances in Neural Information Processing Systems, vol. 36,
2024.

V. Thost and J. Chen, “Directed acyclic graph neural networks,” in
International Conference on Learning Representations (ICLR), 2021.
M. Li, S. Khan, Z. Shi, N. Wang, H. Yu, and Q. Xu, “DeepGate:
Learning neural representations of logic gates,” in ACM/IEEE Design
Automation Conference (DAC), 2022, pp. 667-672.

Z. Shi, H. Pan, S. Khan, M. Li, Y. Liu, J. Huang, H.-L. Zhen,
M. Yuan, Z. Chu, and Q. Xu, “DeepGate2: Functionality-aware circuit
representation learning,” in IEEE/ACM International Conference on
Computer Aided Design (ICCAD). 1EEE, 2023, pp. 1-9.

D. Bo, X. Wang, C. Shi, and H. Shen, “Beyond low-frequency infor-
mation in graph convolutional networks,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 35, no. 5, 2021, pp. 3950-3957.
C. Deng, Z. Yue, C. Yu, G. Sarar, R. Carey, R. Jain, and Z. Zhang, “Less
is more: Hop-wise graph attention for scalable and generalizable learning
on circuits,” in Proceedings of the 61st ACM/IEEE Design Automation
Conference, 2024, pp. 1-6.

J. Liu, J. Zhai, M. Zhao, Z. Lin, B. Yu, and C. Shi, “Polargate: Breaking
the functionality representation bottleneck of and-inverter graph neural
network,” in 2024 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2024.

E. Rossi, B. Charpentier, F. Di Giovanni, F. Frasca, S. Glinnemann, and
M. M. Bronstein, “Edge directionality improves learning on heterophilic
graphs,” in Learning on Graphs Conference. PMLR, 2024, pp. 25-1.
R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010. Springer, 2010, pp. 24-40.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in The semantic web: 15th international conference, ESWC
2018. Springer, 2018, pp. 593-607.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 30, 2017.

