
WideGate: Beyond Directed Acyclic Graph Learning in
Subcircuit Boundary Prediction

Jiawei Liu1,2, Zhiyan Liu1, Xun He1, Jianwang Zhai1,
Zhengyuan Shi2,3, Qiang Xu2,3, Bei Yu3, Chuan Shi1

1 Beijing University of Posts and Telecommunications
2 National Center of Technology Innovation for EDA
3 The Chinese University of Hong Kong

Apr. 2, 2025



1 Introduction

2 Methodologies

3 Evaluations

4 Conclusion

2/24

Outline

2/24



Introduction

3/24



• Predict subcircuit boundaries in and-inverter graphs (AIGs):

• Subcircuit input boundary prediction (IBP).

• Subcircuit output boundary prediction (OBP).

• The importance of AIGs:

• Provide a fundamental representation of logic functions.

• Essential for the synthesis, simulation, verification, and testing stages.

• The applications of subcircuit boundary prediction1:

• Functional verification

• Logic optimization

• Malicious logic detection

1Z. He, et al. (2021). “Graph learning-based arithmetic block identification,” in Proc. ICCAD, pp. 1–8. 4/24

Background: Subcircuit Boundary Prediction

4/24



• Boolean circuits can be viewed as directed acyclic graphs (DAGs).
• Existing methods typically adopt DAG-based graph neural networks (GNNs):

1 ABGNN2

2 FGNN23

• Are DAG-based GNNs really suitable for the subcircuit boundary prediction task?
• Reachability assumption: valuable information is often located within the fanin/fanout cone.

• Homophily assumption: neighboring nodes often belong to the same class.

2Z. He, et al. (2021). “Graph learning-based arithmetic block identification,” in Proc. ICCAD, pp. 1–8.
3Z. Wang, et al. (2024). “Fgnn2: A powerful pre-training framework for learning the logic functionality of

circuits,” TCAD. 5/24

Existing Solutions: DAG-based Graph Neural Networks

5/24



• The output boundaries of the same subcircuit often exhibit strong positional correlations:

• Capture these correlations is crucial for accurately identifying subcircuit boundaries.

• Non-compliance with the reachability assumption.

9

7 8

10

6

4 5

1 2 3

11 1312 14

Fanin Cone

Boundary
Intercorrelation
Neighbor
Heterophily

Homophily Assumption
Reachability Assumption

DAG-based GNNs (e.g., FGNN2)
Slow Training Speed

Heterophily-aware
Boundary-aware

WideGate
Fast Training Speed

Recall
+43.01%

Runtime
-94.74%

(b) Challenges in subcircuit boundary 
prediction task.

(c) Model comparisons on subcircuit output 
boundary prediction task.

NOT

AND

𝐏𝐏𝐏𝐏𝟐𝟐
………

Half Adder
Full Adder
Output Boundary

𝐏𝐏𝐏𝐏𝟏𝟏

𝐏𝐏𝐏𝐏𝟏𝟏𝟏𝟏

𝐏𝐏𝐏𝐏𝟏𝟏𝟏𝟏

𝐏𝐏𝐏𝐏𝟐𝟐𝟐𝟐

𝐏𝐏𝐈𝐈𝟏𝟏
𝐏𝐏𝐈𝐈𝟐𝟐
𝐏𝐏𝐈𝐈𝟑𝟑
𝐏𝐏𝐈𝐈𝟒𝟒

𝐏𝐏𝐈𝐈𝟐𝟐𝟐𝟐
𝐏𝐏𝐈𝐈𝟐𝟐𝟏𝟏
𝐏𝐏𝐈𝐈𝟐𝟐𝟐𝟐

𝐏𝐏𝐈𝐈𝟐𝟐𝟑𝟑

(a) Illustration of subcircuits and output boundaries in an AIG.

Boundary Intercorrelation

Illustration of subcircuits and output boundaries in an AIG.

6/24

Key Point: Boundary Intercorrelation

6/24



• Most boundary nodes have non-boundary nodes as their direct neighbors.

• E.g., among the neighbors of input boundary nodes, 96.14% are non-boundary nodes.

• Non-compliance with the homophily assumption.

9

7 8

10

6

4 5

1 2 3

11 1312 14

Fanin Cone

Boundary
Intercorrelation
Neighbor
Heterophily

Homophily Assumption
Reachability Assumption

DAG-based GNNs (e.g., FGNN2)
Slow Training Speed

Heterophily-aware
Boundary-aware

WideGate
Fast Training Speed

Recall
+43.01%

Runtime
-94.74%

(b) Challenges in subcircuit boundary 
prediction task.

(c) Model comparisons on subcircuit output 
boundary prediction task.

NOT

AND

𝐏𝐏𝐏𝐏𝟐𝟐
………

Half Adder
Full Adder
Output Boundary

𝐏𝐏𝐏𝐏𝟏𝟏

𝐏𝐏𝐏𝐏𝟏𝟏𝟏𝟏

𝐏𝐏𝐏𝐏𝟏𝟏𝟏𝟏

𝐏𝐏𝐏𝐏𝟐𝟐𝟐𝟐

𝐏𝐏𝐈𝐈𝟏𝟏
𝐏𝐏𝐈𝐈𝟐𝟐
𝐏𝐏𝐈𝐈𝟑𝟑
𝐏𝐏𝐈𝐈𝟒𝟒

𝐏𝐏𝐈𝐈𝟐𝟐𝟐𝟐
𝐏𝐏𝐈𝐈𝟐𝟐𝟏𝟏
𝐏𝐏𝐈𝐈𝟐𝟐𝟐𝟐

𝐏𝐏𝐈𝐈𝟐𝟐𝟑𝟑

(a) Illustration of subcircuits and output boundaries in an AIG.

Boundary Intercorrelation

(a) Neighbor Heterophily

Non-Boundary Boundary

No
n-

Bo
un

da
ry

Bo
un

da
ry

0.7576 0.2424

0.9614 0.0386
0.2

0.4

0.6

0.8

(b) Input Boundary CM
Non-Boundary Boundary

No
n-

Bo
un

da
ry

Bo
un

da
ry

0.8123 0.1877

0.8634 0.1366
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Output Boundary CM

The neighbor heterophily and compatibility matrices (CM) in subcircuit boundary prediction task.

7/24

Key Point: Neighbor Heterophily

7/24



Methodologies

8/24



• WideGate consists of several components:

9

7 8

10

6

4 5

1 2 3

11 1312 14

AND Gate (Non-Boundary) NOT Gate
AND Gate (Boundary)

PO1 PO2 PO3 PO4

AIG

Structural 
Information
AIG Topology

Functional 
Information

• PI/PO/AND nodes
• NOT edges

9 Boundary Node 1 Non-Boundary Node

(b) Receptive Field Generation Module

(c) Adaptive Aggregation Module

NOT Edge

Subcircuit Boundary Prediction

MLP�𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖
BCE loss

Forward Search Backward Search
1st Layer

2𝑛𝑛𝑛𝑛 Layer
Forward Search Backward Search

Receptive Field

Node 
Features

…
k𝑡𝑡𝑡 Layer

…

(a) Graph Construction and Feature Initialization Module

Node Embeddings

9

7 8

11 12

+
--

-

1
6

10

+ +
9

7 8

11 12
𝒂𝒂9,11 𝒂𝒂9,12

𝒂𝒂9,7

+

-
-

- +𝒂𝒂9,8

- - -
- +

Attention Score 𝒂𝒂 ∈ [−1,1]

Predecessor

Successor

Boundary

self

Full Adder

9/24

Overall Framework: WideGate

9/24



• Graph construction:
• Nodes: PI, AND, PO.

• Directed edges: pointing from source nodes to target nodes.

• Feature initialization:
• The first dimension: whether the node is an AND node,

• The second and third dimensions: whether the two input edges have NOT edges.

9

7 8

10

6

4 5

1 2 3

11 1312 14

AND Gate (Non-Boundary) NOT Gate
AND Gate (Boundary)

PO1 PO2 PO3 PO4

AIG

Structural 
Information
AIG Topology

Functional 
Information

• PI/PO/AND nodes
• NOT edges

9 Boundary Node 1 Non-Boundary Node

(b) Receptive Field Generation Module

(c) Adaptive Aggregation Module

NOT Edge

Subcircuit Boundary Prediction

MLP�𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖
BCE loss

Forward Search Backward Search
1st Layer

2𝑛𝑛𝑛𝑛 Layer
Forward Search Backward Search

Receptive Field

Node 
Features

…
k𝑡𝑡𝑡 Layer

…

(a) Graph Construction and Feature Initialization Module

Node Embeddings

9

7 8

11 12

+
--

-

1
6

10

+ +
9

7 8

11 12
𝒂𝒂9,11 𝒂𝒂9,12

𝒂𝒂9,7

+

-
-

- +𝒂𝒂9,8

- - -
- +

Attention Score 𝒂𝒂 ∈ [−1,1]

Predecessor

Successor

Boundary

self

Full Adder

10/24

Part One: Graph Construction and Feature Initialization Module

10/24



• Bidirectional search:

• Both forward and backward searches in each step.

• Efficiently integrated into GNN learning.

h(2)
i = A→A→h(0)

i W(1)
→ W(2)

→ + A←A←h(0)
i W(1)

← W(2)
←

+A←A→h(0)
i W(1)

→ W(2)
← + A→A←h(0)

i W(1)
← W(2)

→ .

(1)

9

7 8

10

6

4 5

1 2 3

11 1312 14

AND Gate (Non-Boundary) NOT Gate
AND Gate (Boundary)

PO1 PO2 PO3 PO4

AIG

Structural 
Information
AIG Topology

Functional 
Information

• PI/PO/AND nodes
• NOT edges

9 Boundary Node 1 Non-Boundary Node

(b) Receptive Field Generation Module

(c) Adaptive Aggregation Module

NOT Edge

Subcircuit Boundary Prediction

MLP�𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖
BCE loss

Forward Search Backward Search
1st Layer

2𝑛𝑛𝑛𝑛 Layer
Forward Search Backward Search

Receptive Field

Node 
Features

…
k𝑡𝑡𝑡 Layer

…

(a) Graph Construction and Feature Initialization Module

Node Embeddings

9

7 8

11 12

+
--

-

1
6

10

+ +
9

7 8

11 12
𝒂𝒂9,11 𝒂𝒂9,12

𝒂𝒂9,7

+

-
-

- +𝒂𝒂9,8

- - -
- +

Attention Score 𝒂𝒂 ∈ [−1,1]

Predecessor

Successor

Boundary

self

Full Adder

11/24

Part Two: Receptive Field Generation Module

11/24



• Self-information aggregation.

• Motivation: boundary nodes are certainly of the same category as itself.

• Negative attention mechanism.

• Motivation: the categories of neighboring nodes are unknown.

9

7 8

10

6

4 5

1 2 3

11 1312 14

AND Gate (Non-Boundary) NOT Gate
AND Gate (Boundary)

PO1 PO2 PO3 PO4

AIG

Structural 
Information
AIG Topology

Functional 
Information

• PI/PO/AND nodes
• NOT edges

9 Boundary Node 1 Non-Boundary Node

(b) Receptive Field Generation Module

(c) Adaptive Aggregation Module

NOT Edge

Subcircuit Boundary Prediction

MLP�𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖
BCE loss

Forward Search Backward Search
1st Layer

2𝑛𝑛𝑛𝑛 Layer
Forward Search Backward Search

Receptive Field

Node 
Features

…
k𝑡𝑡𝑡 Layer

…

(a) Graph Construction and Feature Initialization Module

Node Embeddings

9

7 8

11 12

+
--

-

1
6

10

+ +
9

7 8

11 12
𝒂𝒂9,11 𝒂𝒂9,12

𝒂𝒂9,7

+

-
-

- +𝒂𝒂9,8

- - -
- +

Attention Score 𝒂𝒂 ∈ [−1,1]

Predecessor

Successor

Boundary

self

Full Adder

12/24

Part Three: Adaptive Aggregation Module

12/24



• The adaptive aggregation of WideGate is as follows:

m(l)
i = h(l−1)

i ,

m(l)
−→
Ni

=
∑
j∈
−→
Ni

tanh
(

a⊤
[
h(l−1)

i ,h(l−1)
j

])
√

didj
h(l−1)

j ,

m(l)
←−
Ni

=
∑
j∈
←−
Ni

tanh
(

a⊤
[
h(l−1)

i ,h(l−1)
j

])
√

didj
h(l−1)

j .

(2)

• The complete message-passing function of WideGate is as follows:

h(l)
i = σ

(
m(l)

i W(l)
self + βm(l)

−→
Ni

W(l)
→ + (1 − β)m(l)

←−
Ni

W(l)
←

)
. (3)

• After L layers of aggregation, the embeddings of all layers are used to predict ŷi:

ŷi = σ
([

h(0)
i , . . . ,h(L)

i

]
Wpred

)
. (4)

13/24

Part Three: Adaptive Aggregation Module

13/24



Evaluation

14/24



• Baselines:

1 GraphSAGE4

2 HOGA5

3 RelGCN6

4 FGNN2 and FGNN2 + Pretrain7

4W. Hamilton, et al. (2017). “Inductive representation learning on large graphs,” in Proc. NeurIPS.
5C. Deng, et al. (2024). “Less is more: Hop-wise graph attention for scalable and generalizable learning on

circuits,” in Proc. DAC.
6M. Schlichtkrull, et al. (2018). “Modeling relational data with graph convolutional networks,” in Proc.

ESWC.
7Z. Wang, et al. (2024). “Fgnn2: A powerful pre-training framework for learning the logic functionality of

circuits,” TCAD. 15/24

Baselines

15/24



• We use an extended version of the FGNN2 dataset:
• Including adders, subtractors, multipliers, and dividers.
• Synthesized into gate-level netlists using Synopsys Design Compiler.
• Converted into AIG format using ABC.
• The word lengths of circuits range from 8 bits to 32 bits
• The number of nodes varies from a few hundred to several thousand.

Non-Boundary Boundary

No
n-

Bo
un

da
ry

Bo
un

da
ry

0.7576 0.2424

0.9614 0.0386
0.2

0.4

0.6

0.8

(a) Input Boundary CM

Non-Boundary Boundary

No
n-

Bo
un

da
ry

Bo
un

da
ry

0.8123 0.1877

0.8634 0.1366
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Output Boundary CM

Fig. 3 The compatibility matrix (CM) and the neighbor het-
erophily in subcircuit boundary prediction task.

and fanout cone. Additionally, since the bidirectional searches
for each node do not interfere with each other, this process can
be executed in parallel. This significantly improves training
efficiency compared to FGNN2 [8], which requires each node
to wait for updates from its predecessors.

C. Adaptive Aggregation Module: Focusing on Boundaries

As shown in Fig. 3, neighbor heterophily is another impor-
tant characteristic of the subcircuit boundary prediction task.
However, based on the homophily assumption [9], existing
methods typically use averaging [1] or weighted averaging
based on edge types [8], which makes the representations of
boundary nodes too similar to those of their non-boundary
neighbors. To make the representations of boundary nodes
more distinguishable from non-boundary nodes, we break the
homophily assumption of GNNs, thereby allowing boundary
nodes to focus more on information from other boundary
nodes, as shown in Fig. 2(c).

Firstly, since boundary nodes are certainly of the same
category as itself, we incorporate self-information aggregation
at each layer of the GNN, which can reduce the risk of the
node being affected by its non-boundary neighbors. Secondly,
because the categories of neighboring nodes are unknown, we
employ a negative attention mechanism to adaptively adjust
the influence of neighbor information, making it more likely
for boundary node information to affect other boundary nodes.
Unlike traditional attention mechanisms where scores range
from 0 to 1, our negative attention scores range from -1 to 1,
which has been proven effective for heterophilic graphs from
a spectral graph theory perspective [14].

Considering both boundary intercorrelation and neighbor
heterophily in the aggregation process of WideGate, we define
the following three messages m:

m
(l)
i = h

(l−1)
i ,

m
(l)
−→
Ni

=
∑
j∈
−→
Ni

tanh
(
a⊤

[
h

(l−1)
i ,h

(l−1)
j

])
√

didj
h

(l−1)
j ,

m
(l)
←−
Ni

=
∑
j∈
←−
Ni

tanh
(
a⊤

[
h

(l−1)
i ,h

(l−1)
j

])
√

didj
h

(l−1)
j ,

(2)

where di represents the degree of node i, a is a learnable
attention score, and tanh(·) maps the attention score to the
range [−1, 1]. Then, the complete message-passing function

TABLE I The statistics of AIG datasets.
Architectures #

Adder

Brent-Kung
Cond-Sum

Hybrid
Koggle-Stone

Ling
Sklansky

Sklansky
Block Carry Look-head

Carry Look-head
Carry Select
Carry-skip

Ripple-Carry

1173

Subtractor
Hybrid

Koggle-Stone
Ling

Brent-Kung
Cond-Sum
Sklansky

645

Multiplier

Array
Booth-Encoding

Wallace
Dadda

Overturned-stairs
(4,2) compressor

(7,3) counter
Redundant binary addition

3788

Divider Array 1180
Total / 6786

of WideGate is as follows:
h

(l)
i = σ

(
m

(l)
i W

(l)
self + βm

(l)
−→
Ni

W (l)
→ + (1− β)m

(l)
←−
Ni

W (l)
←

)
, (3)

where β is a hyperparameter between 0 and 1, defaulting
to 0.5. W (l)

self , W (l)
→ and W (l)

← are three different parameter
matrices in the l-th layer, and σ is an activation function.

After L layers of aggregation, the embeddings of all layers
are used to generate the prediction value ŷi for any node i:

ŷi = σ
([

h
(0)
i , . . . ,h

(L)
i

]
Wpred

)
, (4)

where σ is an activation function, Wpred is a parameter matrix.
Considering that the labels for boundary nodes are 1 and

for non-boundary nodes are 0, we use the binary cross-entropy
(BCE) loss L to train the model:

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]. (5)

IV. EXPERIMENTS

In this section, we investigate the performance of WideGate.
First, we introduce the evaluation tasks, metrics, datasets, and
baselines. Then, we address the following questions:
• (Section IV-C) Can WideGate support various subcircuit

boundary prediction tasks?
• (Section IV-D) Does WideGate perform well with differ-

ent magnitudes of training data?
• (Section IV-E) Does WideGate perform well with differ-

ent aggregation layers?
• (Section IV-F) Do each of the modules in WideGate

contribute positively to the final model output?

A. Evaluation Tasks and Metrics
To evaluate the model’s performance on the subcircuit bound-
ary prediction task, we conduct experiments on both IBP and
OBP tasks. We use two evaluation metrics from FGNN2 [8]:
Recall and F1-score. These two metrics focus only on bound-
ary nodes, which is most meaningful for our task because
they are not affected by the accuracy of non-boundary nodes.
Additionally, the average training time per epoch (i.e., Avg.
Runtime) is used to evaluate the model’s training speed.

Moreover, to provide a more comprehensive comparison,
we introduce two additional evaluation metrics related to non-

4

16/24

Datasets

16/24



• Metrics:

1 Recall and F1-score: focus only on boundary nodes.

2 True Negative Rate (TNR): focus only on non-boundary nodes.

3 Accuracy: focus on both boundary and non-boundary nodes.

4 Avg. Runtime: evaluates the model’s training speed.

17/24

Metrics

17/24



• Compared to the strongest baseline (FGNN2+Pretrain), WideGate improves:
• Recall: +43.01%, F1-score : +29.87%, Avg. Runtime: -94.74%.

• WideGate performs best in predicting both non-boundary and boundary nodes.
• HOGA performs well on non-boundaries but poorly on boundaries (F1-score=0.4925).

• The pretraining step in FGNN2 improves the F1-score but at the cost of a decrease in TNR.

TABLE II Results on the subcircuit output boundary prediction (OBP) task. (Label ratio=5%)
Metrics GraphSAGE HOGA RelGCN FGNN2 FGNN2+Pretrain WideGate Improvement (%)
Recall ↑ 0.6298 0.3900 0.6448 0.5544 0.6806 0.9733 43.01%

F1 score ↑ 0.7128 0.4925 0.7223 0.6624 0.7522 0.9769 29.87%
TNR ↑ 0.9716 0.9599 0.9710 0.9753 0.9733 0.9960 2.12%

Accuracy ↑ 0.9131 0.8623 0.9151 0.9032 0.9232 0.9921 7.46%
Avg. Runtime (s) ↓ 1.2705 2.3797 1.8795 65.3075 63.9194 3.1669 94.74%

TABLE III Results on the subcircuit input boundary prediction (IBP) task. (Label ratio=5%)
Metrics GraphSAGE HOGA RelGCN FGNN2 FGNN2+Pretrain WideGate Improvement (%)
Recall ↑ 0.8271 0.7040 0.8297 0.8047 0.8781 0.9935 13.14%

F1 score ↑ 0.8115 0.7623 0.8137 0.8003 0.8412 0.9938 18.14%
TNR ↑ 0.9502 0.9662 0.9506 0.9514 0.9506 0.9986 3.35%

Accuracy ↑ 0.9267 0.9162 0.9276 0.9234 0.9367 0.9976 6.50%
Avg. Runtime (s) ↓ 1.3063 2.4101 1.8993 68.5559 67.8344 3.1541 94.85%

boundary nodes: True Negative Rate (TNR) and Accuracy.
TNR calculates the proportion of non-boundary nodes that
are correctly predicted out of all non-boundary nodes, while
Accuracy measures the proportion of nodes that are correctly
predicted out of all nodes. In other words, TNR considers
only non-boundary nodes, whereas Accuracy considers both
boundary and non-boundary nodes.

B. Datasets and Baselines

We use an extended version of the FGNN2 dataset [8],
including adders, subtractors, multipliers, and dividers. These
circuits are synthesized into gate-level netlists using Synopsys
Design Compiler and then converted into AIG format using
ABC [18]. The word lengths of circuits range from 8 bits to
32 bits, and the number of nodes varies from a few hundred
to several thousand. The structures and functionalities of these
circuits span a wide range, making them highly challenging.
The detailed information is provided in TABLE I. In the
experiment, we set the label rate to 0.05, meaning that both
the training set and the validation set each contain 5% of the
data, with the remainder allocated as the test set.

For the baseline models, we choose the current state-of-the-
art model FGNN2 [8] for this task, as well as the strongest
baseline model from the FGNN2 paper, RelGCN [19]. Ad-
ditionally, we add the classic GraphSAGE [20] model and
the latest generalizable circuit learning model HOGA [15] as
baselines. For FGNN2, we compare two versions. FGNN2
refers to the model trained directly on the training data
without considering pretraining. FGNN2+Pretrain indicates
further fine-tuning on the training set using the open-sourced
pretrained FGNN2 model [8]. FGNN2 uses asynchronous
message passing and does not require setting the number of
layers. For all other models, the number of layers defaults to
8, and the final node embedding dimension is 256. All models
are trained using an early stopping strategy on a Linux server
equipped with an NVIDIA 3090 GPU, with a maximum of
200 epochs and the patience is set to 50 epochs.

C. Main Results
TABLE II presents the experimental results of the OBP
task. We have the following observations: Firstly, WideGate
demonstrates the best results across two commonly used
metrics (Recall, F1-score). Compared to the strongest baseline
(FGNN2+Pretrain), WideGate improves Recall by 43.01% and
F1-score by 29.87%, while reducing the average training time
by 94.74%. This showcases the effectiveness and efficiency
of WideGate. Secondly, almost all models perform well in
terms of TNR and Accuracy, because predicting non-boundary
nodes is much easier than predicting boundary nodes, and non-
boundary nodes constitute a large proportion of all nodes.
In some cases, the model’s ability to predict non-boundary
nodes and boundary nodes cannot be achieved simultane-
ously. For example, HOGA performs well on non-boundary
nodes (TNR=0.9599) but poorly on boundary nodes (F1-
score=0.4925). The pretraining step in FGNN2 improves the
F1-score but at the cost of a slight decrease in TNR. In con-
trast, WideGate performs best in predicting both non-boundary
and boundary nodes, reflecting the model’s versatility.

Similarly, TABLE III presents the results of the IBP task.
Based on the results, we have the following observations.
Firstly, similar to the OBP task, WideGate surpasses the
baseline models across all metrics. Specifically, for the com-
monly used evaluation metrics Recall and F1-score, WideGate
achieves improvements of 13.14% and 18.14% compared to
FGNN2+Pretrain, with prediction performance approaching
100% (F1-score=99.38%). This demonstrates the high prac-
ticality of WideGate. Secondly, although input boundaries
exhibit stronger heterophily compared to output boundaries
as shown in Fig. 3, the proportion of input boundary nodes
within the entire circuit (19.07%) is higher than that of output
nodes (17.14%). This means that more positive class nodes are
available for training, resulting in overall better performance
of all models on the IBP task compared to the OBP task.

D. Impact of Label Ratio
In the EDA field, obtaining labeled data is often challenging,
so the model’s performance under low label ratios is crucial.

5

18/24

Experiment 1: Main Results

18/24



• WideGate exhibits stable and optimal performance for each label ratio:
• F1-score significantly higher than the baseline models.

• WideGate’s advantage is more pronounced at lower label ratios:
• For a label ratio of 0.01, WideGate: +25.78% on the IBP task, +42.60% on the OBP task.

• Strong generalization ability:
• WideGate (1% of the training data) surpasses baselines (10% of the training data).

0.01 0.02 0.05 0.1
Label Ratio

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

(a) IBP

0.01 0.02 0.05 0.1
Label Ratio

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

(b) OBP

GraphSAGE
HOGA

RelGCN
FGNN2

FGNN2+Pretrain
WideGate

19/24

Experiment 2: Impact of Label Ratio

19/24



• WideGate achieves significantly higher F1-scores than GraphSAGE and RelGCN.
• The 2-layer WideGate performs much better than the 9-layer GraphSAGE.

2 3 4 5 6 7 8 9
Layer Num

0.7

0.8

0.9

1.0

F1
-s

co
re

(a) IBP

2 3 4 5 6 7 8 9
Layer Num

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

(b) OBP

GraphSAGE RelGCN WideGate

20/24

Experiment 3: Impact of Aggregation Layers

20/24



• The complete model achieves the best performance.

• Forward search is essential for both tasks.

• Backward search plays a significantly larger role in the OBP task than the IBP task.

• Only forward search + adaptive aggregation module still surpasses the baseline models.

0.01 0.02 0.05 0.1
Label Ratio

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

(a) IBP

0.01 0.02 0.05 0.1
Label Ratio

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

(b) OBP

GraphSAGE
HOGA

RelGCN
FGNN2

FGNN2+Pretrain
WideGate

Fig. 4 Experimental results on different label ratios.

2 3 4 5 6 7 8 9
Layer Num

0.7

0.8

0.9

1.0

F1
-s

co
re

(a) IBP

2 3 4 5 6 7 8 9
Layer Num

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

(b) OBP

GraphSAGE RelGCN WideGate

Fig. 5 Experimental results on different GNN layers.

In addition to the default ratio of 0.05, we set three label ratios
for training data: 0.01, 0.02, and 0.10. The ratio of validation
data is the same as training data, with the remaining data
serving as the test set.

Based on the experimental results in Fig. 4, we make the
following observations. Firstly, WideGate exhibits stable and
optimal performance, with an F1-score significantly higher
than the baseline models. Secondly, WideGate’s advantage is
more pronounced at lower label ratios. For a label ratio of 0.01,
WideGate outperforms the best baseline model by 25.78%
on the IBP task and by 42.60% on the OBP task. Finally,
WideGate surpasses the results of other models trained with
10% of the training data using only 1% of the training data,
demonstrating the model’s strong generalization ability.

E. Impact of Aggregation Layers
To capture information over a broader range, the number of
layers in GNN models can be increased. However, increasing
the number of GNN layers also increases the training time, and
the choice of GNN layers often involves balancing efficiency
and accuracy. As shown in TABLE III and TABLE II, despite
WideGate achieving higher accuracy, its training time at the
same number of layers (8 layers) is slightly longer than
that of some GNN models (e.g., GraphSAGE and RelGCN),
which could limit its applicability. Therefore, we examine
the performance of GNN models at different numbers of
layers to investigate whether WideGate can also achieve good
performance with fewer layers.

We conduct experiments on both IBP and OBP tasks at a
label rate of 0.05 and place the F1-score results in Fig. 5.
Our observations are as follows: Firstly, WideGate achieves

TABLE IV Ablation results on OBP and IBP tasks.
OBP IBP

WideGate (w/o forward search) 0.6960 0.8042
WideGate (w/o backward search) 0.7898 0.9842
WideGate (w/o self-aggregation) 0.9665 0.9910

WideGate 0.9769 0.9938

significantly higher F1-scores than GraphSAGE and RelGCN
for various layer settings, demonstrating the superiority of
WideGate’s message-passing mechanism. Secondly, although
GraphSAGE is the most efficient model at the same number
of layers, a 2-layer WideGate performs much better than a
9-layer GraphSAGE. Taking the OBP task as an example, the
average runtime of a 2-layer WideGate is just 1.3401 seconds,
even faster than GraphSAGE (1.3873 seconds), and the F1-
score is much higher than that of GraphSAGE. This means that
even in scenarios where training speed is critically important,
WideGate is a better choice than GraphSAGE.

F. Ablation Study
To verify the role of each module, TABLE IV gives the
results of the ablation study. Consistent with TABLE III
and TABLE II, we continue to use a label rate of 0.05 and
an 8-layer model setting. We propose three model variants,
each removing one of the following: forward search (setting
β = 0 in Equation (3)), backward search (setting β = 1
in Equation (3)) and self-aggregation (removing the first term
m

(l)
i W

(l)
self in Equation (3)).

From the experimental results, we make the following
observations: Firstly, the complete model achieves the best
performance, confirming the value of each module. Secondly,
forward search is essential for both tasks, but backward search
plays a significantly larger role in the OBP task than the IBP
task. Finally, even when backward search is removed, the
model still surpasses the baseline models, which means the
adaptive aggregation module enhances the performance.

V. CONCLUSION

Predicting subcircuit boundaries is crucial for several EDA
tasks in logical analysis and design. This paper identifies
two fundamental shortcomings in existing GNN models when
handling this task: the difficulty in considering boundary inter-
correlation and neighbor heterophily, which severely limits the
models’ performance. To address these challenges, we propose
a novel GNN model, WideGate, incorporating a receptive field
generation module and an adaptive aggregation module. We
conduct extensive experiments on subcircuit boundary predic-
tion tasks, and the results validate WideGate’s effectiveness,
efficiency, flexibility, and generalization capabilities.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Program
of China (2022YFB2901100), the National Natural Science
Foundation of China (No. U20B2045, U1936220, 62192784,
62172052, 62002029, 61772082, 62404021), the Beijing Nat-
ural Science Foundation (No. 4244107, QY24204, QY24216),
the General Research Fund of the Hong Kong Research Grants
Council (No. 14212422, 14202824, 14210723, 14211824).

6

21/24

Experiment 4: Ablation Study

21/24



Conclusion

22/24



• Investigate the limitations of DAG-based GNNs in the subcircuit boundary prediction:

• Reachability assumption and homophily assumption.

• Identify two key challenges in GNN-based subcircuit boundary prediction:

• Boundary intercorrelation and neighbor heterophily.

• The proposed WideGate:

• Receptive field generation module: capture the boundary intercorrelation.

• Adaptive aggregation module: account for neighbor heterophily.

• Conduct extensive experiments on subcircuit boundary prediction tasks:

• Significantly improves prediction accuracy and training efficiency.

• Strong generalization ability.

23/24

Conclusion

23/24



THANK YOU!

24/24


	Introduction
	Methodologies
	Evaluations
	Conclusion

