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Introduction



. Background: Subcircuit Boundary Prediction

e Predict subcircuit boundaries in and-inverter graphs (AIGs):

® Subcircuit input boundary prediction (IBP).

® Subcircuit output boundary prediction (OBP).
e The importance of AIGs:

¢ Provide a fundamental representation of logic functions.

¢ Essential for the synthesis, simulation, verification, and testing stages.
e The applications of subcircuit boundary prediction':

¢ Functional verification

¢ Logic optimization

® Malicious logic detection

1Z. He, et al. (2021). “Graph learning-based arithmetic block identification,” in Proc. ICCAD, pp. 1-8. 4/24



. Existing Solutions: DAG-based Graph Neural Networks

e Boolean circuits can be viewed as directed acyclic graphs (DAGS).
e Existing methods typically adopt DAG-based graph neural networks (GNNs):

© ABGNN?
@ FGNN2?
e Are DAG-based GNNs really suitable for the subcircuit boundary prediction task?
¢ Reachability assumption: valuable information is often located within the fanin/fanout cone.

¢ Homophily assumption: neighboring nodes often belong to the same class.

7. He, et al. (2021). “Graph learning-based arithmetic block identification,” in Proc. ICCAD, pp. 1-8.
7. Wang, et al. (2024). “Fgnn2: A powerful pre-training framework for learning the logic functionality of
circuits,” TCAD. 524



. Key Point: Boundary Intercorrelation
e The output boundaries of the same subcircuit often exhibit strong positional correlations:

Capture these correlations is crucial for accurately identifying subcircuit boundaries.
Non-compliance with the reachability assumption.
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. Key Point: Neighbor Heterophily

e Most boundary nodes have non-boundary nodes as their direct neighbors.

¢ E.g., among the neighbors of input boundary nodes, 96.14% are non-boundary nodes.

® Non-compliance with the homophily assumption.
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Methodologies



. Overall Framework: WideGate

e WideGate consists of several components:
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. Part One: Graph Construction and Feature Initialization Module

e Graph construction:

® Nodes: PI, AND, PO.

¢ Directed edges: pointing from source nodes to target nodes.
e Feature initialization:

® The first dimension: whether the node is an AND node,

¢ The second and third dimensions: whether the two input edges have NOT edges.
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. Part Two: Receptive Field Generation Module

e Bidirectional search: i (b) Receptive Field GenerationﬂModule
© Both forward and backward searches in each step. Receptive Field (QgQQQ Q~8 C%gj
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. Part Three: Adaptive Aggregation Module

o Self-information aggregation.
® Motivation: boundary nodes are certainly of the same category as itself.
e Negative attention mechanism.

® Motivation: the categories of neighboring nodes are unknown.
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. Part Three: Adaptive Aggregation Module

e The adaptive aggregation of WideGate is as follows:
m,@ _ hlgz—l)’
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e The complete message-passing function of WideGate is as follows:

1

B = o (mOWl) + pmOw + (1 - pmOw?) 3)

e After L layers of aggregation, the embeddings of all layers are used to predict y;:

ji=o ([hf"’, . ,h}”} Wp,ed) . )
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Evaluation



. Baselines

e Baselines:
© GraphSAGE*
@ HOGA>
© RelGCN®
@ FGNN2 and FGNN?2 + Pretrain’

*W. Hamilton, et al. (2017). “Inductive representation learning on large graphs,” in Proc. NeurIPS.

3C. Deng, et al. (2024). “Less is more: Hop-wise graph attention for scalable and generalizable learning on
circuits,” in Proc. DAC.

M. Schlichtkrull, et al. (2018). “Modeling relational data with graph convolutional networks,” in Proc.
ESWC.

7Z. Wang, et al. (2024). “Fgnn2: A powerful pre-training framework for learning the logic functionality of
circuits,” TCAD. 15/24



. Datasets

e We use an extended version of the FGNN2 dataset:
Including adders, subtractors, multipliers, and dividers.
Synthesized into gate-level netlists using Synopsys Design Compiler.
Converted into AIG format using ABC.
The word lengths of circuits range from 8 bits to 32 bits

The number of nodes varies from a few hundred to several thousand.

TABLE I The statistics of AIG datasets.

‘ [ Architectures [ # ]
Brent-Kung Sklansky
Cond-Sum Block Carry Look-head
Hybrid Carry Look-head
Adder Koggle-Stone Carry Select 173
Ling Carry-skip
Sklansky Ripple-Carry
Hybrid Brent-Kung
Subtractor | Koggle-Stone Cond-Sum 645
Ling Sklansky
Array Overturned-stairs
- Booth-Encodin, (4,2) compressor
Multiplier ‘Wallace ¢ (7,3) cozmer 3788
Dadda Redundant binary addition
Divider Array 1180
Total / 6786 16/24




. Metrics

e Metrics:
@ Recall and F1-score: focus only on boundary nodes.
@ True Negative Rate (TNR): focus only on non-boundary nodes.
@ Accuracy: focus on both boundary and non-boundary nodes.

@ Avg. Runtime: evaluates the model’s training speed.

17124



Experiment 1: Main Results

e Compared to the strongest baseline (FGNN2+Pretrain), WideGate improves:

Recall: +43.01%, F1-score : +29.87%, Avg. Runtime: -94.74%.

e WideGate performs best in predicting both non-boundary and boundary nodes.

HOGA performs well on non-boundaries but poorly on boundaries (F1-score=0.4925).

The pretraining step in FGNN2 improves the F1-score but at the cost of a decrease in TNR.

TABLE II Results on the subcircuit output boundary prediction (OBP) task. (Label ratio=5%)

‘ Metrics GraphSAGE  HOGA RelGCN  FGNN2  FGNN2+Pretrain _ WideGate Improvement (%) |
Recall 1 0.6298 0.3900  0.6448 0.5544 0.6806 0.9733 43.01%
F1 score 1 0.7128 0.4925  0.7223 0.6624 0.7522 0.9769 29.87%
TNR 1 09716 0.9599  0.9710 0.9753 0.9733 0.9960 2.12%
Accuracy T 09131 0.8623  0.9151 0.9032 0.9232 0.9921 7.46%
Avg. Runtime (s) | 1.2705 2.3797 1.8795  65.3075 63.9194 3.1669 94.74%

TABLE III Results on the subcircuit input boundary prediction (IBP) task. (Label ratio=5%)

‘ Metrics GraphSAGE HOGA RelGCN FGNN2 FGNN2+Pretrain  WideGate Improvement (%) ‘
Recall T 0.8271 0.7040  0.8297  0.8047 0.8781 0.9935 13.14%
F1 score 1 0.8115 0.7623  0.8137  0.8003 0.8412 0.9938 18.14%
TNR T 0.9502 0.9662  0.9506  0.9514 0.9506 0.9986 3.35%
Accuracy T 0.9267 09162 09276  0.9234 0.9367 0.9976 6.50%
Avg. Runtime (s) | 1.3063 2.4101 1.8993  68.5559 67.8344 3.1541 94.85%
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. Experiment 2: Impact of Label Ratio

¢ WideGate exhibits stable and optimal performance for each label ratio:
F1-score significantly higher than the baseline models.
e WideGate’s advantage is more pronounced at lower label ratios:
For a label ratio of 0.01, WideGate: +25.78% on the IBP task, +42.60% on the OBP task.

e Strong generalization ability:
WideGate (1% of the training data) surpasses baselines (10% of the training data).
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. Experiment 3: Impact of Aggregation Layers

e WideGate achieves significantly higher F1-scores than GraphSAGE and RelGCN.

e The 2-layer WideGate performs much better than the 9-layer GraphSAGE.
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. Experiment 4: Ablation Study

The complete model achieves the best performance.

Forward search is essential for both tasks.

Backward search plays a significantly larger role in the OBP task than the IBP task.

Only forward search + adaptive aggregation module still surpasses the baseline models.

TABLE IV Ablation results on OBP and IBP tasks.

[ OBP IBP |
WideGate (w/o forward search) 0.6960 0.8042
WideGate (w/o backward search) 0.7898  (0.9842
WideGate (w/o self-aggregation)  0.9665 0.9910
WideGate 0.9769 0.9938
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Conclusion



. Conclusion

o Investigate the limitations of DAG-based GNNs in the subcircuit boundary prediction:
® Reachability assumption and homophily assumption.
o Identify two key challenges in GNN-based subcircuit boundary prediction:
® Boundary intercorrelation and neighbor heterophily.
e The proposed WideGate:
® Receptive field generation module: capture the boundary intercorrelation.
® Adaptive aggregation module: account for neighbor heterophily.
e Conduct extensive experiments on subcircuit boundary prediction tasks:
® Significantly improves prediction accuracy and training efficiency.

® Strong generalization ability.
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