

DESIGN, AUTOMATION AND TEST IN EUROPE THE EUROPEAN EVENT FOR ELECTRONIC SYSTEM DESIGN & TEST 31 MARCH – 2 APRIL 2025 LYON, FRANCE

CENTRE DE CONGRÈS DE LYON

WideGate: Beyond Directed Acyclic Graph Learning in Subcircuit Boundary Prediction

Jiawei Liu^{1,2}, Zhiyan Liu¹, Xun He¹, Jianwang Zhai¹, Zhengyuan Shi^{2,3}, Qiang Xu^{2,3}, Bei Yu³, Chuan Shi¹

¹ Beijing University of Posts and Telecommunications
 ² National Center of Technology Innovation for EDA
 ³ The Chinese University of Hong Kong

Apr. 2, 2025

1 Introduction

2 Methodologies

Introduction

Background: Subcircuit Boundary Prediction

- Predict subcircuit boundaries in and-inverter graphs (AIGs):
 - Subcircuit input boundary prediction (IBP).
 - Subcircuit output boundary prediction (OBP).
- The importance of AIGs:
 - Provide a fundamental representation of logic functions.
 - Essential for the synthesis, simulation, verification, and testing stages.
- The applications of subcircuit boundary prediction¹:
 - Functional verification
 - Logic optimization
 - Malicious logic detection

¹Z. He, et al. (2021). "Graph learning-based arithmetic block identification," in *Proc. ICCAD*, pp. 1–8. 4/24

- Boolean circuits can be viewed as directed acyclic graphs (DAGs).
- Existing methods typically adopt DAG-based graph neural networks (GNNs):
 - 1 ABGNN²
 - 2 FGNN2³
- Are DAG-based GNNs really suitable for the subcircuit boundary prediction task?
 - Reachability assumption: valuable information is often located within the fanin/fanout cone.
 - Homophily assumption: neighboring nodes often belong to the same class.

²Z. He, et al. (2021). "Graph learning-based arithmetic block identification," in *Proc. ICCAD*, pp. 1–8.

³Z. Wang, et al. (2024). "Fgnn2: A powerful pre-training framework for learning the logic functionality of circuits," *TCAD*.

Key Point: Boundary Intercorrelation

- The output boundaries of the same subcircuit often exhibit strong positional correlations:
 - Capture these correlations is crucial for accurately identifying subcircuit boundaries.
 - Non-compliance with the reachability assumption.

Illustration of subcircuits and output boundaries in an AIG.

Key Point: Neighbor Heterophily

- Most boundary nodes have non-boundary nodes as their direct neighbors.
 - E.g., among the neighbors of input boundary nodes, 96.14% are non-boundary nodes.
 - Non-compliance with the homophily assumption.

The neighbor heterophily and compatibility matrices (CM) in subcircuit boundary prediction task.

Methodologies

Overall Framework: WideGate

• WideGate consists of several components:

Part One: Graph Construction and Feature Initialization Module

- Graph construction:
 - Nodes: PI, AND, PO.
 - Directed edges: pointing from source nodes to target nodes.
- Feature initialization:
 - The first dimension: whether the node is an AND node,
 - The second and third dimensions: whether the two input edges have NOT edges.

Part Two: Receptive Field Generation Module

• Bidirectional search:

- Both forward and backward searches in each step.
- Efficiently integrated into GNN learning.

$$\boldsymbol{h}_{i}^{(2)} = \boldsymbol{A}_{\rightarrow} \boldsymbol{A}_{\rightarrow} \boldsymbol{h}_{i}^{(0)} \boldsymbol{W}_{\rightarrow}^{(1)} \boldsymbol{W}_{\rightarrow}^{(2)} + \boldsymbol{A}_{\leftarrow} \boldsymbol{A}_{\leftarrow} \boldsymbol{h}_{i}^{(0)} \boldsymbol{W}_{\leftarrow}^{(1)} \boldsymbol{W}_{\leftarrow}^{(2)} + \boldsymbol{A}_{\leftarrow} \boldsymbol{A}_{\rightarrow} \boldsymbol{h}_{i}^{(0)} \boldsymbol{W}_{\rightarrow}^{(1)} \boldsymbol{W}_{\leftarrow}^{(2)} + \boldsymbol{A}_{\rightarrow} \boldsymbol{A}_{\leftarrow} \boldsymbol{h}_{i}^{(0)} \boldsymbol{W}_{\leftarrow}^{(1)} \boldsymbol{W}_{\rightarrow}^{(2)}.$$

$$(1)$$

Part Three: Adaptive Aggregation Module

- Self-information aggregation.
 - Motivation: boundary nodes are certainly of the same category as itself.
- Negative attention mechanism.
 - Motivation: the categories of neighboring nodes are unknown.

Part Three: Adaptive Aggregation Module

• The adaptive aggregation of WideGate is as follows:

$$\boldsymbol{m}_{i}^{(l)} = \boldsymbol{h}_{i}^{(l-1)},$$

$$\boldsymbol{m}_{\overline{\mathcal{N}}_{i}}^{(l)} = \sum_{j \in \overline{\mathcal{N}}_{i}} \frac{\tanh\left(\boldsymbol{a}^{\top}\left[\boldsymbol{h}_{i}^{(l-1)}, \boldsymbol{h}_{j}^{(l-1)}\right]\right)}{\sqrt{d_{i}d_{j}}} \boldsymbol{h}_{j}^{(l-1)},$$

$$\boldsymbol{m}_{\overline{\mathcal{N}}_{i}}^{(l)} = \sum_{j \in \overline{\mathcal{N}}_{i}} \frac{\tanh\left(\boldsymbol{a}^{\top}\left[\boldsymbol{h}_{i}^{(l-1)}, \boldsymbol{h}_{j}^{(l-1)}\right]\right)}{\sqrt{d_{i}d_{j}}} \boldsymbol{h}_{j}^{(l-1)}.$$
(2)

• The complete message-passing function of WideGate is as follows:

$$\boldsymbol{h}_{i}^{(l)} = \sigma \left(\boldsymbol{m}_{i}^{(l)} \boldsymbol{W}_{self}^{(l)} + \beta \boldsymbol{m}_{\overline{\mathcal{N}}_{i}}^{(l)} \boldsymbol{W}_{\rightarrow}^{(l)} + (1-\beta) \boldsymbol{m}_{\overline{\mathcal{N}}_{i}}^{(l)} \boldsymbol{W}_{\leftarrow}^{(l)} \right).$$
(3)

• After *L* layers of aggregation, the embeddings of all layers are used to predict \hat{y}_i :

$$\hat{y}_i = \sigma\left(\left[\boldsymbol{h}_i^{(0)}, \dots, \boldsymbol{h}_i^{(L)}\right] \boldsymbol{W}_{pred}\right).$$
(4)

Evaluation

Baselines

- Baselines:
 - GraphSAGE⁴
 - e HOGA⁵
 - 8 RelGCN⁶
 - 4 FGNN2 and FGNN2 + Pretrain⁷

⁴W. Hamilton, et al. (2017). "Inductive representation learning on large graphs," in *Proc. NeurIPS*.

⁵C. Deng, et al. (2024). "Less is more: Hop-wise graph attention for scalable and generalizable learning on circuits," in *Proc. DAC*.

⁶M. Schlichtkrull, et al. (2018). "Modeling relational data with graph convolutional networks," in *Proc. ESWC*.

⁷Z. Wang, et al. (2024). "Fgnn2: A powerful pre-training framework for learning the logic functionality of circuits," *TCAD*.

Datasets

- We use an extended version of the FGNN2 dataset:
 - Including adders, subtractors, multipliers, and dividers.
 - Synthesized into gate-level netlists using Synopsys Design Compiler.
 - Converted into AIG format using ABC.
 - The word lengths of circuits range from 8 bits to 32 bits
 - The number of nodes varies from a few hundred to several thousand.

	A	Architectures	#	
	Brent-Kung	Sklansky		
	Cond-Sum	Block Carry Look-head	1173	
	Hybrid	Carry Look-head		
Adder	Koggle-Stone	Carry Select		
	Ling	Carry-skip		
	Sklansky	Ripple-Carry		
	Hybrid	Brent-Kung		
Subtractor	Koggle-Stone	Cond-Sum	645	
	Ling	Sklansky		
	Array	Overturned-stairs		
Multiplier	Booth-Encoding	(4,2) compressor	3788	
	Wallace	(7,3) counter		
	Dadda	Redundant binary addition		
Divider		Array	1180	
Total		1	6786	

TABLE I The	statistics	of AIG	datasets.
-------------	------------	--------	-----------

• Metrics:

- **1** Recall and F1-score: focus only on boundary nodes.
- **2** True Negative Rate (TNR): focus only on non-boundary nodes.
- **S** Accuracy: focus on both boundary and non-boundary nodes.
- 4 Avg. Runtime: evaluates the model's training speed.

Experiment 1: Main Results

- Compared to the strongest baseline (FGNN2+Pretrain), WideGate improves:
 - Recall: +43.01%, F1-score : +29.87%, Avg. Runtime: -94.74%.
- WideGate performs best in predicting both non-boundary and boundary nodes.
 - HOGA performs well on non-boundaries but poorly on boundaries (F1-score=0.4925).
 - The pretraining step in FGNN2 improves the F1-score but at the cost of a decrease in TNR.

Metrics	GraphSAGE	HOGA	RelGCN	FGNN2	FGNN2+Pretrain	WideGate	Improvement (%)
Recall ↑	0.6298	0.3900	0.6448	0.5544	0.6806	0.9733	43.01%
F1 score ↑	0.7128	0.4925	0.7223	0.6624	0.7522	0.9769	29.87%
TNR \uparrow	0.9716	0.9599	0.9710	0.9753	0.9733	0.9960	2.12%
Accuracy ↑	0.9131	0.8623	0.9151	0.9032	0.9232	0.9921	7.46%
Avg. Runtime (s) \downarrow	1.2705	2.3797	1.8795	65.3075	<u>63.9194</u>	3.1669	94.74%

TABLE II Results on the subcircuit output boundary prediction (OBP) task. (Label ratio=5%)

TABLE III Results on the subcircuit input boundary prediction (IBP) task. (Label ratio=5%)

Metrics	GraphSAGE	HOGA	RelGCN	FGNN2	FGNN2+Pretrain	WideGate	Improvement (%)
Recall ↑	0.8271	0.7040	0.8297	0.8047	0.8781	0.9935	13.14%
F1 score ↑	0.8115	0.7623	0.8137	0.8003	0.8412	0.9938	18.14%
TNR \uparrow	0.9502	0.9662	0.9506	0.9514	0.9506	0.9986	3.35%
Accuracy ↑	0.9267	0.9162	0.9276	0.9234	0.9367	0.9976	6.50%
Avg. Runtime (s) \downarrow	1.3063	2.4101	1.8993	68.5559	<u>67.8344</u>	3.1541	94.85%

Experiment 2: Impact of Label Ratio

- WideGate exhibits stable and optimal performance for each label ratio:
 - F1-score significantly higher than the baseline models.
- WideGate's advantage is more pronounced at lower label ratios:
 - For a label ratio of 0.01, WideGate: +25.78% on the IBP task, +42.60% on the OBP task.
- Strong generalization ability:
 - WideGate (1% of the training data) surpasses baselines (10% of the training data).

Experiment 3: Impact of Aggregation Layers

- WideGate achieves significantly higher F1-scores than GraphSAGE and RelGCN.
- The 2-layer WideGate performs much better than the 9-layer GraphSAGE.

Experiment 4: Ablation Study

- The complete model achieves the best performance.
- Forward search is essential for both tasks.
- Backward search plays a significantly larger role in the OBP task than the IBP task.
- Only forward search + adaptive aggregation module still surpasses the baseline models.

	OBP	IBP
WideGate (w/o forward search)	0.6960	0.8042
WideGate (w/o backward search)	0.7898	0.9842
WideGate (w/o self-aggregation)	0.9665	0.9910
WideGate	0.9769	0.9938

TABLE IV Ablation results on OBP and IBP tasks.

Conclusion

Conclusion

- Investigate the limitations of DAG-based GNNs in the subcircuit boundary prediction:
 - Reachability assumption and homophily assumption.
- Identify two key challenges in GNN-based subcircuit boundary prediction:
 - Boundary intercorrelation and neighbor heterophily.
- The proposed WideGate:
 - Receptive field generation module: capture the boundary intercorrelation.
 - Adaptive aggregation module: account for neighbor heterophily.
- Conduct extensive experiments on subcircuit boundary prediction tasks:
 - Significantly improves prediction accuracy and training efficiency.
 - Strong generalization ability.

THANK YOU!