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• The on-chip power grid (PG) transfers voltage and current to each working cell, and IR
drop analysis involves obtaining the voltage drop caused by parasitics between the power
pads and cells.

1 Ensuring the worst-case IR drop values are within specified limits is essential.

2 IR drop analysis becomes very time-consuming in industrial-scale designs using traditional
analysis methods.

3 PG is designed from the top-level metal layer, which is connected to the power supplier, down
through inter-layer vias, and finally to the active cells.
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• Many numerical methods have been proposed for this process, including direct solvers12,
iterative solvers3, and other specialized solvers4.
• The system matrix of a n-node PG network can be formulated as a linear system:

Gx = I (1)

• As the number of nodes in the PG grows exponentially, traditional methods struggle with
longer solution times or even become infeasible due to high computational demands and
memory demands.
• Consequently, the necessity for ML methods becomes evident.

1T. A. Davis, et al. (2010). “Algorithm 907: KLU, a direct sparse solver for circuit simulation problems,”
in Article TOMS, pp. 1–17.

2Y. Chen, et al. (2008). “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate,” in Article TOMS, pp. 1–14.

3T.-H. Chen, et al. (2001). “Efficient large-scale power grid analysis based on preconditioned
Krylov-subspace iterative methods,” in Proc. DAC, pp. 559–562.

4Z. Liu, et al. (2024). “PowerRChol: Efficient Power Grid Analysis Based on Fast Randomized Cholesky
Factorization,” in Proc. DAC, pp. 1–6. 5/26

Background: Conventional Numerical Method for PG Analysis
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• To address inefficiencies, machine learning (ML)-based methods have been proposed as
a promising alternative for accelerating IR drop analysis:

1 IREDGe5.

2 MAVREC6

3 PGAU7

4 MAUnet8

• They still face the problem of insufficiently fine modeling granularity.
• They struggle with issues related to model interpretability and generalizability, which
can limit their adoption in practical design environments.

5V. A. Chhabria, et al. (2021). “Thermal and IR drop analysis using convolutional encoder-decoder
networks,” in Proc. ASP-DAC, pp. 690–696.

6V. A. Chhabria, et al. (2021). “MAVIREC: ML-aided vectored IR-drop estimation and classification,” in
Proc. DATE, pp. 1825–1828.

7F. Guo, et al. (2024). “PGAU: Static IR Drop Analysis for Power Grid using Attention U-Net
Architecture and Label Distribution Smoothin,” in Proc. GLSVLSI, pp. 452–458

8M. Wang, et al. (2022). “MAUnet: Multiscale attention U-Net for effective IR drop prediction,” in Proc.
DAC, pp. 1–6. 6/26

Background: Machine Learning for IR Drop Analysis
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• Can numerical and ML methods be combined for a better trade-off in speed,
accuracy, and scalability? Yes!
• Most numerical methods solve large-scale linear systems iteratively, where more
iterations yield greater accuracy but require longer runtime.
• By integrating ML, we can perform fewer iterations to obtain a rough solution and
refine it using ML.
• This fusion enables a better understanding of complex physical or geometric systems,
while offering more fine-grained and efficient modeling.
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Key Point: Integrating Numerical and ML Methods
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• This work aims to fuse the numerical method with ML to achieve better performance
in static IR drop analysis while focusing on the IR drop of the cell at the bottom layer.
• Each feature map, denoted as Pmapi essentially serves as a spatial representation of the
inherent properties of the PG.
• The IR drop of working cells in the entire PG is also converted to a data matrix and
represented as y. The algorithm F tries to give the closest prediction F∗ based on all the
input features

(
Pmap1

, ...,Pmapn

)
, formulated as:

F∗ = argminLoss
(
F
(
Pmap1

, ...,Pmapn

))
, y
)
. (2)
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Problem Formulation
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• IR-Fusion consists of several components:

1 An efficient AMG-PCG solver

2 Hierarchical numerical-structural fusion

3 Inception Attention U-Net model

4 Augmented curriculum learning
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Overall Framework: IR-Fusion
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• In the numerical solution phase

1 A spice parser

2 A circuit generator

3 The algebraic multigrid preconditioned
conjugate gradient (AMG-PCG)
method in PowerRush

9J. Yang, et al. (2013). “PowerRush: An efficient simulator for static power grid analysis”, in Article.
TLVSI, pp. 2103–2116. 12/26

Step 1: Numerical Solution using AMG-PCG9
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• Setup Stage Transfer operators connecting fine and coarse levels are represented by the
preconditioning matrix M−1, which ensures the residual rk = I − Gxk and search direction
pk are accurately transferred between grids.
• Preconditioning Phase

rk+1 = rk −
r⊤k M−1rk

p⊤k Gpk
Gpk,

where M−1rk represents the correction on multiple grid levels, ensuring fast convergence
by addressing errors at various scales. This correction accelerates the reduction of the
residual in each iteration.
• CG Method

xk+1 = xk +
r⊤k M−1rk

p⊤k Gpk
pk, (3)

pk+1 = M−1rk+1 +
r⊤k+1M−1rk+1

r⊤k M−1rk
pk. (4)

This ensures that the search direction is adjusted based on the multilevel corrections,
allowing the CG method to converge more quickly to the final solution x. 13/26

Step 1: Numerical Solution using AMG-PCG
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• Based on the row w and height l from Library Exchange Format (LEF), a design’s layer
of size Wc × Lc translates to an image of W (= Wc//w)× L (= Lc//l) pixels.
• Each metal layer corresponds to a generated feature map, allowing the PG to produce
feature maps that align with the same number of grid layers in total.

Features
Given the limited representation of designs, our method extracts more hierarchical structure
features using the PG spice file and cell layer features:

1 The current map for each layer, representing the current distribution, is allocated
proportionally based on the contribution from each layer, which is tied to resistance.

2 The effective distance, calculated as the reciprocal of the sum of the reciprocals of Euclidean
distances, measures proximity to voltage sources.

3 The PDN density map is derived from the average PDN pitch within each grid as detailed in
the spice file.

4 The resistance and shortest path resistance maps are also computed based on their physical
significance.
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Step 2: Hierarchical Numerical-Structural Information Fusion
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• Based on PGAU, we design our Incep-
tion Attention Unet.
• The inception module is applied to
enhance the network’s ability to capture
both local details and broader context.
• The convolutional block attention
module (CBAM) is incorporated to fo-
cus on various scales and directions in
subsequent decoder stages.
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Step 3: Inception Attention U-Net Model

15/26



• We augment the training data by applying various transformations to each image-based
input.
• We apply predefined CL for the train set.
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Step 4: Augmented Curriculum Learning
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• Baselines:

1 IREDGe10.

2 MAVREC11

3 IRPnet12

4 PGAU13

5 MAUnet14

6 Contest Winner15

10V. A. Chhabria, et al. (2021). “Thermal and IR drop analysis using convolutional encoder-decoder
networks,” in Proc. ASP-DAC, pp. 690–696.

11V. A. Chhabria, et al. (2021). “MAVIREC: ML-aided vectored IR-drop estimation and classification,” in
Proc. DATE, pp. 1825–1828.

12Y. Meng, et al. (2024). “Circuits physics constrained predictor of static IR drop with limited data,” in
Proc. DATE, pp. 1-2.

13F. Guo, et al. (2024). “PGAU: Static IR Drop Analysis for Power Grid using Attention U-Net
Architecture and Label Distribution Smoothin,” in Proc. GLSVLSI, pp. 452–458

14M. Wang, et al. (2022). “MAUnet: Multiscale attention U-Net for effective IR drop prediction,” in Proc.
DAC, pp. 1–6.

15Winners at ICCAD 2023 Contest. [Online]. Available: https://www.iccad-contest.org/2023/Winners.html. 18/26
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• The ICCAD2023 dataset16, specialized for the static IR drop prediction task, is used for
evaluation. It contains 120 designs, 20 of which are real designs, and the rest were
artificially generated based on BeGAN17, named fake designs, close to realistic PGs. We
perform the following setup on the dataset:

1 We follow the contest setup, using 10 real designs for testing and the rest for training.

2 Data augmentation increases the dataset size fourfold, with oversampling applied: fake
designs are doubled, and real ones are quintupled.

3 Following a curriculum learning strategy, fake designs are categorized as “easier,” while real
designs are classified as “harder.”

16Winners at ICCAD 2023 Contest. [Online]. Available: https://www.iccad-contest.org/2023/Winners.html.
17V. A. Chhabria, et al. (2021). “BeGAN: Power grid benchmark generation using a process-portable

GAN-based methodology,” in Proc. ICCAD, pp. 1–8. 19/26

Datasets
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• Metrics:

1 Mean absolute error (MAE) shows the average of the absolute difference between a
prediction and the ground truth..

2 The F1 score reflects the accuracy and comprehensiveness of the prediction for the hotspots
region, fomulated as:

P =
TP

TP + FP
,R =

TP
TP + FN

,F1 =
2 × P × R

P + R
. (5)

3 MIRDE is the error in the region of maximum IR drop. Since designers are more concerned
with the worst-case of IR drop, its modeling error is extremely critical.

4 Runtime
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• IR-Fusion achieves better performance
with the improvement of 28.3% on MAE,
14.5% on F1, and 27.6% on MIRDE,
with no significant time cost increase.
compared to the SOTA baseline, i.e.,
MAUnet.
• IR-Fusion still outperforms all base-
lines in MIRDE, representing more accu-
racy in the worst-case region.
• Our proposed fusion framework
achieves more outstanding and robust
performance within an acceptable run-
time.
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Experiment 1: Main Experiment with Baselines
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• IR-Fusion surpasses PowerRush in all evaluated metrics.
• A key advantage of IR-Fusion is its ability to achieve the same MAE in just 2 iterations,
while PowerRush requires 10 iterations to reach the same level.
• IR-Fusion consistently achieves a higher F1 score— a performance level PowerRush
cannot reach at any iteration.
• Thanks to the fusion of numerical and ML methods, IR-Fusion achieves a better trade-off
between accuracy and efficiency.
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Experiment 2: Trade-off Study
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• w./o. shows the results without a certain technique.
• Various techniques in our IR-Fusion contribute to the improvement of results
significantly.

23/26

Experiment 3: Ablation Study
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• We propose IR-Fusion, an innovative fusion framework that incorporates numerical
solutions to enhance ML methods for static IR drop analysis, providing an effective
trade-off between accuracy and efficiency.
• Extensive experiments have demonstrated the effectiveness and efficiency of IR-Fusion.
• In the future, we hope to apply GNNs to capture PG’s topology combing with the current
image-based methods.
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THANK YOU!
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