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Abstract—As integrated circuit (IC) feature sizes continue
to shrink, using sub-resolution assist features (SRAF) becomes
increasingly crucial for improving wafer pattern resolution and
fidelity. However, model-based SRAF insertion techniques, while
accurate, require substantial computational resources and are
often impractical for industrial scenarios. This demands more
efficient and industry-compatible methods that maintain high
performance. In this work, we introduce LLM-SRAF, a novel
framework for SRAF generation driven by a large language
model fine-tuned on an SRAF dataset. LLM-SRAF accepts
semantic prompt inputs, including SRAF generation task de-
scriptions, OPC recipe, lithography conditions, mask rules, and
sequential layout descriptions, to directly generate SRAFs. Both
supervised fine-tuning and reinforcement learning with human
feedback (RLHF) are employed to enable the model to acquire
domain-specific knowledge and specialize in SRAF generation.
Experimental results show that LLM-SRAF outperforms existing
state-of-the-art methods in metrics of mask quality, including
edge placement error (EPE) and process variation band (PVB)
area. Moreover, the runtime of LLM-SRAF is also 3x faster
compared to the Calibre commercial tool.

I. INTRODUCTION

As integrated circuit process nodes advance, various res-
olution enhancement techniques (RETs) have been proposed
to improve fidelity and printability during mask optimization.
One widely used RET is the Subresolution Assist Feature
(SRAF) [1] [2]. SRAF involves adding small, non-printing
features to the mask that aid in transferring light to the
target pattern positions with the correct phase. This technique
significantly enhances the printability and lithographic process
window of isolated and semi-isolated features, improving
robustness against process variations.

Recent SRAF generation methods can be categorized into
three types: rule-based [3] [4] [5], model-based [3] [6] [7], and
machine learning-based [1] [8] [9] [10]. Rule-based methods,
while capable of achieving acceptable accuracy quickly and
simply based on engineers’ experience, require significant pre-
processing efforts for increasingly complex layouts. Model-
based methods eliminate the need for human expertise and
achieve high accuracy even with complex patterns. However,
many of these methods require extensive post-processing to
generate manufacturing-friendly Manhattan shapes, and they
always come at the cost of significant computing resources.

With the rapid advancement of machine learning algorithms,
these technologies offer promising solutions to the SRAF
insertion problem by reducing the computational costs of
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Fig. 1 Comparison of our LLM-SRAF generation method with
conventional grid-based and commercial SRAF generation
methods. (a) Previous SOTA SRAF generation methods use
grid-based or image-based manner, necessitating layout down-
sampling for acceleration. It causes lithographic performance
degradation. Besides, they have limited adaptability to dif-
ferent lithography conditions. (b) Commercial tools are time-
intensive while supporting user-defined lithography conditions
through verification scripts. (¢) Our LLM-SRAF method, like
commercial tools, incorporates lithography conditions and a
losslessly processed sequential GDS layout into a semantic
prompt. The resulting SRAF mask achieves commercial-level
accuracy with faster generation.

traditional methods. Geng et al. [10] and Xu et al. [1] used
probability maps to predict SRAF placement, but required ex-
tensive post-processing. Liu et al. [9] developed a framework
combining machine learning and reinforcement learning to
generate SRAF layouts without post-processing. However, for
different lithographic conditions, the model parameters still
need to be adjusted by transfer learning. GAN-SRAF [§],
which employs a generative adversarial network with mul-
tichannel heatmap encoding for end-to-end SRAF generation,
shows potential for superior results with high-quality datasets,
but still requires post-processing and struggles with varying
layout sizes and lithography conditions.



In the integrated circuits industry, layout patterns are often
stored in binary formats such as GDSII or OASIS. Traditional
pre-processing methods frequently convert these GDS files
into images for feature extraction and analysis. Further, grid
insertion techniques or image generation neural networks are
employed, as illustrated in Fig. 1(a). Despite its widespread
use, the image-based approach has notable limitations, espe-
cially for sparse, large-size via/contact layouts. The image-
based approach introduces unnecessary redundancy, distorts
layouts during downsampling, and struggles with handling
discrete images due to its low efficiency [11].

Recent advancements in Large Language Models (LLMs),
have shown remarkable abilities in processing and generating
coherent text, excelling in tasks requiring contextual under-
standing and accurate information retrieval [12] [13]. These
models have recently been successfully applied to layout
hotspot detection [11]. Inspired by these progress, we rec-
ognize LLMs’ potential to enhance lithographic performance
and computational efficiency in SRAF generation. Unlike
commercial tools that require strict SRAF recipe writing,
LLMs can simplify the process through a simpler question-
and-answer format, thereby reducing tool usage complexity.

In this work, we propose an LLM-driven SRAF generation
method using semantic prompts. To be specific, the workflow,
as illustrated in Fig. 1(c), consists of three main stages: 1)
Prompt preparation: GDS polygon are converted into layout
sequences, combined with lithography conditions and mask
rules, to form a semantic prompt. 2) LLM generation pro-
cedure: the prompt is input into the fine-tuned LLM, which
processes it through tokenization, encoding, decoding, and
detokenization to generate a semantic output containing size
and position information of the mask layout. 3) semantic out-
put to mask GDS: the SRAFed mask sequences are extracted
from the semantic output and converted into a mask GDS with
SRAFs inserted.

In this SRAF generation framework, our main contributions
are summarized as follows:

« To the best of our knowledge, this is the first instance of
an LLM being specifically applied to SRAF generation.
It closely resembles certain functionalities of commercial
tools and establishes a framework for future applications
in computational lithography.

o The SRAF generation problem is transformed into a
sequence-to-sequence generation task. To cater to this
transformation, a Manhattan encoding method is specifi-
cally designed for layout description, enhancing memory
efficiency while ensuring the model’s awareness of pat-
tern positional, shape, and size attributes.

« Based on a designed semantic representation of the layout
description dataset, a large language model is fine-tuned
using supervised learning. This fine-tuning process enable
the LLM to acquire the capability to generate sub-
resolution assist features.

o A reward model based on commercial tool’s lithography
compliance Check (LCC) results is proposed to fine-tune
the LLM using Reinforcement Learning from Human

Feedback (RLHF), providing the LLM with insights into
the physical aspects of the lithography model.

The rest of the paper is organized as follows. Section II
describes the problems. Section III explains the algorithms
in detail while Section IV presents the experimental results.
Followed is the conclusion and potential future work in
Section V.

II. PRELIMINARIES

A. SRAF Generation Metrics

In line with previous research approaches, this paper
presents the SRAF shapes as Manhattanized rectangles and
utilizes process variation band (PVB) area and edge placement
error (EPE) as evaluation metrics to assess the LCC perfor-
mance of the LLM-SRAF mask optimization results.

In the LLM prompt, it is essential to include lithography
conditions, mask rules, and layout descriptions. However,
traditional GDS layout representations that use four points to
define a polygon may lead to shape distortion, as the LLM
could adapt these points into non-rectangular quadrilaterals to
optimize lithography performance, potentially violating mask
rules. Additionally, using four points to represent predefined
rectangles is inefficient and increases token usage.

B. Problem Formulation

Problem 1 (Semantic prompt generation). Given a set of
information that includes lithography conditions, mask rules,
and layout files, all details must be losslessly transformed into
a semantic prompt. Particularly for layout descriptions, a more
robust and efficient sequence layout representation method
should be designed.

SRAF generation aims to optimize mask quality, which is
evaluated by metrics such as PVB and EPE. Therefore, the
LLM must be well-trained to act as an expert, understanding
the relationship between the main pattern and SRAF, and
accurately predicting the optimal SRAF positions and sizes
for a given main pattern.

Problem 2 (SRAF generation via LLM). Given a set of
semantic prompts, the objective of SRAF generation is to fine-
tune an LLM that can place SRAFs in layouts to minimize the
corresponding PVB area and EPE within an acceptable time.

III. SRAF GENERATION USING FINE-TUNED LLM

We embrace a three-step training process for the generation
of LLM-SRAF. In the first step, we convert the layout dataset
into semantic prompts with lithography condition, mask rules,
and layout description inside. Second, the semantic SRAF
dataset is exploited to supervise the fine-tuning of the LLM.
Finally, we align the LLM’s generated results to the Calibre
tool and design a reward model based on MRC and lithography
results for Reinforcement Learning from Human Feedback to
fine-tune the LLM further. An overview of our proposed SRAF
generation training process is shown in Fig. 2.
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Fig. 3 SRAFs Manhattanized sequence encoding.

A. SRAF Generation Prompt Design

Since the LLM is pre-trained on natural language data, pro-
viding clear prompts is essential to reduce misunderstandings,
ensure output quality, and maintain task relevance. To fully
leverage the strengths of LLMs, we must design a semantic
encoding framework that enhances the accuracy and quality of
SRAF generation. As illustrated in Fig. 3, the SRAF semantic
prompt is structured into three key components:

1) Task description: Provides semantic instructions, includ-
ing background information, as well as details about the
light source, photoresist, and mask rules.

2) Layout description: Contains details about the layout,
focusing on the number, position, and dimensions of the
main patterns. It serves as a semantic representation of the
newly introduced sequence encoding method described in
the following section of this paper.

3) SRAF output description: The LLM is expected to out-
put the desired positions and dimensions of the generated
SRAF based on the given layout description and the
lithography conditions described in the task description.

To be specific about the prompt, the task description begins
with a background introduction that outlines the LLM’s role
and the task at hand. This is followed by a description of the
mask rules, the source information and the resist information,
which provide the LLM with fundamental setup information.
This information will later be integrated into the model
through reinforcement learning during the RLHF phase.

For layout description, a new sequence encoding method
is required to improve accuracy, shorten token length for
efficiency, and simplify interpretation by the LLM. To address
the inefficiencies and potential errors introduced by downsam-
pling in image-based SRAF generation methods, this encoding
method involves only minor modifications to GDS files and
focuses solely on recording pattern information, thereby avoid-
ing loss of shape details while enhancing efficiency simulta-
neously. As shown in Fig. 3, traditional GDS files use 2x4
tuples to describe rectangular polygons by recording the four
vertex coordinates. However, this approach does not guarantee
that shapes remain rectangles after LLM processing. Our
Manhattanized sequence encoding method resolves this issue
by representing SRAF with its center coordinates (x,vy) and
dimensions w (width) and h (height). This SRAF sequence
encoding method ensures accurate shape representation with
just four numbers, offering a more efficient storage solution
while preserving the integrity of the rectangles.

To avoid printing issues or mask unmanufacturability,
SRAFs in the dataset must meet specific size constraints.
Therefore, we have further optimized this method to ensure
compliance with these constraints. To keep SRAFs within
the desired range, a linear transformation using the sigmoid
function is applied to the original width w,,; and height
hori. This transformation converts these dimensions into a
pair of width and height parameters, w and h, which are then
constrained within the range [, 5]. The linear transformation
is defined by Equation (1) and Equation (2).

ori — . . hori - . .
% = Sigmoid(w), faa = Sigmoid(h), (1)
Wori — O hori —
=ln-—""— h=In_-"—. 2
v nﬁ_wori’ nﬂ_hori ()

With the center coordinates and the transformed width pa-
rameter w and height parameter h, each via pattern or SRAF
in the layout file can be represented by a tuple (x,y,w,h).
The entire dataset employs a series of these (x,y,w,h)
tuples as layout descriptions.

In the dataset, the SRAF output description section must
include the generated SRAF information, representing the



expected results of SRAF generation during LLM inference.
During supervised learning, this section also serves as the
reference for the output. To help the LLM better understand
the principles of SRAF generation and enhance its spatial
awareness, this section clearly establishes the correspondence
between each main pattern and its most relevant SRAF. A
Nearest-Neighbor-Search algorithm is employed to link each
SRAF to its corresponding main pattern by analyzing their
geometric and positional relationships.

With all three sections well introduced, here is an example
of the designed semantic prompt:

# Task description

You are an assistant tasked with addressing SRAF generation issues
on a two-dimensional plane. The lithography setup is:
Illumination:

SoftAnnular, 193nm, 1.35NA, 00.X0/i0.X0

Defocus -60 -30 0 30 60

Resist: thicknessi, ni, k1

BARC: thicknesss, n2, ko

Mask Rule: d1 metric: 0.040 SQUARE

# Layout description

There are N main patterns in total,  and y are the coordinates
and w and h are the dimensions.

maing: € = xg, Yy = Yo, w = wp, h = hg.

main;: =1, Yy = y1, w = wi, h = h;.

# SRAF output description
Generated by main: sraf: © = xo, y = yo, w = wo, h = ho

For ease of use, a fixed prompt template can be employed
for the task description. When using this template, it is only
necessary to adjust parameters such as the inner and outer
diameters of the light source, as well as data like the thickness,
n and k of the resist, according to specific requirements.

B. LLM Supervised Fine-tuning

The fine-tuning process of Large Language Models involves
adapting pre-trained models to perform effectively on domain-
specific tasks by adjusting their parameters. In this study, fine-
tuning is employed to specialize models in generating SRAFs
for specific layouts under various lithography conditions,
utilizing the SRAF dataset. The foundation model chosen
for this task is Meta-Llama-3.1-8B [14], which has 8 billion
parameters and a deep Transformer architecture, making it
well-suited for generating SRAFs from semantic inputs.

Fig. 2 illustrates the complete fine-tuning process for LLM-
SRAF. Initially, mask rules, simulation conditions, and layout
descriptions are converted into semantic prompts, which are
then mapped to tokenized numerical representations before
being fed into the LLM. The LLM is then trained to generate
the corresponding SRAF descriptions for each layout based
on the specific conditions provided by the prompt.

Instead of full fine-tuning, which modifies all model pa-
rameters, parameter-efficient fine-tuning methods are pre-
ferred. Specifically, Low-Rank Adaptation (LoRA) is em-
ployed. LoRA refines only a subset of model parameters by
incorporating low-rank matrices into the existing weight ma-
trices, thereby preserving the original weights. This approach
updates fewer parameters while still achieving significant
performance improvements with minimal computational cost,
thus conserving both resources and time [15].

C. RLHF Based on Commercial Tool Results

Reinforcement Learning with Human Feedback (RLHF)
follows supervised fine-tuning to further improve model per-
formance by integrating reinforcement learning with human
insights. It uses rewards to guide the model towards better
outputs and addresses complex goals, thereby improving the
quality and relevance of results [16].

The RLHF module consists of four key components: the
Actor model, the Critic model, the Reward calculator, and
the Reference model. The Actor model, which represents
the policy being optimized, is initialized using the SFTed
LLM. The final optimized policy results in an LLM that has
been successfully trained with RLHF. The Reference model,
a frozen version of the SFTed LLM, serves as a benchmark
in the RLHF process. It computes a KL divergence penalty
to measure the difference in token logarithmic probabilities
between the Actor and Reference models, ensuring stability
during RL training.

The Reward calculator, which is typically referred to as the
reward model in RLHF, computes the immediate reward for
generated tokens. Unlike traditional RLHF methods that rely
on human annotators for evaluation, our approach employs a
scoring model based on commercial tool simulations, achiev-
ing more equitable and convincing results compared to other
state-of-the-art methods. Additionally, the development of a
faster lithography simulator could further accelerate model
training. Using an input prompt detailing mask rules, light
sources, and photoresists, a script is run in the commercial tool
with specified settings to perform lithography simulations and
generate metrics such as EPE, PVB area, and MRC violations
for scoring. The scoring mechanism of the Reward calculator
is defined as follows:

Score = % + % — v x MRC violation, 3)

where «, 3, and ~y are the weighting coefficients that balance
the contributions of EPE, PVB, and MRC violations to the
overall reward. As illustrated in Fig. 4, the reward calculator
ranks the outputs from the actor model based on these scores.
Consequently, the actor model will increase the output prob-
abilities of higher-ranked outputs while decreasing the output
probabilities of lower-ranked ones.

The Critic model predicts the expected total reward and
is trained using the reward signals provided by the Reward
Calculator during the reinforcement learning process. It is
specifically designed to assess the state value and the action
value of sizing and positioning actions. As illustrated in Fig. 5,
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the Critic model processes the current state and action space
to compute the advantage function, guiding the policy toward
actions that are expected to yield higher rewards compared to
the average reward.

To optimize the LLM actor, Proximal Policy Optimization
(PPO) was employed [17]. The objective function of PPO is
shown below:

L) =&, [mm (rt(e)At, clip (r(0),1 — e, 1 + ¢) At)} :
“

. k&, represents the expected cumulative reward from time
step t onward based on the current policy.

o 74(0) is the ratio of token probability of RLHFed LLM
SRAF my(at|st) and the token probability of reference
only SFTed LLM SRAF 7y ,cr(at|s:).

o A, is the advantage estimate derived from the critic
model.

e € is a positive number that controls the extent of clipping
to prevent large policy updates.

o clip(r¢(0), 1 - €, 1 + €) is a clip function that restricts
r+(f) within a defined range (1 - €, 1 + ¢).

PPO updates the policy mg(a¢|s;) by iteratively improving it
through small, stable updates. This process improves the final
score by reducing EPE, PVB, and MRC violations, resulting
in an RLHFed LLM that performs better on these metrics.

D. Optimized SRAF Insertion for Large Layouts Using Small-
Scale Segments

In large-scale layouts, utilizing the LLLM for output requires
an excessive number of tokens, resulting in slow processing
speeds and impractical time consumption. To address this
issue, we propose an algorithm for rapid SRAF insertion based
on small-scale layout results. This method involves segmenting
a large layout into smaller sections within an optical diameter
range and generating SRAF for the entire large layout based
on these smaller sections.

The proposed algorithm uses distance-based clustering to
split SRAF into inner and outer loops. The inner loop’s

distance from the main pattern is optimized to minimize
violations with adjacent layouts. A simple merging algorithm
then resolves any mask rule issues introduced by the inner
loop, ensuring it is optimally sized and positioned before
addressing the outer loop. Finally, the outer loop is inserted
without new violations, followed by a final mask rule check
to ensure manufacturability.

IV. EXPERIMENTAL RESULTS

A. Experimental Setups

Our SFT process utilizes an augmented version of the
ICCAD2020 via layer dataset, consisting of GDS files ranging
in size from 2um x 2um to 10pum x 10pm with varying
via pattern densities. The augmentation involves adjusting the
illumination source’s inner and outer radii to three specific
ratios: 0.6/0.8, 0.6/0.9, and 0.7/0.9. Additionally, SRAF sizes
are randomly scaled by factors ranging from 0.96 to 1.08.
This results in an augmented dataset with several hundred
thousand samples. We train the Meta-Llama-3.1-8B model
using Distributed Data Parallel across four Nvidia H100 GPUs,
with inference performed on a single Nvidia H100 GPU. The
AdamW optimizer, with an initial learning rate of 5 x 1072, is
adjusted using a linear warmup and cosine annealing schedule
to ensure stable and efficient convergence.

B. Lithography Performance Against SOTA Works

After generating the SRAF based on the main pattern,
model-based OPC and LCC are performed using a commercial
tool [19]. We compare model-based [?], SODL + NewILP
[10], RL-SRAF [9], CTM-SRAF [18], and LLM-SRAF in
terms of PVB and EPE in the same benchmark suite with 18
testing layout clips as utilized in [9], [10]. TABLE I presents
the PVB area and EPE values for each method. LLM-SRAF
achieves the best average PVB and EPE in all test clips,
outperforming the best baseline [9] by reducing PVB by 2%
and EPE by 4%. In terms of the result PVB area, although
LLM-SRAF slightly underperforms in 3 out of 8 dense test
cases compared to other SOTA methods, this is attributed
to the small number of main patterns in these cases, where
minor changes can have a significant impact. However, LLM-
SRAF outperforms all other methods on large-scale layouts,
demonstrating its superior global optimization capabilities.
This advantage is especially valuable in industrial scenarios
such as memory device manufacturing, where large-scale vias
patterning is essential.

The EPE result is determined by the custom reward cal-
culator, which sets a baseline based on the best SOTA per-
formance. If the EPE performance in a case surpasses the
baseline, full points are awarded, with no additional reward
for further EPE improvement. This approach encourages the
model to shift its focus toward achieving a higher PVB score.
such a score evaluation method allows users to customize the
score calculator based on their specific requirements for EPE
and PVB, providing flexibility in balancing these metrics.



TABLE I Comparison of different SRAF generation methods on dense and sparse testing layout clips.

SODL+NewlILP [10] RL-SRAF [9] CTM-SRAF [18] Model-based [19] LLM-SRAF
Testbench PVB EPE PVB EPE PVB EPE PVB EPE PVB EPE
.001pm? nm .001pm? nm .001pm? nm .001pm? nm .001pm? nm

Densel 1.850 0.667 1.876 0.708 1.857 0.458 1.801 0.375 1.844 0.458
Dense2 1.987 0.438 1.975 0.250 2.538 0.000 2.828 0.750 1.999 0.062
Dense3 2.545 1.750 2.442 1.125 2.617 1.375 2.449 1.000 2.391 0.875
Dense4 2.363 1.125 2.392 1.500 2.445 1.000 2.360 1.250 2.215 0.937
Dense5 2.413 0.938 2.265 1.500 2.515 1.375 2.356 1.437 2.255 0.937
Dense6 2.538 0.000 2.828 0.750 3.008 1.000 2.821 0.250 2.774 0.000
Dense7 2.277 1.803 2.372 1.167 2.484 1.667 2.336 1.083 2.254 1.083
Dense8 2.445 1.000 2.360 1.250 2.490 1.083 2.364 1.250 2.278 0.916
Sparsel 2.813 0.500 2.774 0.500 2.931 0.500 2.778 0.438 2.749 0.375
Sparse2 2.803 0.625 2.727 0.516 2.982 0.469 2.753 0.515 2.720 1.000
Sparse3 2.764 0.563 2.749 0.507 2.969 0.368 2.765 0.453 2.719 0.464
Sparse4 2.785 0.547 2.753 0.559 2.958 0.476 2.735 0.687 2.621 0.775
Sparse5 2.799 0.633 2.766 0.559 2.978 0.475 2.738 1.068 2.717 0.961
Sparse6 2.789 0.552 2.768 0.514 2.998 0.502 2.742 1.150 2.716 0.818
Sparse7 2.786 0.536 2.767 0.531 2.987 0.475 2.734 0.704 2.709 0.553
Sparse8 2.780 0.610 2.751 0.526 2.986 0.497 2.740 1.125 2.719 0.464
Sparse9 2.801 0.573 2.753 0.535 2.986 0.491 2.746 1.885 2.731 0.411
Sparse10 2.790 0.555 2.763 0.525 2.974 0.497 2.748 0.593 2.668 0.661
Average 2.574 0.705 2.546 0.675 2.733 0.737 2.548 0.865 2.505 0.652

Ratio 1.027 1.081 1.016 1.035 1.091 1.130 1.017 1.326 1.000 1.000

*Results of SODL+NewILP and RL-SRAF are directly quoted from [9] and [10]. The CTM-SRAF is re-implemented.
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Fig. 6 Runtime comparison in seconds.

C. Runtime Analysis

Fig. 6 compares the runtime of five methods. Runtime
for RL SRAF and SODL+NewlILP are sourced from [9]
and [10], respectively. To ensure fairness, we used 8§ CPU
cores for the commercial tool’s model-based SRAF generation.
Although the LLM-based SRAF is slower than RL SRAF and
SODL+NewlILP due to large model complexity, it still signif-
icantly outperforms traditional model-based methods, running
3x faster than the Calibre commercial tool. Additionally,
RLHF’s mask rule violation penalties reduce the need for post-
processing, further decreasing the overall runtime.

D. Ablation Study of RLHF’s Impact on SRAF Generation
Performance

An ablation study evaluated RLHF’s impact on SRAF gen-
eration. We compared an LLM-SRAF model trained only with
supervised fine-tuning to one that also includes RLHF. Both
models generated 10 SRAF sets, which were evaluated through
lithography simulation. Results, as shown in TABLE II, show
that the RLHF model, using a reward model based on EPE and
PVB metrics, significantly outperforms the model that only
underwent supervised fine-tuning in lithography quality.

Although the LLM typically avoids MRC violations after
supervised fine-tuning, occasional content redundancy can

TABLE II Impact of RLHF on SRAF generation performance.
[ LLM Without RLHF | LLM With RLHF |

PVB EPE PVB EPE
2.571 0.719 2.505 0.652

lead to excessive SRAF, resulting in MRC violations. Out
of 80 generated tests, 7 outputs experience MRC violations
before RLHF. However, after RLHF, the probability of MRC
violations drops to zero.

V. CONCLUSION AND FUTURE WORKS

This paper presents an LLM-based SRAF generation model
that replicates key functionalities of traditional commercial
tools, paving the way for future LLM applications in com-
putational lithography. We developed a specialized semantic
data processing method and combined supervised learning
with RLHF to integrate lithography simulation data into the
LLM. Experimental results demonstrate that our approach sig-
nificantly improves PVB area and EPE, outperforming state-
of-the-art methods and being at least three times faster than
model-based approaches despite increased complexity. These
findings highlight the great potential of LLMs to advance
computational lithography.

While this paper focuses on generating SRAFs for via lay-
ers, the LLM-based approach can also extend to metal layers.
Via layers require dedicated sequence encoding, whereas metal
layers use GDS’s path-based representation, preserving the
Manhattan structure without additional encoding. Traditional
grid-based or image-based methods are limited by maximum
layout sizes per pass, necessitating partitioning that can cause
conflicts when merging segmented metal lines with SRAFs.
By leveraging LLMs’ efficient data handling, partitioning time
is reduced, enabling more global SRAF generation for large
metal layouts.
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