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Abstract

Advancements in chip design and manufacturing have en-
abled the processing of complex tasks such as deep learning
and natural language processing, paving the way for the de-
velopment of artificial general intelligence (AGI). AI, on the
other hand, can be leveraged to innovate and streamline semi-
conductor technology from planning and implementation to
manufacturing. In this paper, we present Intelligent OPC En-
gineer Assistant, an AI/LLM-powered methodology designed
to solve the core manufacturing-aware optimization problem
known as optical proximity correction (OPC). The method-
ology involves a reinforcement learning-based OPC recipe
search and a customized multi-modal agent system for recipe
summarization. Experiments demonstrate that our methodol-
ogy can efficiently build OPC recipes on various chip designs
with specially handled design topologies, a task that typically
requires the full-time effort of OPC engineers with years of
experience.

1 Introduction
Recent advancements in chip design and manufacturing
have enabled the handling of intricate tasks such as deep
learning and natural language processing, bringing us closer
to achieving artificial general intelligence (AGI). Mean-
while, AI is revolutionizing semiconductor technology by
optimizing every stage of the semiconductor lifecycle, from
conceptual planning to execution and manufacturing. By
leveraging AI-driven innovations, the industry can achieve
greater efficiency, precision, and performance, potentially
accelerating the development of next-generation chips.

In this paper, we utilize AI to address the complexities
of optical proximity correction (OPC), a critical process in
semiconductor manufacturing. As shown in Figure 1, OPC
involves adjusting chip designs to counteract lithography
distortions, ensuring that the final patterns on the silicon
wafer closely match the intended design with high precision.
As depicted in Figure 2, a complete OPC solution comprises
both the solver and the recipe. The OPC solver includes
the core OPC algorithms, such as lithography imaging com-
putation, mask database management, gradient calculation,
and shape perturbation, among other processes (Granik and
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Figure 1: Motivation for optical proximity correction (OPC)
in semiconductor manufacturing process.

Cobb 2002; Lei et al. 2014). Foundries and EDA (Elec-
tronic Design Automation) vendors each have their own
OPC solver implementations, which are built on advanced
algorithms and follow similar workflows (Mentor Graphics,
Siemens 2024; Synopsys, Inc. 2024). The OPC recipe, how-
ever, contains specific configurations tailored to optimize a
particular design. It includes common optimization param-
eters such as step size, maximum iterations, shape move-
ment constraints, polygon fragmentation policies, and error
control strategies. Recipes also incorporate specialized rules
for handling unique chip design patterns that cannot be ef-
fectively addressed through standard optimization settings.
These specialized rules are crucial in OPC and are typically
developed by experienced OPC engineers through extensive
trial and error.

To enhance the efficiency of chip development, we present
the Intelligent OPC Engineer Assistant, an AI-driven frame-
work designed to assist human engineers in the rapid devel-
opment of OPC recipes. This methodology integrates a rein-
forcement learning (RL)-based approach for optimizing ob-
jective searches and a multi-modality large language model
(MLLM)-backboned agent system to facilitate spatial rea-
soning and recipe summarization.

The remainder of the manuscript is organized as follows.
In Section 2, we delve into the background of OPC and
recipe development, highlighting several works that address
related challenges using RL and LLM agents. In Section 3,
we present the core framework of our algorithm, structured
in a two-stage approach. Experimental results and conclu-
sions are provided in Section 4 and Section 5, respectively.
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Figure 2: Left: The full-chip layout. Right: The relationship
between the layout, OPC Recipe and OPC Engine.

2 Preliminaries
2.1 Related Works
OPC and Reinforcement Learning As device geome-
tries shrink to the nanometer scale, the limitations of tra-
ditional optical lithography become apparent, necessitating
advanced computational methods to achieve the desired fi-
delity. As illustrated in Figure 1, OPC is a critical com-
ponent of computational lithography, addressing distortions
and proximity effects that arise during the lithographic pro-
cess. By systematically adjusting the mask design to coun-
teract these effects, OPC ensures that the final printed pat-
terns on the wafer closely match the intended design. This
correction is pivotal for maintaining device performance,
yield, and reliability in the semiconductor industry. The in-
tegration of computational lithography and OPC is thus cru-
cial for advancing semiconductor technology, enabling the
production of increasingly smaller and more complex inte-
grated circuits. In recent years, numerous studies have uti-
lized AI and ML to enhance OPC algorithms (Yang and Ren
2024; Zhu et al. 2023a; Chen et al. 2020). Notably, (Liang
et al. 2023, 2024) have proposed reinforcement learning-
based OPC approaches that integrate spatial correlations and
OPC-specific principles, enhancing performance and effi-
ciency across both metal and via layers.

OPC Recipe Development and LLM Agents As illus-
trated in Figure 2, the primary motivation for OPC recipe
development is to enhance the productivity of OPC engi-
neers in the context of modern semiconductor manufactur-
ing. As depicted in Figure 3, once the OPC engine is well-
established, it becomes necessary to adjust the recipe based
on various factors such as pattern characteristics, location,
and process nodes, in addition to optimizing the algorithm’s
intrinsic parameters. Figure 3 illustrates two pertinent exam-
ples from this study. The first example concerns the adjust-
ment of EPE measurement points, depicted as red dots in
Figure 3. Initially, these measurement points are distributed
along the boundaries, leading to excessive optimization at
the corners of the patterns. This over-optimization can de-
grade the overall effectiveness of the OPC process. There-
fore, an optimized EPE measurement recipe involves re-
locating the measurement points either outward or inward
from the corners to prevent excessive optimization at spe-
cific locations. Traditionally, this adjustment relied heavily
on the engineers’ experience and experimental tuning, which
was time-consuming and costly, especially with the advent
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Figure 3: OPC recipe development. The upper figure shows
the recipe for optimizing EPE measurement points, while
the lower figure shows the edge fragmentation recipe.

of new technology nodes. The second example involves the
fragmentation of polygons, which is essential for the OPC
engine to function. The recipe plays a crucial role in frag-
menting different polygons according to their characteris-
tics. The illustration in Figure 3 shows the initial polygon
and its fragmented version post-recipe application, demon-
strating how the fragmentation recipe is tailored to ensure
optimal performance of the OPC engine. As design com-
plexity and the number of device and mask layers increase,
traditional OPC methods have become inadequate for ad-
vanced nodes, necessitating the creation of more customized
OPC recipes. This growing complexity has led to a surge in
the engineering workload, demanding more OPC engineers
to handle the sophisticated new OPC recipes (Wu et al. 2016;
Asthana, Wilkinson, and Power 2016; Liu and Zhang 2010).
Recently, The integration of LLMs as agents to automate the
EDA process has recently attracted considerable research in-
terest. For instance, RTLFixer (Tsai, Liu, and Ren 2023) fo-
cuses on automated debugging and code repair, while Chip-
NeMo (Liu et al. 2023) serves as an engineering assistant
chatbot, facilitating EDA script generation and bug analysis.
Additionally, ChatEDA (Wu et al. 2024) incorporates LLMs
into traditional design workflows, allowing designers to in-
teract with EDA tools through a conversational interface us-
ing natural language. These advancements significantly en-
hance the automation of EDA processes and improve engi-
neering efficiency.

2.2 Evaluation Metrics for OPC
In this paper, we use domain-specific process variation band
(PVB) and edge placement error (EPE) as two typical met-
rics to evaluate OPC performance. As shown in Figure 4,
these metrics provide a comprehensive assessment of the
quality of the OPC mask, capturing different aspects of the
lithographic process.

Edge placement error (EPE) quantifies the geometric dis-
tortion of the resist image (Banerjee, Li, and Nassif
2013). It is calculated by sampling points along the edges
of target shapes and counting the number of points where
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Figure 4: Evaluation metrics for OPC. (a) Definition of de-
sign target and the wafer pattern. (b) Illustration of EPE
measurement points, including inner and outer EPE viola-
tions for calculating the total EPE count and EPE distance.
(c) Process variation band (PVB) calculation.

the distance between the target and printed pattern ex-
ceeds a predefined threshold. The smaller the EPE, the
better the OPC mask quality. In this paper, we calculate
the EPE number and EPE distance to evaluate EPE. The
EPE number (EPE N) is counted by the number of points
where the distance between the target and printed pattern
exceeds 1 nm. The EPE distance (EPE D) is summed by
the distance between the target and printed pattern where
the distance exceeds 1 nm.

PVB evaluates the robustness of the mask against different
process conditions (Banerjee, Li, and Nassif 2013). PVB
represents the range of deviations that can occur during
the patterning of semiconductor features. As illustrated in
Figure 4(c), this band defines the tolerances within which
the process must operate to achieve the desired fea-
ture dimensions and ensure product quality. A narrower
process variation band indicates better process control,
crucial for manufacturing advanced semiconductor de-
vices. It is computed by measuring the bitwise XOR
region between the printed images from the maximum
and minimum process conditions (±2%) Zmax,Zmin.
PVB(Zmax,Zmin) = ∥Zmax −Zmin∥22.

2.3 Problem Formulation
By automating these processes, this paper seeks to reduce
the time and cost involved in OPC recipe development,
thereby improving the overall efficiency and effectiveness
of computational lithography in semiconductor manufactur-
ing. The study has two primary objectives: first, to develop
an automated method for generating a comprehensive set of
recipes applicable to full-chip patterns, including the opti-
mization of EPE measurement points and layout fragmen-
tation points; second, to ensure that these recipes minimize
both the PVB and the EPE.

3 Methodology
3.1 Overview: A Two-stage Approach
In this section, we present a two-stage framework, as de-
picted in Figure 5, with a focus on the synergistic integration
of reinforcement learning (RL) and large language models
(LLM) in the development of OPC recipes. In the first stage,
RL is employed to explore and identify optimal solutions
for OPC recipe generation, taking into account the shapes
and positions of patterns along with their surrounding con-
texts. Once the RL policy is trained, it can generate a set

of recipes tailored to specific pattern features by adjusting
EPE measurement points and fragment points. However, the
RL process is computationally intensive and impractical for
full-chip applications. To overcome this limitation, the sec-
ond stage harnesses the capabilities of LLM to efficiently
derive recipes by synthesizing the results produced by RL.
This stage involves generating a zero-shot feature pool us-
ing LLM, annotating features with a vision-language model,
and constructing a decision tree. The decision tree is then
utilized to produce the final OPC recipes with enhanced ef-
ficiency. This two-stage framework leverages the comple-
mentary strengths of RL and LLM to optimize OPC recipe
development, striking a balance between accuracy and com-
putational efficiency.

3.2 Exploration with Reinforcement Learning
At this stage, RL can be utilized in conjunction with any
OPC engines. The RL algorithm explores the parameter
space and conducts a global OPC optimization, customized
for various design rules and scenarios. This process aims to
automate the identification of effective, fine-tuned parame-
ter combinations, thereby reducing the time and expertise
needed for manual OPC recipe adjustment.

Reinforcement Learning Framework Proximal policy
optimization (PPO) (Schulman et al. 2017) is an advanced
RL algorithm that has shown significant potential in opti-
mizing complex processes. In the context of computational
lithography, particularly in the development of OPC recipes,
PPO offers a powerful framework for improving the pre-
cision and efficiency of photomask patterning. The objec-
tive of OPC is to adjust the mask design so that the printed
patterns on the wafer closely match the intended design
after exposure and development. In contrast to traditional
heuristic-based OPC recipe development methods (Wu et al.
2016; Asthana, Wilkinson, and Power 2016), PPO leverages
deep learning models to iteratively enhance OPC recipe de-
velopment through agent-environment interactions. The en-
vironment in this context includes the polygon space defined
by polygon coordinates and their corresponding rasterized
images, which serve as feature embeddings in the obser-
vation space, as illustrated in Figure 5. The agent, guided
by PPO, learns to adjust fragment points and EPE measure
points to minimize the OPC loss function.

The state of the environment at time t, denoted as st, in-
cludes both the polygon coordinates and the rasterized im-
age features. The agent takes an action at, which adjusts the
positions of these points. The environment then transitions
to a new state st+1 and the agent receives a reward rt based
on the OPC loss. The goal of the PPO algorithm is to max-
imize the expected cumulative reward, defined as the return
Rt:

Rt =
T∑

k=t

γk−trk, (1)

where γ is the discount factor and T is the time horizon. PPO
optimizes a policy πθ(at|st), parameterized by θ, by inter-
acting with the environment and updating θ to maximize the
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Figure 5: The two-stage approach for OPC recipe generation. The first stage employs RL to optimize OPC recipes. The second
stage utilizes multi-modal LLM agents to efficiently summarize the results generated by RL and generate the final OPC recipes.

expected return. The policy update is constrained by a prox-
imity term to ensure stability:

LCLIP(θ) =Et

[
min

(
πθ(at|st)
πθold(at|st)

Ât,

clip
(

πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
,

(2)

where Ât is the advantage estimate and ϵ is a clipping pa-
rameter. The advantage estimate Ât is calculated as:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT , (3)

with the temporal difference error δt given by:

δt = rt + γV (st+1)− V (st). (4)

In the OPC context, the state st includes the current posi-
tions of the measurement points, the fragment points, and the
rasterized image features. The action at consists of permis-
sible adjustments to these points within a specified range of
±40nm. The reward function rt, critical to the RL training
process, is derived from the OPC loss LOPC, which quanti-
fies the alignment between the corrected mask pattern and
the target design post-lithography. To align with the RL
paradigm where higher rewards are preferred, the reward is
defined as the negative of the OPC loss:

rt = −LOPC. (5)

Mathematically, the OPC loss can be expressed as:

LOPC = α · L2(v, z) + β · EPE(v, z) + γ · PVB(v, z), (6)

where v represents the rasterized image representation from
vertices of the polygon, z is the target pattern, L2 is the Eu-
clidean distance metric. EPE and PVB are edge placement
error and process variation band. The coefficients α, β, and
γ are weights that balance the contributions of each term to
the overall loss.

Additionally, the value function V (st) is approximated
using a neural network parameterized by ϕ, and is trained
to minimize the following loss:

LV (ϕ) = Et

[
(Vϕ(st)−Rt)

2
]
. (7)

The overall training objective combines the clipped surro-
gate objective for policy optimization and the value function

loss, along with an entropy bonus S[πθ](st) to encourage
exploration:

L(θ, ϕ) = Et

[
LCLIP(θ)− c1LV (ϕ) + c2S[πθ](st)

]
, (8)

where c1 and c2 are coefficients that balance the importance
of the value loss and the entropy bonus, respectively.

3.3 Recipe Summarization with LLMs
In the second stage, LLMs are used to summarize the RL-
generated OPC recipes. By leveraging the summarization
capabilities of LLMs, we derive more effective and gener-
alizable OPC recipe rules. The use of LLMs in this stage en-
sures that the insights gained from the RL-generated recipes
are translated into practical and applicable rules for OPC en-
gineers. LLMs possess advanced natural language process-
ing capabilities (Zhu et al. 2023b), allowing them to under-
stand and generate human-like text. This makes them well-
suited for the task of summarizing (Brown et al. 2020) and
reasoning (Kojima et al. 2022) over complex OPC recipes.
The summarization process involves condensing the large
volume of generated recipes into a coherent set of rules that
can be easily understood and applied by OPC engines and
engineers. The reasoning process, on the other hand, in-
volves analyzing the summarized rules to identify patterns
and relationships that can lead to the discovery of new, more
effective OPC recipes.

Although the initial phase of employing RL produced bet-
ter results than the baseline, it encountered significant chal-
lenges when applied to full-chip scenarios due to the need
to process millions of clips, leading to an impractically long
runtime for RL. Additionally, in OPC recipe development,
the final step requires the extraction of recipe rules based
on pattern shapes, which are then used by commercial OPC
software for pattern matching and retargeting operations.

The second phase of the framework leverages the capa-
bilities of multimodal large models to bridge the gap be-
tween superior RL exploration outcomes and the generation
of OPC recipes. To address the hallucination issues often as-
sociated with LLMs, our approach is divided into four steps:
1 During the data processing stage, we convert the RL re-
sults into two distinct formats: JSON and image clips; 2
We utilize LLMs to perform feature generation and zero-
shot data labeling. 3 We construct a decision tree based on
the labeled features. 4 Finally, the decision tree serves as
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a retrieval source for the LLM, facilitating the generation
of the OPC recipe. This structured methodology ensures the
effective translation of RL exploration results into practical
OPC recipes, enhancing the overall efficiency and accuracy
of the recipe generation process.

Data Representation Transformation Since the RL ac-
tion space primarily focuses on two aspects—EPE measure-
ment movement and edge fragment point movement—the
data structure can be uniformly represented in two major
parts. The first part indicates whether the point’s movement
direction aligns with the positive direction, and the second
part specifies the exact movement distance. This structured
representation ensures that the RL-optimized layout infor-
mation is effectively retained and utilized in OPC recipe
development. More specifically, for each point ei, we will
record the RL-adjusted movement vector δ with normal di-
rection i and the distance δ. To facilitate the LLM’s under-
standing of the RL results, we convert the data into a JSON
format.

Zero-shot Feature Pool Generation and Feature Label-
ing To explicitly express the “optimization algorithm” em-
bedded in the RL results, a straightforward approach is to
input the RL outputs directly into the LLM as coordinates of
segments. However, this method presents two major issues:
first, the LLM cannot comprehend the spatial relationships
between edges or polygons based solely on coordinates; sec-
ond, due to the limitations of the LLM’s context window, it
cannot process exceedingly long coordinate representations,
leading to judgments based only on the first few points, often
resulting in incorrect assessments. To maximally preserve
the layout information optimized by RL, we transcribed the
information, recording location-related details and geometry
features for each point.

In traditional OPC recipe development, engineers manu-
ally set EPE measurement points and fragment points based
on pattern shape, position, surrounding pattern characteris-
tics, and layer number. This is followed by forward lithogra-
phy and OPC simulation to obtain evaluation results, which
are iteratively adjusted. This process is time-consuming,
labor-intensive, and monotonous. Recent studies, such as
(Gilardi, Alizadeh, and Kubli 2023), have demonstrated that
LLMs outperform human annotators in tasks related to la-
beling and annotation, offering higher efficiency and lower
costs. Automating this process with LLMs is a straight-
forward idea that can significantly enhance engineers’ ef-
ficiency. Our method of utilizing LLMs for classification la-
beling in OPC recipe development involves two steps: first,
feature pool mining and generation. Second, feature label-
ing.

Feature Mining and Generation Raw images of EPE
points and fragment points are input into a multi-modality
large language model (MLLM), which analyzes the images
and extracts features. For different points, the features gen-
erated by the LLM are pooled and deduplicated. The data
format includes feature names and descriptions, resulting
in a comprehensive feature pool. Part of the feature pool
is shown below and the full feature pool is available in the

supplementary material. Those features will be fed into next
step for the labeling agents to label the features for each EPE
measurement point and fragment point.

Feature pool examples

{on jog long edge: “it is on the jog, but on the long
edge of the jog”,
on jog short edge: “it is on the jog, but on the short
edge of the jog”,
on horizontal edge: “the point is located on a hori-
zontal edge”,
on vertical edge: “the point is located on a vertical
edge”, . . .}

Feature Labeling Using the feature pool generated by
MLLMs in the first step, for each EPE measurement point
and fragment point, we employ the MLLMs to label the in-
put images with corresponding prompts and evaluate each
feature in the pool. By labeling each point, we obtain a se-
ries of feature information for each point, which is then used
to construct our decision tree. This automated approach not
only preserves the intricate details of the RL-optimized lay-
outs but also streamlines the OPC recipe development pro-
cess, making it more efficient and effective. Another criti-
cal aspect is the labeling of ground truth for decision trees.
To ensure the recipe does not become overly complicated,
the RL-movement vector δ is divided into different inter-
vals. These intervals serve as classification boundaries. For
example, in a given direction, the vector is categorized into
C intervals, where the furthest positive interval is labeled as
+C and the furthest negative interval as −C. Consequently,
the ground truth labels range from −C to +C, encompass-
ing a total of 2C + 1 categories. A label of 0 indicates no
movement.

LLM Labeling Example

{epe id: 10,
features : { on jog long edge: false, on jog
short edge: false, on horizontal edge: true, on
vertical edge: false, . . .}, result: +C}} . . .
{epe id: 15,
features : { on jog long edge:, true on jog
short edge: false, on horizontal edge: false,
on vertical edge: true, . . .}, result: −C}}

Self-improvement System Upon generating the decision
tree, we can rank the features by importance and per-
form importance-based feature selection. As illustrated in
Figure 6, the features on jog long edge and face
convex corner rank the lowest, with a feature impor-
tance of 0. By removing the unimportant features and recy-
cling them back into the LLM’s input, we update the feature
pool and continue constructing new decision trees. This it-
erative process is repeated several times, enhancing feature
extraction and development, ultimately making the system
self-improving.

This approach mirrors the workflow of human OPC en-
gineers, who continuously experiment, validate results, and
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Figure 6: Feature importance ranking. The features are
ranked based on their importance in the decision tree. The
less important features are removed and fed back into the
LLM for further improvement.

refine recipes. By automating this process into a symbolic
improvement and generation system based on decision trees,
we streamline and enhance the traditional OPC recipe de-
velopment process. This automation not only accelerates the
creation of optimized OPC recipes but also improves their
accuracy and reliability, demonstrating the significant poten-
tial of integrating advanced computational techniques into
the domain of computational lithography.

Recipe Generation Based on Decision Tree After anno-
tating with the LLM, we can intuitively construct a decision
tree for each pattern by combining the original polygon in-
formation with the extracted features. Based on the results
from the first RL phase, we label each leaf node of the de-
cision tree with the corresponding recipe type. Once the de-
cision tree is trained, each branch serves as a reference for
the LLM to write the corresponding rules, ultimately gener-
ating a complete OPC recipe, as shown in Figure 7(a) and
Figure 7(b). Additionally, using the decision tree as an in-
termediate representation has the benefit that the LLM can,
after abstracting the decision tree, generate different recipe
expressions according to the syntax of various downstream
OPC software, as shown in Figure 7(c).

4 Experimental Results
4.1 Dataset
To evaluate the effectiveness of our framework, we utilized
datasets from two distinct processes. The first dataset is de-
rived from the 2013 ICCAD contest (Banerjee, Li, and Nas-
sif 2013), which includes a test set of ten 2µm× 2µm metal
layer patterns fabricated using a 32nm process. This dataset
is widely employed in various OPC engines and semicon-
ductor lithography research. We utilized the training set pro-
vided by (Yang et al. 2020) for our experiments. The sec-
ond dataset is sourced from the NVIDIA Deep Learning
Accelerator (NVDLA) (NVIDIA 2024), an open architec-
ture designed to standardize deep learning inference accel-
erators. From the full-chip layout of the NVDLA, fabricated

… 

near_jog

on_start_corner_segon_vertical

Class: -3vel_dir_has_polygonon_end_corner_seg

on_start_corner_segnear_convex_corner at_long_path_end

Class: 1Class: NClass: -NClass: 2Class: 0

True False

LLM-generated and labeled features Ground truth by RL

(a) Decision tree example. The leaf nodes of the decision tree
are labeled with ground truth based on RL results. The non-leaf
nodes are features generated and labeled by the LLM.

. . .{condition: [near jog, on vertical, not
vel dir has polygon, not on start corner
seg ], type: EPE, class: 1} {condition: [not
near jog, not on start corner seg ], type:
EPE, class: 3} {condition: [near convex
corner, next to concave corner ], type:
FRAG, class: -2} . . .

(b) LLM-generated recipe example in jsonl format. Conditions
are tree feature labels, and the type determines the tasks. The
class represents the RL ground truth.

NEWTAG edge A short len corner1 convex
corner2 convex -out line end
NEWTAG neighbor both line end short len
corner convex -out line end adj
fragment corner A convex concave mid
length 0.03
fragment corner convex concave long
lenght 0.04 breakinhalf
retarget layer A pattern0 curve0
pattern epe curve1 emulate

(c) Downstream OPC software recipe example also includes
statements for defining feature labels and movement distances.

Figure 7: Decision tree and recipe generation example. (a)
Decision tree constructed from LLM-labeled features and
RL ground truth. (b) Simplified LLM-generated recipe ex-
ample in jsonl format. (c) Downstream OPC (Mentor
Graphics, Siemens 2024) software recipe example in Tcl
language.

using NanGate 45nm standard cells (Stine et al. 2007), we
extracted nearly one million clips. We then randomly se-
lected 800 clips for the training set and 200 clips for the
test set. This diverse dataset collection enabled a compre-
hensive evaluation of our OPC recipe development and its
application within computational lithography.

4.2 Model and OPC Engine
In this study, we utilize GPT-4o (OpenAI 2024), an opti-
mized version of GPT-4 with multi-modal capabilities that
process both text and images, enhancing performance and
versatility. The feature labeling component relies on these
multi-modal capabilities, while other parts of the framework
can use a purely language-based model. The OPC model is
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Figure 8: Decision Tree Efficiency on both ICCAD13 and
NVDLA datasets.

built on top of the open-source OPC engine (Zheng et al.
2023), which is widely used in the OPC community. The
methodology can be applied to any OPC engine. Implemen-
tation details and prompt scripts are provided in the supple-
mentary material. The hyperparameters of the OPC loss are
set to α = 1, β = 100, and γ = 1.

4.3 Decision Tree Efficiency
As a critical basis for generating recipes using LLMs, de-
cision tree models indirectly influence the final OPC per-
formance. In our study, we demonstrate the precision, re-
call, and F1-score of the final decision tree generated for
ICCAD13 and NVDLA datasets in Figure 8. The horizon-
tal axis in Figure 8 represents the number of segments into
which we divided the displacement distance, indicating the
number of classes. The average precision ranges from 0.77
to 0.90, with some examples achieving a precision of 100%.
This indicates that the decision tree constructed using fea-
tures automatically mined by the LLM agent can achieve
100% accuracy on certain patterns. However, as the com-
plexity and number of patterns increase, the overall average
precision falls below 0.9. Despite this, for overall OPC effec-
tiveness, a higher number of classes results in more precise
outcomes. Therefore, in the recipe optimized by the LLM,
we utilized 9 classes to compare the OPC results.

4.4 Efficiency of the Overall Framework
In Table 1, we present the results of three different scenarios:
the pure OPC engine (Zheng et al. 2023), the OPC engine af-
ter first-stage RL optimization, and the OPC engine utilizing
an LLM-generated recipe. The metrics PVB, EPE N, and
EPE D are introduced before, with smaller values indicat-
ing better performance. The runtime is measured in seconds
for the OPC engine and in hours for the RL optimization.
In both the ICCAD13 and NVDLA benchmarks, RL opti-
mization significantly reduces EPE values. Specifically, in
the ICCAD13 benchmark, RL reduces the EPE number by
12% and the EPE distance by nearly 24%. Similarly, in the
NVDLA benchmark, RL reduces the EPE number by 13%
and the EPE distance by 15%. However, RL’s major draw-
back is its excessive time consumption for pattern optimiza-
tion, highlighting the necessity of the second stage of our
framework.

The results of the second stage, shown in the OPC+LLM
column of the table, indicate that the LLM-generated recipe

ICCAD13
OPC OPC+LLM OPC+RL

PVBand 53328 51271 50060
ratio 1.00 0.96 0.94
EPE N 119.70 107.00 105.60
ratio 1.00 0.89 0.88
EPE D 693.10 561.70 525.90
ratio 1.00 0.81 0.76
Runtime 4s 4s 3hr

NVDLA
OPC OPC+LLM OPC+RL

PVBand 170899 161056 162096
ratio 1.00 0.94 0.95
EPE N 159.45 146.95 139.40
ratio 1.00 0.92 0.87
EPE D 869.25 766.10 741.05
ratio 1.00 0.88 0.85
Runtime 6s 6s 3hr

Table 1: Performance of the framework. The RL stage re-
sults are shown in the OPC+RL column, and the results re-
lated to the final LLM-generated recipe are shown in the
OPC+LLM column.

performs comparably to RL optimization. For the NVDLA
benchmark, the LLM-generated recipe reduces EPE N and
EPE D by 8% and 12%, while for the ICCAD13 benchmark,
it reduces EPE N by 11% and EPE D by 19%. The advan-
tage of the rule-based LLM-generated recipe is its immedi-
ate applicability to new layouts without additional optimiza-
tion time, maintaining the same runtime as the OPC engine
itself while enhancing performance.

5 Conclusion
In this paper, we propose a two-stage framework to auto-
mate the task of OPC recipe development. In the first stage,
RL mimics the process by which an OPC engineer designs
a recipe. This involves exploring the optimal solutions for
EPE measurement and fragmentation based on the charac-
teristics of the patterns. In the second stage, LLMs automate
the process of summarizing the recipe crafted by the OPC
engineer. Utilizing the optimal solutions generated by RL,
the LLM initially generates a relevant feature pool from the
layout and subsequently annotates each point with its corre-
sponding features. This annotated data is then used in con-
junction with the RL results to construct a decision tree. Ul-
timately, the LLM retrieves this decision tree to generate a
set of recipes. The experimental results show that this frame-
work reduces the key error metric by more than 10% without
increasing runtime.
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