

Intelligent OPC Engineer Assistant for Semiconductor Manufacturing Guojin Chen¹ Haoyu Yang², Bei Yu¹, Haoxing Ren²

¹The Chinese University of Hong Kong, ²NVIDIA

OPC Agent

Figure 1. The two-stage approach for OPC recipe generation. The first stage employs RL to optimize OPC recipes. The second stage utilizes multi-modal LLM agents to efficiently summarize the results generated by RL and generate the final OPC recipes.

Introduction

 Recent advancements in semiconductor manufacturing have enabled increasingly complex computational capabilities, necessitating sophisticated optimization techniques.

 We present Intelligent OPC Engineer Assistant, a novel AI/LLM-powered methodology for optical proximity correction (OPC) that combines reinforcement learning with

Generation Example

Evaluation on Accuracy

multi-modal agents.

 Experimental results demonstrate the efficacy of our approach in automatically generating OPC recipes across diverse chip designs, significantly reducing the manual effort required from experienced engineers.

Highlights

To enhance the efficiency of chip development,

- We present the Intelligent OPC Engineer Assistant, an Al-driven framework designed to assist human engineers in the rapid development of OPC recipes.
- 2. This methodology integrates a reinforcement learning (RL)-based approach for optimizing objective searches and a multi-modality large language model (MLLM)-backboned agent system to facilitate spatial reasoning and recipe summarization.

O LLM-generated and labeled features \Box Ground truth by RL

(a) Decision tree example. The leaf nodes of the decision tree are labeled with ground truth based on RL results. The non-leaf nodes are features generated and labeled by the LLM.

...{condition: [near_jog, on_vertical, not vel_dir_has _polygon, not on_start_corner_seg], type: EPE, class: 1} {condition: [not near_jog, not on_start_corner_seg], type: EPE, class: 3} {condition: [near_convex_corner, next_to_concave _corner], type: FRAG, class: -2} ...

(b) LLM-generated recipe example in jsonl format. Conditions are tree feature labels, and the type determines the tasks. The class represents the RL ground truth.

Figure 4. Decision Tree Efficiency on both ICCAD13 and NVDLA datasets.

	ICCAD13				
	OPC	OPC+LLM	OPC+RL		
PVBand	53328	51271	50060		
ratio	1.00	0.96	0.94		
EPE N	119.70	107.00	105.60		
ratio	1.00	0.89	0.88		
EPE D	693.10	561.70	525.90		
ratio	1.00	0.81	0.76		
Runtime	4s	4s	3hr		
	NVDLA				

Figure 2. Left: The full-chip layout. Right: The relationship between the layout, OPC Recipe and OPC Engine.

NEWTAG edge A short_len corner1 convex corner2 convex -out line_end

NEWTAG neighbor both line_end short_len corner convex -out line_end_adj

fragment_corner A convex concave mid_length 0.03
fragment_corner convex concave long_length 0.04
breakinhalf

retarget_layer A pattern0 curve0 pattern_epe curve1
emulate

(c) Downstream OPC software recipe example also includes statements for defining feature labels and movement distances.

Figure 3. Decision tree and recipe generation example. (a) Decision tree constructed from LLM-labeled features and RL ground truth. (b) Simplified LLM-generated recipe example in json1 format. (c) Downstream OPC [?] software recipe example in Tcl language.

		OPC	OPC+LLM	OPC+RL
	PVBand	170899	161056	162096
	ratio	1.00	0.94	0.95
	EPE N	159.45	146.95	139.40
	ratio	1.00	0.92	0.87
	EPE D	869.25	766.10	741.05
	ratio	1.00	0.88	0.85
	Runtime	6s	6s	3hr

Table 1. Performance of the framework. The RL stage results are shown in the OPC+RL column, and the results related to the final LLM-generated recipe are shown in the OPC+LLM column.

The 39th Annual AAAI Conference on Artificial Intelligence | February 25 – March 4, 2025 | Philadelphia, Pennsylvania, USA