
CBTune: Contextual Bandit Tuning for Logic Synthesis

Fangzhou Liu1, Zehua Pei1, Ziyang Yu1, Haisheng Zheng2, Zhuolun He1,2, Tinghuan Chen3, Bei Yu1
1The Chinese University of Hong Kong 2Shanghai Artificial Intelligence Laboratory

3The Chinese University of Hong Kong, Shenzhen

Abstract—Logic synthesis pre-optimization involves applying a
sequence of transformations called synthesis flow to reduce the
circuit’s Boolean logic graph, like AIG. However, the challenge
lies in selecting and arranging these transformations due to
the exponentially expanding solution space. In this work, we
propose CBTune, a novel online learning framework that utilizes
a contextual bandit algorithm to explore the solution space and
generate synthesis flows efficiently. We develop the Syn-LinUCB
algorithm as the agent, which incorporates circuit characteristics
and leverages long-term payoffs to guide decision-making, thus ef-
fectively preventing getting trapped in local optima. Experimental
results show that our framework achieves the optimal synthesis
flow with a lower time cost, substantially reducing the number of
AIG nodes and 6-LUTs compared to SOTA approaches.

I. INTRODUCTION

Logic synthesis converts high-level circuit descriptions into
gate-level netlists via translation, mapping, and optimizations.
Pre-optimization, also known as technology-independent opti-
mization, involves a time-consuming process of applying vari-
ous logic equivalence rules to compact circuit’s Boolean logic.
And-Inverter Graphs (AIGs) serve as a common representation
for logic graphs in the synthesis tool ABC [1]. Applying a
synthesis flow with multiple transformations to the AIG leads
to reduced logic nodes and depth, thus indirectly improving the
circuits’ Quality of Results (QoR).

Developing an efficient synthesis flow proves to be an
intricate task. Yu et al. [2] indicate that different synthesis
flows yield diverse optimization results for AIG. However, due
to sequence length and transformation choices, exploring the
optimal synthesis flow faces an exponential solution space,
making manual search impractical. Additionally, they stress
that an optimal flow for one design cannot be transferred for
similar gains in others. Hence, although ABC provides heuristic
synthesis flows like resyn2 and compress2, their fixed order of
operations hinders efficient logic optimization.

Machine learning is widely used in pre-optimization to ac-
celerate design convergence and minimize manual supervision.
For one thing, it involves modeling the circuit’s structure and
correlating sequential features with specific optimization ob-
jectives, which facilitates rapid and accurate metric estimation
for synthesis flows [2]–[4]. For another, reinforcement learning
is employed to actively generate synthesis flows and expedite
solution space exploration. DRiLLS [5] introduced an intelli-
gent framework that allows the A2C agent to select optimal
transformations flexibly. Zhu et al. [6] employed GNNs to
capture AIG topology and combined it with historical decisions
to enrich state information for improved decision-making.

However, these methods using pre-trained models and com-
plex networks have certain limitations. Firstly, constructing

…

L

Contextual
Information

QoR

Bandit Model
State

Evaluation node/level
area/delay

circuit

optimization

Possible Return Back

characteristics

trend

a0a0 a1a1 a2a2 a3a3 a4a4

Fig. 1 Illustration of our proposed contextual bandit-based
approach for efficient synthesis flow generation.

datasets and training network models for large-scale circuit
designs is time-intensive and resource-demanding. Secondly,
model transferability is limited due to reliance on dataset-
specific objectives [2], [5]. OpenABC-D [7] revealed that the
permutation similarity between optimal synthesis flows for
different circuits is under 30%, underscoring the design-specific
nature of synthesis flow generation and impeding model trans-
ferability. Lastly, neural network frameworks like PyTorch often
introduce notable runtime overhead when communicating with
C++/C-based logic synthesis tools during system integration.

Recently, the lightweight Multi-Arm Bandit (MAB) model
has demonstrated its effectiveness in identifying the optimal
synthesis flow in FlowTune [8]. The core idea revolves around
achieving a balance between exploring and exploiting arms
through multiple trials to maximize overall payoffs. However, as
a non-contextual MAB method, FlowTune’s policy updates rely
solely on real-time synthesis results from each arm’s sampling
tests, disregarding vital domain-specific arm features like opti-
mization trends and current AIG characteristics. Furthermore, it
makes decisions on a sequence-by-sequence basis, overlooking
permutations within each sequence, which comes at the cost of
final performance. In this paper, we present an online learning
framework based on the contextual bandit model, customized
for efficient synthesis flow generation, as illustrated in Fig. 1.
We create separate bandit models for the selection of each trans-
formation and try to gather domain-specific insights to guide
the agent’s decisions. As each model operates independently,
eliminating the need for trial-and-error learning from prior
model experiences, we enable local retractions and introduce a
novel “return-back” mechanism that differs from traditional RL
approaches in dealing with sequential decision-making tasks.
Our main contributions are summarized as follows:
• Our proposed framework, CBTune, tailors the contextual

bandit algorithm to facilitate efficient transformation se-

lection through iterative model tuning.
• We implement the Syn-LinUCB algorithm as the deci-

sion agent and establish a context generator for informed
decision-making in the bandit model.

• We present a novel “return-back” mechanism that revisits
decisions to avoid local optima, distinguishing it from
typical RL scenarios.

• Experimental results show that our framework outperforms
SOTA approaches within the same action space.

II. PRELIMINARIES

A. Boolean Logic Optimization

Boolean logic optimization employs techniques like logic
sharing and reusing to minimize Boolean networks. The And-
Inverter Graph (AIG) is an efficient Boolean network, decom-
posing the circuit’s logic into two-input nodes (AND function)
and dotted edges (NOT function). In ABC [1], AIG-based
transformations such as rewrite and refactor are widely used
to achieve rapid logic reduction through graph representations.
By iteratively traversing the AIG, these transformations identify
appropriate nodes for optimization and update the AIG accord-
ingly. Typically, AIG node count and depth serve as essential
performance metrics, where reducing logic nodes decreases
circuit size and lowering depth enhances circuit speed.

A synthesis flow strategically arranges transformations to
achieve optimized performance. Let A = {a0, a1, a2, ..., an}
represents a set of n candidate transformations, and F represents
a synthesis flow comprising permutations of ak selected from
A. Consequently, when seeking to generate a F of length L,
the solution space for making selections is of size nL. Given
the time overhead of evaluating each selected transformation’s
optimization result, efficient exploration becomes crucial.

B. Bandit Problem

The Multi-Arm Bandit (MAB) problem involves selecting
arms within a limited number of trials, striking a balance
between “exploitation” and “exploration” to maximize overall
payoff. One prominent MAB algorithm, Upper Confidence
Bound (UCB) [9], ingeniously devises a trade-off strategy by
extending a fluctuation range ∆. UCB estimates each arm’s
observed payoff p′ based on historical trial data and iteratively
approximates its true payoff p, maintaining the relationship:
p′ −∆ ≤ p ≤ p′ + ∆. As the trial progresses, the fluctuation
range ∆ gradually decreases to zero, leading to p′ → p. The
UCBi (i.e., p′) for the i-th arm in iteration t is given by:

UCBi = x̂i(t) + ∆ = x̂i(t) +

√
2 ln(t)

Ti,t
. (1)

Here, x̂i(t) estimates the payoff for selecting arm i up to
iteration t by averaging historical results. The latter term
captures the fluctuation range, with Ti,t tracking the number
of times arm i has been selected until iteration t. This strategy
efficiently balances the exploration of uncertain arms, even if
their observed payoffs are lower, with the exploitation of known
arms by allocating more trials to arms with higher upper bound
and fewer trials to those with lower upper bound.

Score

Score Initial Improved Deteriorated Accurate
Convergence Final Score

Fig. 2 Score iterations for each arm in bandit model.

C. Motivation

We seek to formulate a domain-specific bandit model for any
single transformation’s decision-making in the synthesis flow
and assess their feasibility. In this model, each transformation
in the candidate set A serves as an “arm”, initially assigned
uniform UCB scores. The model iterates to update each arm’s
score and differentiates their performance. Simultaneously, it
selects the arm with the highest score in each iteration, adjusting
its scoring parameters and narrowing the confidence interval for
improved reliability. Ultimately, each arm’s score converges to
its true payoff, with the highest-scoring arm indicating optimal
optimization performance.

In Fig. 2, we visualize how arm scores are iteratively updated
in the bandit model. The red and blue lines denote each arm’s
unknown true payoff. This uncertainty arises as we can only
observe the immediate synthesis results from applying a single
transformation a of each arm, without foreseeing its long-term
payoff in the total flow, which will be elaborated upon in
Section III-B. Each arm’s score corresponds to the upper bound
of its gray confidence interval, marked by a dashed line. As
iterations proceed, the confidence interval gradually narrows,
and the gray dashed line aligns with red and blue lines due
to continuously updated decision parameters. After sufficient
iterations for convergence, informed choices can be made based
on each arm’s score.

III. ALGORITHMS

A. CBTune Framework

Our proposed framework, CBTune, decomposes the synthesis
flow of length L into a series of sequential steps, each em-
ploying a domain-specific bandit model, as depicted in Fig. 3.
Unlike Flowtune [8], which relies on segmented sequences
for decision-making, our framework generates the synthesis
flow step by step, guided by analyzing each transformation’s
effectiveness within the sequence. In Fig. 4(a), we introduce
random disturbance to the transformation at each step of resyn2
by substituting them with alternatives from the candidate set A.
The results reveal that modifying a single transformation at any
step can significantly affect the results, leading to variations of
up to 2% in a sequence of 10 steps. Hence, each transformation
in the synthesis flow is important and should be treated carefully
for decision-making.

At each step, the model iteratively evaluates candidate trans-
formations within action space A (referred to as “arms”) and

2

Decision-making in bandit model

Synthesis Tool

Agent Context
Generator

arm
s

short-t
erm

 payoff
long-term payoff

subsequences
update

Best Arm

GiGi Gi−1Gi−1

Syn-LinUCB
circuit

characteristics

3.4 2.5 2.4 5.1 5.2 4.4 2.1

1.2 4.8 6.5 2.4 5.4 2.8

Arm1 Arm2 Arm3 Arm4 Arm5 Arm6 Arm7

1.6 2.6 0.9 5.3 2.5 5.8 4.5

5.1 5.4 1.5 4.2 0.7 3.5 3.1

Step 1

Step 2

Step 3

Step L

G1G1

G2G2

G3G3

GLGL

5.7

a(L)a(L)

a(3)a(3)

a(2)a(2)

a(1)a(1)

Fig. 3 CBTune framework overview.

ultimately selects the highest-scoring one, denoted as a(i),
as the decision result. Next, a(i) is applied to the current
step’s input AIG Gi−1 to create a new Gi for the subsequent
step. The process follows the relation Gi = a(i) · (Gi−1),
where i = 1, 2, . . . , L, a(i) ∈ A, and G0 denotes the initial
unoptimized AIG. Upon completing all L steps, the final GL

is obtained, representing the synthesis flow as the ordered
sequence of transformations a(1), a(2), ..., a(L).

The right part of Fig. 3 demonstrates fundamental compo-
nents and their interactions in the bandit model, which will be
detailed in subsequent sections. ABC [1] functions as a synthe-
sis tool. The context generator samples potential optimization
trends for each arm and collects valuable AIG characteristics as
state information, which are used to update the agent’s decision
parameters. The agent employs the Syn-LinUCB algorithm,
leveraging both contextual vectors and rewards to score arms,
and then selects the one with the highest score as the best arm.
Furthermore, various optimization techniques are proposed to
enhance efficiency and precision in decision-making.

Here are the essential bandit model configurations:
Action Space: To assure a fair comparison, we select trans-

formations commonly employed by prior works [5], [8], [10]
within the synthesis tool ABC and represent the action space
as discrete actions. Specifically, A = {resub (rs), resub -z (rsz),
rewrite (rw), rewrite -z (rwz), refactor (rf), refactor -z (rfz),
balance (b)}, with a total of n = 7 candidate transformations.

Reward: The reward r corresponds to the short-term payoff
of each arm. Typically, the number of AIG nodes, logic levels
or mapped LUTs serves as the target value, reflecting the trans-
formation’s optimization effect. r is obtained by conducting a
single-step execution of the respective transformation for each
arm, followed by scaling it based on the average target value
across all arms. This computation takes place at the beginning
of each step’s decision-making and remains constant throughout
the iterations.

B. Context Generator

Contextual information serves as arm features, offering es-
sential environmental and state insights that assist the agent
in making accurate decisions during iterations. This requires
constructing a one-dimensional vector x of length d, which

25,040 25,160 25,280 25,400 25,520

67

68

69

70

Nodes

L
ev

el
s

Random Disturbance Test
Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Step 9

Step 10
Resyn2

(a)

b rw rf b rw rwz b rfz rwz b

0

1

2

3

4

Synthesis transformation

N
od

e
re

du
ct

io
n

ra
te
(%

)

Step Importance Test
bfly
dscg
fir

ode
syn2

(b)

Fig. 4 Analysis of transformation effectiveness in synthesis flow
on the VTR 8.0 [11] benchmark.

includes circuit characteristics xc and the arm’s long-term
payoff xl, as detailed in TABLE I. The circuit characteristics act
as static contexts computed once per step, while the long-term
payoff of each action serves as dynamic contexts continuously
updated within each iteration. We normalize the entire vector
to ensure smooth convergence during iterations.

C. Agent

Inspired by LinUCB [14], we enhance the traditional MAB
method by integrating contextual information, reinforcing its
capabilities as the decision-making agent at each step. Lin-
UCB leverages contextual data, including arm and environment
features, to guide decision-making, and dynamically modifies
the agent’s decision parameters. The score for each arm a is
calculated using the formula:

LinUCBa = E(a|x) + αSTD(a|x)

= x> · θa + α
√
x>A−1a x.

(2)

Recall that x is the context vector. The first term E(a|x) signi-
fies the agent’s observed payoff for selecting arm a, determined
by the context vector x and decision parameter θa. The latter
term represents the upper confidence bound, which indicates
the standard deviation (STD) between the observed payoff and
true payoff, with the derivation process detailed in [15]. Here,
α acts as a hyperparameter controlling the exploration level,
commonly set to 1 +

√
ln(2/δ)/2. Each arm maintains such

a score, which is continuously updated during the algorithm’s
iterations.

Considering the mentioned details, we introduce the Syn-
LinUCB algorithm, described in Algorithm 1. In each step
i, we begin by calculating the reward ra for each arm and
extracting the circuit characteristics xc

a of Gi−1. To address
the varying importance of information in the context vector,
we adopt a feature importance analysis approach similar to [10]
and incorporate a predefined weight vector w to quantify their
significance. This weight vector serves as a guide for the agent
to assign scores to each arm during iterations. Additionally, we
track the number of times each arm is selected with a variable
s and use it to calculate the exploration hyperparameter α.
Multiple selections of an arm indicate its proximity to the true
payoff and result in a reduced exploration level for that arm.

3

TABLE I Contextual Information.
Feature Description Example

Circuit Characteristics
(xc)

AIG information extracted by applying a
(i)
j

(j ≤ n) to Gi−1 using circuit characterization
tools yosys [12] and ccirc [13].

#Number of wires/cells/nots, #Maximum delay, #Number of com-
binational nodes, #Number of high degree comb, #Reconvergence,
#Node shape, #Fanout distribution, # Edge length distribution.

Long-term Payoff of the Arm
(xl)

Random DSE result: During each iteration,
“arm” a(i) serves as the first transformation for
generating m random subsequences of length l
(i+l ≤ L). These subsequences are then applied
to Gi−1 and get the synthesis results.

Arm: rewrite (rw); l = 5; m = 3;
{rw,b,rw,rf,rfz} → Nodes: 28000, Level: 65
{rw,rw,rfz,rf,rs} → Nodes: 27890, Level: 66
{rw,rf,rf,rw,b} → Nodes: 28010, Level: 66
Arm: refactor (rf); l = 4; m = 2;
{rf,b,rf,rw} → Nodes: 28350, Level: 69
{rf,rw,b,rs} → Nodes: 28324, Level: 67

Algorithm 1 Syn-LinUCB

Input: Arms a ∈ A, Context weights w ∈ Rd,
Number of iterations T , Constant ρ.

Output: Best arm abest in this step.
1: ra ← Reward of all arms;
2: Extract the AIG characteristics: xca ∈ Rd1 ;
3: Arm selection times sa = 0;
4: for t = 1, 2, ..., T do
5: Update the long-term payoff: xlt,a ∈ Rd2 ;
6: Observe features of a ∈ A : xt,a = [xca,x

l
t,a] ∈ Rd;

7: for ∀a ∈ A do
8: Initialize historical context and reward by Aa = Id, ba =

0d, ∀a is new;
9: Update hyperparameter α by α = 1.0 +

√
log(2.0/ρ)

sa
;

10: Update the decision parameter by θa = A−1
a ba;

11: Calculate the weighted context xwt,a = xt,aw;

12: Update score by pt,a = θ>a x
w
t,a + α

√
xwt,a

>A−1
a xwt,a;

13: end for
14: Choose arm by at = argmaxa∈A pt,a;
15: Increase the selection count of arm at by sat = sat + 1;
16: Update the parameters Aat and bat of the chosen arm at by

Equation (3);
17: end for
18: abest ← at.

During each iteration, we first compute the long-term payoffs
xl
a for each arm and construct the corresponding context

vector xa of dimension d by combining the precomputed xc
a.

Subsequently, we calculate each arm’s score pt,a from line 7
to line 13 using the agent’s decision parameters θa, the arm’s
context vector xw

t,a with weight information, and the predefined
hyperparameter α. To achieve this, we first derive the decision
parameter θa with θa = A−1a ba, based on the historical context
and reward information stored in Aa and ba. If an arm is
untested, we initialize its parameters A and b with an identity
matrix and a zero vector. Next, we create a context vector xw

with weight information by setting xw
t,a = xt,a·w, and calculate

the arm’s score using Equation (2) in line 12. The arm with
the highest score in the current iteration is then selected, and
its decision parameters Aat

and bat
are adjusted based on the

context vector and reward of the chosen arm at.

Aat
= Aat

+ xt,at
x>at

, bat
= bat

+ raxt,at
. (3)

Finally, after T iterations, the arm with the highest score abest
is chosen as the final decision.

Syn-LinUCB iteratively updates the agent’s scoring parame-

Stage 1 Return
back? Stage 2 Return

back?

Check out the hash table and Return back

Y Y
N N

Fig. 5 The return-back mechanism in CBTune.

ters based on the arm’s contextual information and rewards,
offering two key advantages. Firstly, it employs short-term
payoffs as the reward, enabling the agent to select arms with
the ideal target value at each step, thereby enhancing local
performance. Secondly, it mitigates the risk of falling into
local optima by considering the arm’s long-term payoffs and
exploring potential optimization trends, leading to improved
decision quality.

D. Optimization Techniques

To enhance decision-making performance and reduce the
online-learning time, we propose some optimization methods.

Return-back Mechanism: In our framework, each step
employs a separate bandit model for decision-making without
parameter sharing, potentially leading to suboptimal results due
to the lack of historical decision information. To address this,
we incorporate a “return-back” mechanism in CBTune. By pre-
serving synthesis results and optimized circuits from previously
decided steps, we can assess decision quality after each step and
promptly revisit the previous key step for re-decision-making,
as depicted in Fig. 5. This adaptive mechanism enhances the
final performance by enabling CBTune to learn from mistakes
and optimize previous decisions.

To be specific, we create a hash table to store the results
of the context generator’s sequential multi-step exploration,
which takes place during the evaluation of long-term payoffs at
each step. The hash table is structured with the first dimension
denoting the current step number and the second dimension
denoting the various search depths (referred to as l in TABLE I)
explored within that step. This allows us to store optimal results
for all arms according to the search depths in each step. For
example, in step 1, the context generator performs random
sampling to explore potential synthesis results in steps 2, 3, and
4. We then identify the optimal value at all these search depths
and record these values in the step 1 row of the hash table,
aligned with their respective search depths in the columns.

Hereby, after completing each decision-making step, we
proceed to compare the current synthesis result with the data

4

stored in the hash table corresponding to that step. If the
difference exceeds a predefined threshold, we record the step
number associated with the optimal result for the current search
depth in the hash table. Then we revisit the specified step,
exclude the previously selected arm from the candidate arm
set A, and re-make the decision. Subsequent steps from that
step will also be re-executed. Notably, each step can only be
revisited once for the sake of efficiency.

Heuristic Tuning Strategy: This strategy explores poten-
tial heuristics to boost the agent’s decision efficiency in the
bandit model. (1) Tuning iteration count. We observe that the
initial transformations in the synthesis flow have a substantial
influence on the overall results. Fig. 4(b) depicts sequential
execution of resyn2, tracking the reduction rate of AIG nodes
at each step. The initial transformations cut node count by over
3%, whereas subsequent ones yield less than 1%. Therefore,
it is inspired to allocate more iterations and runtime to the
crucial initial step’s decision-making, and this will improve the
precision and reliability of the arm scores while preventing
the entire decision-making process from veering off course.
Simultaneously, as step i progresses, we decrease the iteration
count T for subsequent transformations to minimize runtime,
following the equation: T = Torig − decay rate × i, and
T ≥ Tmin. (2) Early stop. When the agent repeatedly selects
the same arm more than three times in a row during iterations, it
indicates the algorithm is converging towards a stable selection
result. In such cases, even if the specified number of iterations
T has not been reached, we terminate the iteration loop and
consider the currently selected arm as the final result.

IV. EXPERIMENTAL RESULTS

The CBTune framework is implemented in C++/C pro-
gramming language, utilizing Eigen for matrix operations and
OpenMP for parallel acceleration. The whole framework is
integrated into the source code of ABC, allowing for joint
compilation. Execution results are acquired by invoking the
“cbtune” command within the interactive interface of ABC.
All experiments are conducted on a machine with 40 core
Intel® Xeon® Silver 4210R CPU @ 2.40GHz.

We evaluate CBTune by comparing the optimization perfor-
mance of the synthesis flow it generates with state-of-the-art
methods across various benchmarks. These methods can be
categorized into two groups: one utilizes lightweight bandit
algorithms, and the other employs classical reinforcement learn-
ing with complex neural network training. The experiments are
conducted within the action space described in Section III-A,
aiming to reduce the number of AIG nodes and 6-input LUTs
(abbreviated as “6-LUTs”).

Comparison with Bandit-based Method: Our approach is
compared to FlowTune [8] using the VTR benchmarks [11].
This involves examining the AIG node count following logic
minimization and the subsequent assessment of 6-LUTs count
after FPGA technology mapping. For FlowTune, we configure
“stages:iterations” (s:m) as 3 : 20 with 2-repetition, resulting in
14 transformations per stage and a total synthesis flow length of
42. Additionally, we present results from a greedy baseline that
selects the best transformation at each decision step. To gain

TABLE II Details of selected VTR benchmarks [11].
Benchmark bfly dscg fir ode or1200 syn2

Nodes 28910 28252 27704 16069 12833 30003
Levels 97 92 94 98 148 93

insights into the approximate optimization effect on the overall
solution space, we also randomly generate 50,000 synthesis
flows for comparison.

The experimental results for logic optimization are visualized
in Fig. 6, which illustrates the relationship between the AIG
node count (x-axis) and the corresponding AIG logic depth
(y-axis). For reference, the benchmarks’ initial node and level
counts can be found in TABLE II. To ensure an equitable
comparison, CBTune and the other two methods adhere to
FlowTune’s implementation by integrating the supplementary
subsequence “ifraig;dch -f ” after every 14 transformations.
The results demonstrate CBTune’s superior performance over
FlowTune, achieving an average improvement of 0.72% in
terms of the objective, while also delivering an impressive
39% reduction in runtime. Furthermore, when compared to the
Random and Greedy approaches, CBTune exhibits a significant
improvement of around 3.6% and 1.6%, respectively, mitigating
the risk of encountering local optima.

For reducing 6-LUTs after FPGA technology mapping, re-
sults are shown in TABLE III, where ˆ#LUTs and ¯#LUTs
denotes CBTune’s best and average performance. We adapt
the supplementary subsequence “ifraig;scorr;dc2;strash;dch -
f;if -K 6;mfs2;lutpack -S 1” after every 14 transformations,
aligning with Flowtune’s implementation. CBTune was exe-
cuted 20 times to gather reliable data. Experimental results
show that CBTune surpasses both Greedy and Flowtune in
6-LUTs optimization, yielding average enhancements of 2.9%
and 1.4%, respectively, and delivering a notable 54.7% runtime
speedup.

Comparison with NN-Enhanced Classical RL Method:
We further compare our approach with two other SOTA works:
DRiLLS [5] and RL4LS [10], following the same experimental
settings targeted reducing the 6-LUTs after FPGA mapping. In
contrast to our online-learning bandit method, these works rely
on classical reinforcement learning techniques and necessitate
pre-trained neural network models to guide their decisions
for the synthesis flow. Our experiments use the EPFL bench-
mark [16] with a fixed synthesis flow length of L = 25. We
incorporate the priority cuts mapper [17] in ABC, specifically
employing the command “if -a -K 6” to optimize mapping for
6-LUTs and enhance area efficiency. TABLE IV presents the
comparison of results between CBTune and other methods for
optimizing 6-LUTs. We extract the optimal performance results
reported in [10] for the baseline and calculate their average
runtime on our local machine. For CBTune, we execute it ten
times to obtain the average target results and the corresponding
runtime (τ) for online decision-making. The results demonstrate
CBTune’s superiority over the other three methods, achieving
reductions of 2.2%, 4.4%, and 3.9% in the number of 6-LUTs,
respectively. Moreover, CBTune incurs the lowest average tim-

5

21,600 21,950 22,300 22,650 23,000 23,350

68

72

76

80

84

88

#Nodes

L
ev

el
s

bfly

Random
Greedy
Flowtune
CBTune

21,500 21,800 22,100 22,400 22,700 23,000

65

70

75

80

85

#Nodes

L
ev

el
s

dscg

Random
Greedy
Flowtune
CBTune

20,900 21,200 21,500 21,800 22,100 22,400

65

70

75

80

85

#Nodes

L
ev

el
s

fir

Random
Greedy
Flowtune
CBTune

12,400 12,600 12,800 13,000 13,200 13,400

70

75

80

85

90

#Nodes

L
ev

el
s

ode
Random
Greedy
Flowtune
CBTune

10,100 10,200 10,300 10,400 10,500 10,600

125

130

135

140

145

#Nodes

L
ev

el
s

or1200
Random
Greedy

Flowtune
CBTune

22,800 23,100 23,400 23,700 24,000 24,300

65

68

71

74

77

80

83

#Nodes

L
ev

el
s

syn2

Random
Greedy
Flowtune
CBTune

Fig. 6 CBTune vs. FlowTune [8] in AIG node optimization.

TABLE III CBTune vs. FlowTune in 6-LUTs optimization.

Benchmark
Initial Greedy Flowtune [8] CBTune
#LUTs #LUTs #LUTs τ(m) ˆ#LUTs ¯#LUTs τ(m)

bfly 9019 8269 8216 76.47 7962 8086.03 29.63
dscg 8534 8313 8302 77.15 7981 8119.84 30.44
fir 8646 8385 8094 74.23 7820 7977.38 27.6

ode 5244 5316 5096 34.83 4920 5046.71 17.32
or1200 2776 2748 2747 20.08 2731 2754.07 15.62

syn2 8777 8669 8603 81.33 8234 8360.53 31.67

GEOMEAN 6631.20 6464.69 6364.89 54.04 6166.39 6271.82 24.48
Ratio Avg. 1.000 0.975 0.960 1.000 0.930 0.946 0.453

ing cost, approximately 8.37 minutes per design.
In general, our CBTune framework efficiently generates

synthesis flows, achieving stable and outstanding optimization
results without the need for training sets or complex procedures,
while maintaining optimal decision-making runtime.

V. CONCLUSION

In summary, this work customizes the contextual bandit
algorithm to generate efficient synthesis flows, enhancing the
circuit design’s QoR. The CBTune framework introduces a
context generator to support informed decision-making and
employs the Syn-LinUCB algorithm as the agent to iteratively
evaluate arms, ultimately selecting the optimal one. We also
implement optimization techniques like “return-back” mecha-
nism, to prevent falling into local optima and improve decision-
making performance. Experimental results highlight CBTune’s
excellence in optimizing AIG nodes and 6-LUTs within an

TABLE IV CBTune vs. NN-enhanced RL in 6-LUTs optimization.

Benchmark
Initial Greedy DRiLLS [5] RL4LS* CBTune
#LUTs #LUTs ¯#LUTs τ(m) ¯#LUTs τ(m) ¯#LUTs τ(m)

max 721 697 694 32.58 687.8 54.34 684.25 6.01
adder 249 244 244 24.05 244 10.05 244 5.97
cavlc 116 115 112.2 26.02 111.3 3.22 111 2.37
ctrl 29 28 28 24.25 28 2.85 28 0.59

int2float 47 46 42.6 21.7 42.3 2.81 40 2.76
router 73 67 70.1 22.01 69.5 3.07 68.11 2.32

priority 264 146 133.4 23.32 142.9 5.9 138.86 3.41
i2c 353 291 292.1 25.17 289.32 7.55 283.11 3.61
sin 1444 1451 1441.5 51.15 1438 20.1 1441.67 9.71

square 3994 3898 3889.4 130 3889 72.88 3882.11 25.99
sqrt 8084 4807 4708 147.64 4685.3 196.15 4607 36.51
log2 7584 7660 7583.6 198.6 7580.1 125.28 7580 41.27

multiplier 5678 5688 5678 180.84 5672 187.81 5679.75 29.08
voter 2744 1904 1834.7 84.43 1678.1 330.48 1682.25 11.46
div 23864 4205 7944.4 259.75 7807.1 482 4180.91 25.58

mem ctrl 11631 10144 10527.6 229.33 10309.7 1985.84 10242.57 45.81

GEOMEAN 926.59 732.69 753.49 59.48 748.34 34.54 712.83 8.37
Ratio Avg. 1.000 0.791 0.813 1.000 0.808 0.581 0.769 0.141

* Last10 in RL-PPO-Pruned [10]

ideal runtime. Future work will focus on integrating backend
information to guide decision-making and further evade staged
local optima for QoR.

REFERENCES

[1] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. CAV, 2010.

[2] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows without
human knowledge,” in Proc. DAC, 2018.

[3] N. Wu, J. Lee, Y. Xie, and C. Hao, “Lostin: Logic optimization via spatio-
temporal information with hybrid graph models,” in Proc. ASAP, 2022.

[4] C. Yu and W. Zhou, “Decision making in synthesis cross technologies
using lstms and transfer learning,” in Proc. MLCAD, 2020.

[5] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, “DRiLLS: Deep rein-
forcement learning for logic synthesis,” in Proc. ASPDAC, 2020.

[6] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring logic opti-
mizations with reinforcement learning and graph convolutional network,”
in Proc. MLCAD, 2020.

[7] A. B. Chowdhury, B. Tan, R. Karri, and S. Garg, “Openabc-d: A large-
scale dataset for machine learning guided integrated circuit synthesis,”
arXiv preprint arXiv:2110.11292, 2021.

[8] W. L. Neto, Y. Li, P.-E. Gaillardon, and C. Yu, “Flowtune: End-to-end
automatic logic optimization exploration via domain-specific multi-armed
bandit,” IEEE TCAD, 2022.

[9] W. Jouini, D. Ernst, C. Moy, and J. Palicot, “Upper confidence bound
based decision making strategies and dynamic spectrum access,” in
Proc. ICC, 2010.

[10] G. Zhou and J. H. Anderson, “Area-Driven FPGA Logic Synthesis Using
Reinforcement Learning,” in Proc. ASPDAC, 2023.

[11] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” ACM TRETS, vol. 7, no. 2,
pp. 1–30, 2014.

[12] C. Wolf, “Yosys open synthesis suite,” 2016.
[13] M. D. Hutton, J. Rose, J. P. Grossman, and D. G. Corneil, “Characteriza-

tion and parameterized generation of synthetic combinational benchmark
circuits,” IEEE TCAD, vol. 17, no. 10, pp. 985–996, 1998.

[14] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in The Web
Conference, 2010.

[15] T. J. Walsh, I. Szita, C. Diuk, and M. L. Littman, “Exploring com-
pact reinforcement-learning representations with linear regression,” arXiv
preprint arXiv:1205.2606, 2012.

[16] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in Proc. IWLS, no. CONF, 2015.

[17] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in Proc. ICCAD, 2007.

6

