

CBTune: Contextual Bandit Tuning for Logic Synthesis

Fangzhou Liu¹, Zehua Pei¹, Ziyang Yu¹, Haisheng Zheng², Zhuolun He^{1,2}, Tinghuan Chen³, Bei Yu¹

¹The Chinese University of Hong Kong
²Shanghai Artificial Intelligence Laboratory
³The Chinese University of Hong Kong, Shenzhen

Mar. 25, 2024

Synthesis Flow

Synthesis flow is a set of synthesis transformations that apply iteratively to the AIG.

• Use typical ABC commands like *balance(b)*, *rewrite(rw)*, *refactor(rf)*, *resubstitute(rs)*, ...

Problems we meet:

- Exponential solution space due to the sequence length and transformation's choices.
- The same synthesis flow works differently in different designs.

Limitations of recent works¹²³:

- Timing-intensive and resource-demanding; The overhead of system integration.
- Lack of transferability; Training is hard to converge.

¹Abdelrahman Hosny et al. (2020). "DRiLLS: Deep reinforcement learning for logic synthesis". In: *Proc. ASPDAC*, pp. 581–586.

²Keren Zhu et al. (2020). "Exploring logic optimizations with reinforcement learning and graph convolutional network". In: *Proc. MLCAD*, pp. 145–150.

³Nan Wu et al. (2022). "Lostin: Logic optimization via spatio-temporal information with hybrid graph models". In: *Proc. ASAP*, pp. 11–18.

Bandit Model

A decision-making problem aimed at maximizing rewards through the trade-off between exploration and exploitation.

• A popular method: Upper Confidence Bound (UCB).

$$UCB_{i} = \hat{x}_{i}(t) + \Delta = \hat{x}_{i}(t) + \sqrt{\frac{2\ln(t)}{T_{i,t}}}.$$
(1)

CBTune Framework

- Action Space: $A = \{resub (rs), resub z (rsz), rewrite (rw), rewrite z (rwz), refactor (rf), refactor z (rfz), balance (b)\}, denoted as <math>A = \{a_1, a_2, a_3, ..., a_7\}$
- **Reward:** The short-term payoff (a single-step execution) of each arm: the number of AIG nodes or 6-LUTs.
- The highest-scoring one *a*^(*i*) is selected at each step. Upon completing all *L* steps, the final synthesis flow has the ordered sequence of transformations *a*⁽¹⁾, *a*⁽²⁾, ..., *a*^(*L*).

CBTune Framework

Contextual Generator:

• Observe features of $a \in \mathcal{A} : \mathbf{x}_{t,a} = [\mathbf{x}_a^c, \mathbf{x}_{t,a}^l] \in \mathbb{R}^d$;

Feature	Description	Example		
Circuit Characteristics	AIG information extracted by applying $a_i^{(i)}$ $(j \leq $	#Number of wires/cells/nots, #Maximum delay,		
(x^{c})	<i>n</i>) to G_{i-1} using yosys and ccirc.	#Number of combinational nodes, #Number of		
		high degree comb, #Fanout distribution		
Long-term Payoff of	Random DSE result: Employ "arm" $a^{(i)}$ as the	Arm: <i>rewrite</i> (<i>rw</i>); $l = 5$; $m = 3$;		
the Arm	first transformation to produce <i>m</i> random sub-	$\{\mathbf{rw}, \mathbf{rw}, \mathbf{rfz}, \mathbf{rf, rs}\} \rightarrow \text{Nodes: 28010, Level: 66}$		
(x^l)	sequences of length <i>l</i> , and then utilize these	Arm: <i>refactor</i> (<i>rf</i>); $l = 4$; $m = 2$;		
	subsequences to obtain synthesis results.	$\{\mathbf{rf}, \mathbf{b}, \mathbf{rf}, \mathbf{rw}\} \rightarrow \mathbf{Nodes:} 28324, \mathbf{Level:} 67$		

Agent (Syn-LinUCB)⁴:

• Update hyperparameter
$$\alpha$$
 by $\alpha = 1.0 + \sqrt{\frac{\log(2.0/\delta)}{s_a}}$ (2)

- Update the decision parameter by $\theta_a = A_a^{-1} b_a$ (3)
- Calculate the weighted context $x_{t,a}^w = x_{t,a}w$
- Update score by $p_{t,a} = \boldsymbol{\theta}_a^\top \boldsymbol{x}_{t,a}^w + \alpha \sqrt{\boldsymbol{x}_{t,a}^w^\top \boldsymbol{A}_a^{-1} \boldsymbol{x}_{t,a}^w}$ (5)
- Update the parameters A_{a_t} and b_{a_t} of the chosen arm a_t by $A_{a_t} = A_{a_t} + x_{t,a_t} x_{t,a_t}^{\top}$, $b_{a_t} = b_{a_t} + r_{t,a} x_{t,a_t}$

⁴Lihong Li et al. (2010). "A contextual-bandit approach to personalized news article

(4)

(6)

Optimization Techniques

Analysis of transformation effectiveness in the synthesis flow:

Accelerate the Decision-making process:

- 1 Tuning Iteration Count
- 2 Early Stop
- 8 Return-back Mechanism

Experimental Results - AIG node optimization

CBTune vs. FlowTune.

8/9

Bonchmark	Initial	Greedy	DRiLLS ⁶		RL4LS*		CBTune	
Deneninark	#LUTs	#LUTs	#LUTs	$\tau(m)$	#LŪTs	$\tau(m)$	#LŪTs	$\tau(m)$
max	721	697	694	32.58	687.8	54.34	684.25	6.01
adder	249	244	244	24.05	244	10.05	244	5.97
cavlc	116	115	112.2	26.02	111.3	3.22	111	2.37
ctrl	29	28	28	24.25	28	2.85	28	0.59
int2float	47	46	42.6	21.7	42.3	2.81	40	2.76
router	73	67	70.1	22.01	69.5	3.07	68.11	2.32
priority	264	146	133.4	23.32	142.9	5.9	138.86	3.41
i2c	353	291	292.1	25.17	289.32	7.55	283.11	3.61
sin	1444	1451	1441.5	51.15	1438	20.1	1441.67	9.71
square	3994	3898	3889.4	130	3889	72.88	3882.11	25.99
sqrt	8084	4807	4708	147.64	4685.3	196.15	4607	36.51
log2	7584	7660	7583.6	198.6	7580.1	125.28	7580	41.27
multiplier	5678	5688	5678	180.84	5672	187.81	5679.75	29.08
voter	2744	1904	1834.7	84.43	1678.1	330.48	1682.25	11.46
div	23864	4205	7944.4	259.75	7807.1	482	4180.91	25.58
mem_ctrl	11631	10144	10527.6	229.33	10309.7	1985.84	10242.57	45.81
GEOMEAN	926.59	732.69	753.49	59.48	748.34	34.54	712.83	8.37
Ratio Avg.	1.000	0.791	0.813	1.000	0.808	0.581	0.769	0.141

Table: CBTune vs. NN-enhanced RL.

* Last10 in RL-PPO-Pruned7

¹ (Walter Lau Neto et al. [2022]. "FlowTune: End-to-end Automatic Logic Optimization Exploration via Domain-specific Multi-armed Bandit". In: *IEEE TCAD*)

² (Abdelrahman Hosny et al. [2020]. "DRiLLS: Deep reinforcement learning for logic synthesis". In: *Proc. ASPDAC*, pp. 581–586)

³ (Guanglei Zhou and Jason H Anderson [2023]. "Area-Driven FPGA Logic Synthesis Using Reinforcement Learning". In: *Proc. ASPDAC*, pp. 159–165)

Table: CBTune vs. FlowTune.

Benchmark	Initial	Greedy	Flowtune ⁵		CBTune			
	#LUTs	#LUTs	#LUTs	$\tau(m)$	#LÛTs	#LŪTs	$\tau(m)$	
bfly	9019	8269	8216	76.47	7962	8086.03	29.63	
dscg	8534	8313	8302	77.15	7981	8119.84	30.44	
fir	8646	8385	8094	74.23	7820	7977.38	27.6	
ode	5244	5316	5096	34.83	4920	5046.71	17.32	
or1200	2776	2748	2747	20.08	2731	2754.07	15.62	
syn2	8777	8669	8603	81.33	8234	8360.53	31.67	
GEOMEAN	6631.20	6464.69	6364.89	54.04	6166.39	6271.82	24.48	
Ratio Avg.	1.000	0.975	0.960	1.000	0.930	0.946	0.453	

THANK YOU!