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Highlights

We propose CBTune, adapting the contextual bandit algorithm to

facilitate efficient transformation selection through iterative model

tuning.

We implement the Syn-LinUCB algorithm as the agent and establish a

context generator for informed decision-making in the bandit model.

We present a novel “return-back” mechanism that revisits decisions to

avoid local optima, distinguishing it from typical RL scenarios.

Our method surpasses SOTA approaches for metrics and runtime

within the same action space.

Background

ML-Enhanced Synthesis Optimization Machine learning facilitates

technology-independent optimization: 1) it models circuit structures to

accurately predict performance metrics [4], 2) it employs reinforcement

learning for rapid synthesis flow generation in an exponentially large

solution space [1].
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Figure 1. Illustration of our proposed contextual bandit-based approach for efficient

synthesis flow generation.

Bandit-based Search Model The Multi-Arm Bandit (MAB) model, known

for its efficiency in generating synthesis flows [3], strikes a balance be-

tween exploration and exploitation to optimize rewards. CBTune lever-

ages domain-specific knowledge by integrating contextual data into the

MAB model, enabling progressive decision-making depicted in Figure 1.

Motivation

Existing Problems

NN-based methods are limited by time-consuming dataset preparation

and training, as well as restricted transferability and system integration.

The non-contextual MAB approach neglects key arm features like

optimization trends and AIG characteristics. It also makes

sequence-based decisions without considering permutations,

compromising final performance.

Score

Score Initial Improved Deteriorated Accurate 
Convergence Final Score

Figure 2. Score iterations for each arm in bandit model.

Observations LinUCB [2] improves MAB model by integrating contextual

details like arm and environmental features to guide decision-making. The

score for each arm a is updated by:

LinUCBa = E(a|x) + αSTD(a|x)

= x> · θa + α

√
x>A−1

a x.
(1)

1st term: Estimated Payoff

Estimates average payoff from x

θa represents historical success

2rd term: Upper Confidence Bound

Controlled by hyperparameter α

Reflects uncertainty in estimation

Therefore, we propose a tailored bandit model to guide decisions for each

individual transformation within the synthesis flow efficiently. This model:

1. Treats each transformation as an “arm” with equal initial UCB scores.

2. Iteratively updates scores to gauge performance.

3. Chooses and refines the highest-scoring arm in each iteration for

enhanced score accuracy and reliability.

4. Steers scores towards the arms’ true payoffs, with the highest-scoring

arm reflecting the best optimization performance.

Pipeline

The overall CBTune framework is shown in Fig. 3.

Decision-making in bandit model
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Figure 3. CBTune framework overview.

Action Space: A = {resub (rs), resub -z (rsz), rewrite (rw), rewrite -z (rwz),

refactor (rf), refactor -z (rfz), balance (b)}.

Reward r: the scaled payoff of a single arm execution.

Methodology

Context Generator The vector x, fusing circuit characteristics xc and the

arm’s long-term payoff xl, informs the agent’s decisions by providing es-

sential environmental and state insights.

Table 1. Contextual Information.

Feature Example

Circuit

Characteristics

(xc)

Extracted by yosys and ccirc #Number of wires/cells/nots, #Max-

imum delay, #Number of combinational nodes, #Number of high

degree comb, #Reconvergence, #Node shape...

Long-term Payoff

of the Arm

(xl)

Arm: rewrite (rw); l = 5; m = 1;

{rw,rf,rf,rw,b}→ Nodes: 28010, Level: 66

Arm: refactor (rf); l = 4; m = 2;

{rf,b,rf,rw}→ Nodes: 28350, Level: 69

{rf,rw,b,rs}→ Nodes: 28324, Level: 67

Agent: Syn-LinUCB Key advantages:

1. It utilizes short-term payoffs to direct the agent to select arms toward

the optimal target value per step, enhancing local performance.

2. It accounts for long-term payoffs to avert local optima and explore

potential optimization trends, fostering improved decision quality.

Algorithm 1 Syn-LinUCB

Input: Arms a ∈ A, Context weights w ∈ Rd,

Number of iterations T , Constant ρ.
Output: Best arm abest in this step.

1: ra← Reward of all arms;

2: Extract the AIG characteristics: xc
a ∈ Rd1;

3: Arm selection times sa = 0;
4: for t = 1, 2, ..., T do

5: Update the long-term payoff: xl
t,a ∈ Rd2;

6: Observe features of a ∈ A : xt,a = [xc
a, xl

t,a] ∈ Rd;

7: for ∀a ∈ A do

8: Initialize historical context and reward by Aa = Id, ba = 0d, ∀a is new;

9: Update hyperparameter α by α = 1.0 +
√

log(2.0/ρ)
sa

;

10: Update the decision parameter by θa = A−1
a ba;

11: Calculate the weighted context xw
t,a = xt,aw;

12: Update score by pt,a = θ>a (xw
t,a) + α

√
(xw

t,a)>A−1
a (xw

t,a);
13: end for

14: Choose arm by at = argmaxa∈A pt,a;

15: Increase the selection count of arm at by sat = sat + 1;
16: Update the parameters Aat and bat of the chosen arm at by

17: Aat = Aat + xt,atx
>
at
, bat = bat + raxt,at;

18: end for

19: abest ← at.

Return-backMechanism To amend suboptimal decisions stemming from a

lack of historical data, we allow CBTune the capacity to “regret” by record-

ing synthesis results in a hash table. This allows CBTune to compare new

results with past decisions and, if necessary, return to a crucial step to re-

select a better arm, thus improving decision quality.
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Figure 4. The return-back mechanism in CBTune.

Evaluation Results
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Figure 5. CBTune vs. FlowTune [3] in AIG node optimization.

Table 2. CBTune vs. FlowTune in 6-LUTs optimization.

Benchmark
Initial Greedy Flowtune [3] CBTune

#LUTs #LUTs #LUTs τ (m) ˆ#LUTs ¯#LUTs τ (m)
bfly 9019 8269 8216 76.47 7962 8086.03 29.63

dscg 8534 8313 8302 77.15 7981 8119.84 30.44

fir 8646 8385 8094 74.23 7820 7977.38 27.6

ode 5244 5316 5096 34.83 4920 5046.71 17.32

or1200 2776 2748 2747 20.08 2731 2754.07 15.62

syn2 8777 8669 8603 81.33 8234 8360.53 31.67

GEOMEAN 6631.20 6464.69 6364.89 54.04 6166.39 6271.82 24.48

Ratio Avg. 1.000 0.975 0.960 1.000 0.930 0.946 0.453

Table 3. CBTune vs. NN-enhanced RL in 6-LUTs optimization.

Benchmark
Initial Greedy DRiLLS [1] RL4LS* CBTune

#LUTs #LUTs ¯#LUTs τ (m) ¯#LUTs τ (m) ¯#LUTs τ (m)
max 721 697 694 32.58 687.8 54.34 684.25 6.01

adder 249 244 244 24.05 244 10.05 244 5.97

cavlc 116 115 112.2 26.02 111.3 3.22 111 2.37

ctrl 29 28 28 24.25 28 2.85 28 0.59

int2float 47 46 42.6 21.7 42.3 2.81 40 2.76

router 73 67 70.1 22.01 69.5 3.07 68.11 2.32

priority 264 146 133.4 23.32 142.9 5.9 138.86 3.41

i2c 353 291 292.1 25.17 289.32 7.55 283.11 3.61

sin 1444 1451 1441.5 51.15 1438 20.1 1441.67 9.71

square 3994 3898 3889.4 130 3889 72.88 3882.11 25.99

sqrt 8084 4807 4708 147.64 4685.3 196.15 4607 36.51

log2 7584 7660 7583.6 198.6 7580.1 125.28 7580 41.27

multiplier 5678 5688 5678 180.84 5672 187.81 5679.75 29.08

voter 2744 1904 1834.7 84.43 1678.1 330.48 1682.25 11.46

div 23864 4205 7944.4 259.75 7807.1 482 4180.91 25.58

mem_ctrl 11631 10144 10527.6 229.33 10309.7 1985.84 10242.57 45.81

GEOMEAN 926.59 732.69 753.49 59.48 748.34 34.54 712.83 8.37

Ratio Avg. 1.000 0.791 0.813 1.000 0.808 0.581 0.769 0.141

* Last10 in RL-PPO-Pruned [5]

Conclusion

CBTune outperforms FlowTune in both AIG nodes/6-LUT optimization

in both metric and runtime. Our method also outshines three RL-based

methods by reducing 6-LUT counts up to 4.4%, all achieved in a swift

8.37 minutes per design.

CBTune efficiently generates synthesis flows with excellent, stable

results and fast runtime, without training data or complex procedures.
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