

CBTune: Contextual Bandit Tuning for Logic Synthesis

Fangzhou Liu¹, Zehua Pei¹, Ziyang Yu¹, Haisheng Zheng², Zhuolun He^{1,2}, Tinghuan Chen³, Bei Yu¹

¹The Chinese University of Hong Kong, Hong Kong, China, ²Shanghai Artificial Intelligence Laboratory, Shanghai, China ³The Chinese University of Hong Kong, Shenzhen, China

Highlights

- We propose CBTune, adapting the contextual bandit algorithm to facilitate efficient transformation selection through iterative model tuning.
- We implement the Syn-LinUCB algorithm as the agent and establish a context generator for informed decision-making in the bandit model.
- We present a novel "return-back" mechanism that revisits decisions to avoid local optima, distinguishing it from typical RL scenarios.
- Our method surpasses SOTA approaches for metrics and runtime within the same action space.

Background

Pipeline

The overall **CBTune** framework is shown in Fig. 3.

Evaluation Results

ML-Enhanced Synthesis Optimization Machine learning facilitates technology-independent optimization: 1) it models circuit structures to accurately predict performance metrics [4], 2) it employs reinforcement learning for rapid synthesis flow generation in an exponentially large solution space [1].

Figure 1. Illustration of our proposed contextual bandit-based approach for efficient synthesis flow generation.

Bandit-based Search Model The Multi-Arm Bandit (MAB) model, known for its efficiency in generating synthesis flows [3], strikes a balance between exploration and exploitation to optimize rewards. CBTune leverages domain-specific knowledge by integrating contextual data into the MAB model, enabling progressive decision-making depicted in Figure 1.

Motivation

Existing Problems

NN-based methods are limited by time-consuming dataset preparation and training, as well as restricted transferability and system integration.
The non-contextual MAB approach neglects key arm features like optimization trends and AIG characteristics. It also makes sequence-based decisions without considering permutations, compromising final performance.

Figure 3. CBTune framework overview.

- Action Space: A = {resub (rs), resub -z (rsz), rewrite (rw), rewrite -z (rwz), refactor (rf), refactor -z (rfz), balance (b)}.
- **Reward** *r*: the scaled payoff of a single arm execution.

Methodology

Context Generator The vector \boldsymbol{x} , fusing circuit characteristics $\boldsymbol{x}^{\boldsymbol{c}}$ and the arm's long-term payoff $\boldsymbol{x}^{\boldsymbol{l}}$, informs the agent's decisions by providing essential environmental and state insights.

Table 1. Contextual Information.

Feature	Example				
Circuit	Extracted by yosys and ccirc #Number of wires/cells/nots, #Max-				
Characteristics	imum delay, #Number of combinational nodes, #Number of high				
$(oldsymbol{x}^c)$	degree comb, #Reconvergence, #Node shape				
Long-term Payoff	Arm: rewrite (rw); $l = 5$; $m = 1$;				
of the Arm	$\{\mathbf{rw}, \mathbf{rf}, \mathbf{rw}, \mathbf{b}\} \rightarrow Nodes: 28010, Level: 66$				
$(oldsymbol{x}^l)$	Arm: refactor (rf); $l = 4$; $m = 2$;				
	{ rf ,b,rf,rw} \rightarrow Nodes: 28350, Level: 69				
	${\mathbf{rf}, rw, b, rs} \rightarrow Nodes: 28324, Level: 67$				

Agent: Syn-LinUCB Key advantages:

- 1. It utilizes short-term payoffs to direct the agent to select arms toward the optimal target value per step, enhancing local performance.
- 2. It accounts for long-term payoffs to avert local optima and explore potential optimization trends, fostering improved decision quality.

Figure 5. CBTune vs. FlowTune [3] in AIG node optimization.

Table 2. CBTune vs. FlowTune in 6-LUTs optimization.

	Benchmark	Initial	Greedy	Flowtune [3]		CBTune		
		#LUTs	#LUTs	#LUTs	au(m)	#LÛTs	#LŪTs	au(m)
	bfly	9019	8269	8216	76.47	7962	8086.03	29.63
	dscg	8534	8313	8302	77.15	7981	8119.84	30.44
	fir	8646	8385	8094	74.23	7820	7977.38	27.6
	ode	5244	5316	5096	34.83	4920	5046.71	17.32
	or1200	2776	2748	2747	20.08	2731	2754.07	15.62
	syn2	8777	8669	8603	81.33	8234	8360.53	31.67
	GEOMEAN	6631.20	6464.69	6364.89	54.04	6166.39	6271.82	24.48
	Ratio Avg.	1.000	0.975	0.960	1.000	0.930	0.946	0.453

Table 3. CBTune vs. NN-enhanced RL in 6-LUTs optimization.

Ponchmark	Initial	Greedy	DRiLLS [1]		RL4LS*		CBTune	
Deficilitatik	#LUTs	#LUTs	#LŪTs	au(m)	#LŪTs	au(m)	#LŪTs	$\tau(m)$
тах	721	697	694	32.58	687.8	54.34	684.25	6.01
adder	249	244	244	24.05	244	10.05	244	5.97
cavlc	116	115	112.2	26.02	111.3	3.22	111	2.37
ctrl	29	28	28	24.25	28	2.85	28	0.59
int2float	47	46	42.6	21.7	42.3	2.81	40	2.76
router	73	67	70.1	22.01	69.5	3.07	68.11	2.32
priority	264	146	133.4	23.32	142.9	5.9	138.86	3.41
i2c	353	291	292.1	25.17	289.32	7.55	283.11	3.61
sin	1444	1451	1441.5	51.15	1438	20.1	1441.67	9.71
square	3994	3898	3889.4	130	3889	72.88	3882.11	25.99
sqrt	8084	4807	4708	147.64	4685.3	196.15	4607	36.51
log2	7584	7660	7583.6	198.6	7580.1	125.28	7580	41.27
multiplier	5678	5688	5678	180.84	5672	187.81	5679.75	29.08
voter	2744	1904	1834.7	84.43	1678.1	330.48	1682.25	11.46
div	23864	4205	7944.4	259.75	7807.1	482	4180.91	25.58
mem_ctrl	11631	10144	10527.6	229.33	10309.7	1985.84	10242.57	45.81
GEOMEAN	926.59	732.69	753.49	59.48	748.34	34.54	712.83	8.37
Ratio Avg.	1.000	0.791	0.813	1.000	0.808	0.581	0.769	0.141
* Last10 in RL-PPO-Pruned [5]								

Figure 2. Score iterations for each arm in bandit model.

Observations LinUCB [2] improves MAB model by integrating contextual details like arm and environmental features to guide decision-making. The score for each arm a is updated by:

 $\mathsf{LinUCB}_{a} = E(a|\boldsymbol{x}) + \alpha \mathsf{STD}(a|\boldsymbol{x})$ $= \boldsymbol{x}^{\top} \cdot \boldsymbol{\theta}_{a} + \alpha \sqrt{\boldsymbol{x}^{\top} \boldsymbol{A}_{a}^{-1} \boldsymbol{x}}.$

1st term: Estimated Payoff

- ullet Estimates average payoff from x
- θ_a represents historical success
- 2rd term: Upper Confidence Bound
 Controlled by hyperparameter α

(1)

Reflects uncertainty in estimation

Therefore, we propose a tailored bandit model to guide decisions for each individual transformation within the synthesis flow efficiently. This model:

Algorithm 1 Syn-LinUCB **Input:** Arms $a \in \mathcal{A}$, Context weights $\boldsymbol{w} \in \mathbb{R}^d$, Number of iterations T, Constant ρ . **Output:** Best arm a_{best} in this step. 1: $r_a \leftarrow \text{Reward of all arms};$ 2: Extract the AIG characteristics: $\boldsymbol{x}_{a}^{c} \in \mathbb{R}^{d_{1}}$; 3: Arm selection times $s_a = 0$; 4: for t = 1, 2, ..., T do Update the long-term payoff: $\boldsymbol{x}_{t,a}^{l} \in \mathbb{R}^{d_2}$; Observe features of $a \in \mathcal{A}$: $\boldsymbol{x}_{t,a} = [\boldsymbol{x}_a^c, \boldsymbol{x}_{t,a}^l] \in \mathbb{R}^d$; for $\forall a \in \mathcal{A} \text{ do}$ Initialize historical context and reward by $A_a = I_d$, $b_a = 0_d$, $\forall a$ is new; 8: Update hyperparameter α by $\alpha = 1.0 + \sqrt{\frac{\log(2.0/\rho)}{s_a}};$ 9: Update the decision parameter by $\theta_a = \dot{A}_a^{-1} b_a$; 10: Calculate the weighted context $\boldsymbol{x}_{t,a}^w = \boldsymbol{x}_{t,a} \boldsymbol{w}$; 11: Update score by $p_{t,a} = \boldsymbol{\theta}_a^\top(\boldsymbol{x}_{t,a}^w) + \alpha \sqrt{(\boldsymbol{x}_{t,a}^w)^\top \boldsymbol{A}_a^{-1}(\boldsymbol{x}_{t,a}^w)};$ 12: end for 13: Choose arm by $a_t = \operatorname{argmax}_{a \in \mathcal{A}} p_{t,a}$; 14: Increase the selection count of arm a_t by $s_{a_t} = s_{a_t} + 1$; 15: Update the parameters A_{a_t} and b_{a_t} of the chosen arm a_t by 16: $A_{a_t} = A_{a_t} + x_{t,a_t} x_{a_t}^{\top}, \quad b_{a_t} = b_{a_t} + r_a x_{t,a_t};$ 17: 18: end for 19: $a_{best} \leftarrow a_t$.

Return-back Mechanism To amend suboptimal decisions stemming from a lack of historical data, we allow CBTune the capacity to "**regret**" by recording synthesis results in a hash table. This allows CBTune to compare new results with past decisions and, if necessary, return to a crucial step to reselect a better arm, thus improving decision quality.

Check out the hash table and Return back

Conclusion

- CBTune outperforms FlowTune in both AIG nodes/6-LUT optimization in both metric and runtime. Our method also outshines three RL-based methods by reducing 6-LUT counts up to 4.4%, all achieved in a swift 8.37 minutes per design.
- CBTune efficiently generates synthesis flows with excellent, stable results and fast runtime, without training data or complex procedures.

References

- [1] Abdelrahman Hosny, Soheil Hashemi, et al. DRiLLS: Deep reinforcement learning for logic synthesis. pages 581–586, 2020.
- [2] Lihong Li, Wei Chu, et al. A contextual-bandit approach to personalized news article recommendation. pages 661–670, 2010.

1. Treats each transformation as an "arm" with equal initial UCB scores.

2. Iteratively updates scores to gauge performance.

3. Chooses and refines the highest-scoring arm in each iteration for enhanced score accuracy and reliability.

4. Steers scores towards the arms' true payoffs, with the highest-scoring arm reflecting the best optimization performance.

Figure 4. The return-back mechanism in CBTune.

[3] Walter Lau Neto, Yingjie Li, et al. Flowtune: End-to-end automatic logic optimization exploration via domain-specific multi-armed bandit. 2022.

[4] Nan Wu et al. Lostin: Logic optimization via spatio-temporal information with hybrid graph models. pages 11–18, 2022.

[5] Guanglei Zhou and Jason H Anderson. Area-Driven FPGA Logic Synthesis Using Reinforcement Learning. pages 159–165, 2023.

IEEE/ACM Design, Automation and Test in Europe Conference (DATE) 2024, Valencia, Spain