
Parallel Gröbner Basis Rewriting and Memory
Optimization for Efficient Multiplier Verification
Hongduo Liu1, Peiyu Liao1, Junhua Huang2, Hui-Ling Zhen2, Mingxuan Yuan2, Tsung-Yi Ho1, Bei Yu1

1Chinese University of Hong Kong 2Huawei Noah’s Ark Lab

Abstract—Formal verification of integer multipliers is a signifi-
cant but time-consuming problem. This paper introduces a novel
approach that emphasizes the acceleration of symbolic computer
algebra (SCA)-based verification systems from the perspective of
efficient implementation instead of traditional algorithm enhance-
ment. Our first strategy involves leveraging parallel computing to
accelerate the rewriting process of the Gröbner basis. Confronting
the issue of frequent memory operations during the Gröbner basis
reduction phase, we propose a double buffering scheme coupled
with an operator scheduler to minimize memory allocation and
deallocation. These unique contributions are integrated into a
state-of-the-art verification tool and result in substantial improve-
ments in verification speed, demonstrating more than 15× speedup
for a 1024×1024 multiplier.

I. INTRODUCTION

Integer multipliers serve a crucial role in digital systems,
including microprocessors, digital signal processors, and com-
munication systems. Formally verifying the correctness of
multipliers is essential to ensure the reliability and safety of
digital systems and prevent the issue of the famous Pentium
FDIV bug [1]. Architects have proposed complex architectures
for integer multipliers to meet power, performance, and area
demands. As the size of operands increases, verifying these
multipliers can become significantly challenging and time-
consuming.

Verification techniques can be categorized into three main
groups. The first one is the decision diagram approach [2],
which could suffer from memory explosion issues and heavily
relies on the structural information of multipliers. The second
is SAT-based [3], which, despite being versatile, struggles with
scalability when it comes to larger designs. Currently, the
most effective methods draw from symbolic computer algebra
(SCA) [4]–[7]. Here, the multiplier’s specification and each
circuit gate are represented using polynomials. Consequently,
the verification process is reduced to a membership test to
confirm if the specification polynomial belongs to the ideal
derived from the circuit polynomial. The ideal test reduces the
specification polynomial with the Gröbner basis generated from
the circuit and checks if the remainder equals zero.

Various techniques have been proposed to cut down the
time required for SCA-based verification. For instance, Yu
et al. [8] reduced the verification complexity by detecting
redundant polynomials. Mahzoon et al. [9] presented a method
to allow for local cancellation of vanishing monomials in
converging gates cones starting from half adders. Furthermore,
Kaufmann et al. [7] substituted complex final-stage adders
with simple ripple-carry adders and used SAT solvers to verify
the equivalence of substitution. These efforts, while valuable,

often approach the issue from the perspective of enhancing the
algorithm itself. However, this paper opens up an opportunity
to accelerate verification by enabling parallel computing and
memory footprint optimization.

In the verification process, merely reducing the specification
polynomial with the Gröbner basis generated from the circuit
often produces an exponential volume of monomials. Thus
in practice, the Gröbner basis is rewritten to a simplified
version before reducing the specification polynomial. During
this stage, some polynomial computations in the Gröbner basis
are independent of others. In this work, we leverage the inde-
pendence to parallelize Gröbner basis rewriting. When reducing
the specification polynomial using the simplified Gröbner basis,
there can be a significant surge in the number of monomials,
leading to massive memory operations. To mitigate memory ex-
penditure, we propose a double buffering scheme to avoid fresh
memory allocation. Moreover, we present an operator scheduler
to enable concurrent reduction of multiple polynomials from the
simplified Gröbner basis, which can further decrease memory
cost.

The key contributions of this paper are summarized as
follows.

• We observe that the polynomial computation in the
Gröbner basis rewriting stage can be processed simulta-
neously and develop a parallel execution system for the
Gröbner basis simplification.

• To combat the substantial increase in memory operations
during polynomial reduction, a double buffering strategy is
proposed to avoid unnecessary new memory allocation and
deallocation. Also, we introduce an operator scheduling
system to allow multiple polynomials from the simplified
Gröbner basis to be processed concurrently.

• Experiments show that our acceleration framework can
achieve more than 15× speedup when verifying a
1024×1024 multiplier.

II. PRELIMINARIES

SCA-based verification can be transformed into a member-
ship test to validate whether the given specification polynomial
is a part of the ideal generated from the circuit polynomials.
Our initial focus will be on introducing the algebraic founda-
tions based on [10]. We then establish a connection between
multiplier verification and ideal membership testing, building
on the work of [6]. Finally, we present an illustrative example
to demonstrate the testing algorithm.



A. Algebra Basis

Definition 1 (Monomial). A monomial xα in x1, · · · , xn is a
product of the form xα1

1 ·x
α2
2 · · ·xαn

n , where α = (α1, · · · , αn)
is an n-tuple of nonnegative integers.

Definition 2 (Polynomial). A polynomial f in x1, · · · , xn with
coefficients in a field K is a finite linear combination (with
coefficients in K) of monomials. We can write f in the form f =∑
α aαx

α, aα ∈ K. The set of all polynomials in x1, · · · , xn
with coefficients in K is denoted by K[x1, · · · , xn].

Given a nonzero polynomial f ∈ K[x], let f = c0x
m +

c1x
m−1 + · · · + cm, where ci ∈ K and c0 6= 0. Then we say

c0x
m is the leading term of f , written as LT (f) = c0x

m.

Definition 3 (Ideal). A subset I ⊆ K[x1, · · · , xn] is an ideal
if it satisfies: (i) 0 ∈ I; (ii) If f, g ∈ I , then f + g ∈ I; (iii) If
f ∈ I and h ∈ K[x1, · · · , xn], then hf ∈ I .

Let f1, · · · , fs be polynomials in K[x1, · · · , xn]. Then
we set 〈f1, · · · , fs〉 = {

∑s
i=1 hifi | h1, · · · , hs ∈

K[x1, · · · , xn]}. The crucial fact is that 〈f1, · · · , fs〉 is an ideal
and we call it the ideal generated by f1, · · · , fs.

Definition 4 (Gröbner Basis). Fix a monomial order on
the polynomial ring K[x1, · · · , xn]. A finite subset G =
{g1, · · · , gt} of an ideal I ⊆ K[x1, · · · , xn] different from
{0} is said to be a Gröbner basis if 〈LT (g1), · · · , LT (gt)〉 =
〈LT (I)〉, where LT (I) is the set of leading terms of nonzero
elements of I .

B. Verification to Ideal Membership Testing

An effective way to model a boolean circuit is through an
And-Inverter Graph (AIG). An AIG consists of two-input nodes
representing logical conjunction, terminal nodes, and edges
optionally marked as dashed lines indicating logical negation. A
polynomial can be used to encapsulate the connections between
the inputs and output by assigning a variable to each gate’s input
and output wires. Thus, an AIG node with ‘z’ as the output and
‘a’ and ‘b’ as inputs can be represented as one of the following
polynomial relations

z = a ⇒ 0 = −z + a
z = ¬a ⇒ 0 = −z + 1− a
z = a ∧ b ⇒ 0 = −z + ab
z = ¬a ∧ b ⇒ 0 = −z + b− ab
z = ¬a ∧ ¬b ⇒ 0 = −z + 1− a− b+ ab.

We consider circuits C with two bit-vectors a0, · · · , an−1 and
b0, · · · , bn−1 of size n as inputs, and a bit-vector s0, · · · , s2n−1

of size 2n as output. Also, we assign a variable t1, · · · , tk to
each internal gate output.

Definition 5 (Polynomial Circuit Constraint). A polynomial p
is called a polynomial circuit constraint (PCC) for a circuit C
if for every choice of (a0, · · · , an−1, b0, · · · , bn−1) ∈ {0, 1}2n
and the resulting values t1, · · · , tk, s0, · · · , s2n−1 which are
implied by the gates of the circuit C, the substitution of all
these values into the polynomial p gives zero. The set of all
PCCs for C is denoted by I(C).

s1 s2 s3

a0 a1 b0 b1

g1 g2 g3 g4

g5 g6

g8

g7

g11g9 g10

g12

s0

<latexit sha1_base64="udUFM3Bi929kQKFgTfhEIrIn9Rc=">AAACrHicbVHLbtQwFHXCo20KdGiX3VwxogKqjuIU9YGEVMGGXYvUaQdNoshxnNSq40S2gzSK8nX8ATv+Bk8SqjLtlWwfn3PutX2dVIJr4/t/HPfJ02fP19Y3vM0XL19tjV5vX+myVpRNaSlKNUuIZoJLNjXcCDarFCNFIth1cvt1qV//ZErzUl6aRcWiguSSZ5wSY6l49CtMWM5lQwTP5YfWA9jL4kbHh+2nzwd2gX3I4wbjFsJwEPv9Uh+UfbDcx9ZOx/dsOg76GoE1YDjo6gQrdYK7OkF7ZzuFjvHb7vDTAfd5ENK0NNoLmUz/XToejf2J3wU8BHgAYzTERTz6HaYlrQsmDRVE6zn2KxM1RBlOBWu9sNasIvSW5GxuoSQF01HTNbuFt5ZJISuVHdJAx97PaEih9aJIrLMg5kavakvyMW1em+wkarisasMk7Q/KagGmhOXPQcoVo0YsLCBUcXtXoDdEEWrs/3q2CXj1yQ/BVTDBRxP8PRiffRnasY520Rv0DmF0jM7QN3SBpog6751zZ+b8cCfupTt3o97qOkPODvov3OwvUmrF8w==</latexit>

fs3 := �s3 + g11

fg11 := �g11 + g4g7

fs2 := �s2 + 1� g12

fg12 := �g12 + 1� g9 � g10 + g9g10

· · ·

Fig. 1 The AIG representation of a 2 × 2 multiplier and
polynomials inferred by the AIG.

The multiplier verification can be formulated as an ideal
membership testing problem stated below.

Problem 1. A circuit C is called a correct multiplier if the
word-level specification

2n−1∑
i=0

2isi −

(
n−1∑
i=0

2iai

)(
n−1∑
i=0

2ibi

)
∈ I(C).

Define G = {g1, · · · , gm} ∪ {xi(xi − 1) | x ∈ X}, where
{g1, · · · , gm} is the set that contains the polynomials indicated
by corresponding AIG and X is the set of all variables in C.
According to the proofs in [6], we have the following facts.

Theorem 1. For an acyclic circuit, we have I(C) = 〈G〉.

Theorem 2. G is a Gröbner basis for 〈G〉.

Theorem 3. Let H = {f1, · · · , fn} ⊆ K[X] be a Gröbner
basis, and let f ∈ K[X]. Then f ∈ 〈H〉 if and only if the
remainder of f with respect to G is zero.

Integrating the theorems mentioned above, we know that the
correctness of the multiplier can be established by reducing the
specification polynomial by polynomials in G and checking
if the result is zero. Let p

f−→ r denote that polynomial p
divides polynomial f and results in a remainder of r. Then
the verification of the multiplier shown in Fig. 1 can be done
following the steps:

• Get the specification polynomial sp := 8s3 +4s2 +2s1 +
s0 − (2a1 + a0)(2b1 + b0).

• Divide the specification polynomial with respect to poly-
nomials indicated by AIG gates following a reverse topo-
logical order.

sp
fs3−−→ r1 :=8g11 + 4s2 + 2s1 + s0

− (2a1 + a0)(2b1 + b0)

r1
fg11−−−→ r2 :=8g4g7 + 4s2 + 2s1 + s0

− (2a1 + a0)(2b1 + b0)

r2
fs2−−→ r3 :=8g4g7 + 4− 4g12 + 2s1 + s0

− (2a1 + a0)(2b1 + b0)

· · ·

• Check the remainder. If the remainder is zero, then the
multiplier is correct. Otherwise, it is incorrect.



AIG Grobner Basis 
Construction

Grobner Basis 
Rewriting

Grobner Basis 
Reduction

Remainder=0?

Independent Gates 
Indentification

Double Buffering 

Operator Scheduling

Parallel Rewriting 

Correct
Yes No

Wrong

Fig. 2 The overall flow of our acceleration framework.

III. ACCELERATION FRAMEWORK

The entire flow of our acceleration framework is illustrated
in Fig. 2. Within this section, we will provide a comprehensive
overview of both the parallel Gröbner basis rewriting and
the memory optimization techniques during the Gröbner basis
reduction phase.

A. Parallel Gröbner Basis Rewriting

The objective of Gröbner basis rewriting is to acquire a new
basis with fewer variables, which aids in preventing the blow-
up of monomials. In [11], fanout-free cones of the circuit are
extracted and represented as corresponding polynomials. [4]
further enhanced fanout-free rewriting by XOR-Rewriting and
Common-Rewriting. XOR-Rewriting removes all variables that
are neither an input nor an output of an XOR-gate. Notably,
primary inputs and primary outputs are left unaltered. As shown
in Fig. 3(a), s and t are neither an input nor an output of an
XOR gate and are therefore eliminated. Before rewriting, the
polynomial representation of gate r is fr := −r+1−r−s+st,
which depends on s and t. After rewriting, the polynomial
representation becomes fr := −r+a+b−2ab, which depends
on a and b. Afterward, Common-Rewriting further simplifies
the Gröbner basis by eliminating all gates that only possess
a single fanout. In Fig. 3(b), gate r is the only fanout of
s. Thus s is eliminated from Gröbner basis. The polynomial
representation of gate r changes from fr := −r + s − st to
fr := −r + ab − abt, which no longer depends on s. Other
rewriting methods include extracting half-adder and full-adder
specifications mentioned in [12].

After Gröbner basis rewriting, some nodes in the AIG are
eliminated and a new graph describing the dependencies of the
remaining variables is obtained. Here we give a definition of
the newly derived graph.

Definition 6. A Rewritten Gröbner Basis Dependency Graph
(RGBDG) is a directed graph describing the dependency of
variables after Gröbner basis rewriting.

The second graph in Fig. 3(a) and Fig. 3(b) are both examples
of RGBDG. The dashed lines in an AIG indicate complement,
while the dashed lines in an RGBDG indicate the dependency
of variables.

All existing rewriting strategies aim to derive a simplified
Gröbner basis beneficial for subsequent specification polyno-
mial reduction. However, none emphasize accelerating the time-
consuming rewriting phase, which can become particularly bur-

r

s t

a b

r

s t

a b
(a)

r

s t

a b

r

s t

a b
(b)

Fig. 3 Examples of Gröbner basis rewriting. (a) XOR-Rewriting
(b) Common-Rewriting.

densome when dealing with millions of gates. We observe that
the elimination of certain variables can operate independently
of others. We take the circuit in Fig. 1 as an example in which
two XOR gates are highlighted. The elimination of (g5, g6) and
(g9, g10) are independent of each other and thus can be done
in parallel. Consequently, applying multiple parallel threads
for simultaneous Gröbner basis rewriting could significantly
decrease runtime.

To avoid data race and inconsistent results, the gates that
need to be eliminated will be divided into independent groups
before parallel Gröbner basis rewriting. The whole algorithm
is shown in Algorithm 1, which can be generalized to any
rewriting technique.

Algorithm 1 Independent Gates Identification
1: Input: Multiplier AIG G.
2: Output: Set of independent groups of gates S.
3: S← ∅;
4: for gate n ∈ G do
5: set_visited(n)← 0;
6: for n ∈ G following reverse topological order do
7: D← ∅;
8: Initialize an empty queue Q;
9: if !need_elim(n) or get_visited(n) then

10: continue;
11: Q.push(n);
12: while !Q.empty() do
13: g ← Q.pop();
14: if get_visited(g) then continue;
15: set_visited(g)← 1;
16: if need_elim(g) then
17: D← D ∪ g;
18: for each p← parent(g) do
19: if !is_output(p) then continue;
20: Q.push(p);
21: for each c← child(g) do
22: if !is_input(c) then continue;
23: Q.push(c);
24: sort(D) following reverse topological order;
25: S← S ∪D;

Here we assume the gates that require eliminating have
already been identified before conducting the algorithm. All
gates within the given AIG G are initially flagged as not visited.
This step prepares the algorithm to track which gates have been
examined during the search procedure. We subsequently iterate
over the gates following reverse topological order. When a gate,
say n, is marked for elimination and has not been visited, we



employ a set D to hold gates that should be eliminated and
are dependent on n. Simultaneously, a queue Q is initialized
with n and used to monitor interrelated gates. We then process
each gate in Q until it gets empty. If the front gate, denoted as
g, has been visited, the algorithm proceeds to the next gate. If
not, it is tagged as visited. If gate g is flagged for elimination,
we incorporate it into D and add its parent gates, excluding
outputs, to Q. We also add the children gates of g into D if
they are not inputs. Upon emptying Q, we know that gates in D

are related and cannot be eliminated in parallel. As the gates
in D are unsorted, we still need to sort the gates by reverse
topological order before adding to S. At last, the gate groups
D1,D2, · · · in S are independent, allowing for their parallel
elimination.

It’s important to note that we only consider the parent gates
of g if g needs to be eliminated (line 15). However, regardless
of whether g is flagged for removal, we still examine its child
gates. Consider the first graph of Fig. 3(b). Assume we’re
tracing the interrelated gates of a, and we’ve just dequeued s.
We also suppose gates a, b, and r are tagged for elimination.
Even though r is set for elimination, it remains independent of a
if s does not need to be eliminated. However, we should always
take into account gate b, irrespective of whether s requires
elimination or not, because the polynomial representation of
s relies on both a and b.

After independent gates are identified, we can leverage
multiple threads to rewrite the Gröbner basis in parallel.

B. Memory Optimization for Gröbner Basis Reduction

Procedure of Gröbner Basis Reduction: Consider a node α in
the RGBDG, and let Tα be the set of its predecessors. Then this
node can be mapped to a polynomial in the simplified Grönber
basis fα := −α + h(Tα), where h(Tα) is a function of Tα.
As mentioned in Section II-B, we utilize polynomial division
for Gröbner basis reduction. Due to the special property of fα ,
dividing it from sp can be done by substituting α with h(Tα) in
sp. For example, suppose we desire to reduce sp = c1x1x2x3+
· · · + c2x2x4 through a polynomial in Gröbner basis fx2 =
−x2 + c3x5x6. The reduction process can be accomplished by
the following steps:

• Identify all terms containing the variable x2 in sp, divide
x2 from those terms and add them together to get quo :=
c1x1x3 + c2x4.

• Multiply the obtained quo with fx2
, resulting in a poly-

nomial mul := −c1x1x2x3 + c1c3x1x3x5x6 − c2x2x4 +
c2c3x4x5x6.

• Finally, add mul to sp to cancel all terms containing the
variable x2, which are c1x1x2x3 and c2x2x4.

The reduction phase can be illustrated using a computation
graph, where the operations of term division, polynomial mul-
tiplication, and polynomial addition are represented as nodes.
In contrast, the connections between nodes depict the dataflow.
Fig. 4(a) demonstrates how to reduce sp1 to sp3 through two
polynomials f1 and f2 from the simplified Gröbner basis.

Double Buffering: The specification polynomial is updated
for every iteration during the Gröbner basis reduction phase.

sp1
f1

sp2

f2sp3

d Divide term

Multiply poly

a Add poly

m

d1 m1 a1

d2m2a2

(a)

sp1

f1

f2

sp4
d Divide term

Multiply poly

a Add poly

m

d1

d3

m1

m3

a3 a4tmp

(b)

Fig. 4 The procedure of the global reduction phase can be
represented by a computation graph. (a) Original computation
graph. (b) Computation graph after rescheduling.

Therefore, memory allocation and deallocation are required for
the newly derived polynomial after each polynomial division,
which can be memory intensive. To address this issue, we
implement a double buffering scheme that uses two already-
allocated memory buffers to store the reduced specification
polynomials.

At the beginning of the reduction process, we cache the first
polynomial, sp1, in the first buffer. After reducing it by f1, the
derived polynomial, sp2, is stored in the second buffer. At this
point, sp1 is no longer needed, so the first buffer can be used to
store the newly derived polynomial, sp3. By alternately storing
the reduced polynomials in the two buffers, we avoid the need
for frequent memory allocation and deallocation.

Operator Scheduling: After the Gröbner basis rewriting, each
polynomial in the simplified basis is related to a node in
RGBDG, and the reduction process also follows a reverse
topological order of RGBDG. In a node list following a reverse
topological order, two consecutive nodes being adjacent in the
list does not necessarily imply a direct edge between them.
Similarly, the reduction of two polynomials in Gröbner basis
does not have to follow chronological order because the first
can be independent of the second one. Suppose we have
f1 := −α + h(Tα) and f2 := −β + h(Tβ) in Fig. 4. If
α /∈ Tβ , β /∈ Tα and ∀u ∈ sp1, u

αβ−−→ r 6= 0, where u
is a monomial in sp1, then the reduction of f1 and f2 can
be performed concurrently. More specifically, the computation
graph can be rescheduled as Fig. 4(b).

Theorem 4. The two computation graphs in Fig. 4 are equiv-
alent.

Proof. Without losing generality, we assume sp1 = g1+ciαp+
g2 + cjβq + g3, where g1, g2 and g3 are sub-polynomials of
sp1 that do not contain neither variable α nor β. p and q are
monomials. ci and cj are coefficients. Since ∀u ∈ sp1, u

αβ−−→
r 6= 0, we know that β /∈ p and α /∈ q. It is easy to see that

sp3 = sp2 +m2 = sp1 +m1 +m2. (1)



2.5 5 7.5 10 12.5 15 17.5 20

50
100
150
200
250
300
350
400

Runtime (s)

So
lv

ed
in

st
an

ce
s

Ours
Amulet 2.2

Fig. 5 Verification runtime comparison with Amulet 2.2 on
AOKI benchmarks.

Also, we have

sp4 = sp1 + a3 = sp1 +m1 +m3. (2)

To prove sp3 = sp4, we only need to show m2 = m3.
Following the Gröbner basis reduction procedure, we can get

sp2 = g1 + ci[h(Tα)]p + g2 + cjβq + g3. (3)

As β /∈ h(Tα) and β /∈ p, we conclude that β only appears in
cjβq. Thus, d2 = cjq and

m2 = d2f2 = −cjβq + cj [h(Tβ)]q. (4)

Similarly, as α /∈ Tβ and α /∈ q, from Fig. 4(b) we can derive
that

m3 = d3f2 = −cjβq + cj [h(Tβ)]q, (5)

which is equal to m2.

In the Gröbner basis reduction phase, the number of mono-
mials in a reduced specification polynomial is generally much
larger than that in a Gröbner basis polynomial. Therefore, most
computation cost and memory footprint come from operations
whose operands contain a reduced specification polynomial.
The most significant difference between the two computation
graphs originates from operations a1 and a3. While for other
operators in Fig. 4(a), we can find a corresponding operator in
Fig. 4(b) with similar computation cost and memory footprint.
For instance, a2 and a4, d2 and d3 have similar cost. The
operands of a3 are both small polynomials, while one of the
operands of a1 is a large polynomial, sp1. As a result, the
computation cost of a3 is smaller than a1. Also, the derived
polynomial tmp has a smaller memory overhead than sp2.
The given computation graphs only investigate two polynomials
from the simplified Gröbner basis. However, it can be easily
extended to scenarios when we can apply multiple polynomials
from the simplified Gröbner basis to reduce the specification
polynomial simultaneously.

IV. RESULTS

A. Setup

Currently, no single verification tool outperforms others in
all benchmarks. For example, RevSAC 2.0 [9] is more robust
against design optimization, while Amulet 2.2 [13] performs
better when final stage adders can be detected. Our acceleration

1 2 4 8 16

1

2

3

4

5

6

7

Number of threads

Sp
ee

du
p

R
at

io

SP-AR-LF

SP-DT-LF

SP-WT-BK

(a)

128-bit 256-bit 512-bit 1024-bit

2

4

6

8

10

12

14

16

Multiplier input width

SP-AR-LF

SP-DT-LF

SP-WT-BK

(b)

Fig. 6 Scalability of our acceleration framework as number of
threads and multiplier input width increases.

framework works with any state-of-the-art verification tool as
long as it contains the Gröbner basis rewriting and reduction
stage. In order to assess the effectiveness of our techniques,
we have specifically integrated our acceleration framework
into Amulet 2.2 due to its availability as an open-source
tool. Amulet 2.2 uses a global hash table for internal term
sharing and global buffers to store intermediate results of terms
and polynomials. Consequently, these initial data structures
were not designed for parallel computing. To rectify this, we
revised the implementations by incorporating local buffers,
which enabled parallel polynomial calculations. We conducted
all experiments on a Linux server outfitted with 125G DRAM
and two Intel(R) Xeon(R) Silver 4210R CPUs. Each CPU
clocks at 2.40 GHz and has 10 physical cores.

B. Experimental Results

First, our experiments utilized the AOKI benchmarks, con-
sisting of 384 mixed signed and unsigned integer multipliers,
reaching up to 64-bit. The comparative verification time with
Amulet 2.2 is depicted in Fig. 5. We only applied the memory
optimization techniques because small multipliers don’t ben-
efit from multithreading. Both Amulet 2.2 and our optimized
tool were able to verify all the multipliers. Nonetheless, our
enhanced acceleration framework verified a higher number of
multipliers given an identical time budget.

We also evaluated the effectiveness of the proposed tech-
niques using up to 1024-bit size multipliers produced by the
GenMul multiplier generator [14]. The benchmarks include
three different multiplier architectures, where detailed informa-
tion can be found in [14]. We only conducted experiments on
unsigned multipliers because the verification time is similar as
long as the architecture and the input width are equal. The gen-
erated designs were synthesized to gate-level netlists through
Yosys [15] before being transformed into AIG via ABC [16].
The experimental results are documented in TABLE I without
considering the adder substitution time. Considering we applied
different acceleration methods for Gröbner basis rewriting and
Gröbner basis reduction, we listed the runtime separately. The
total runtime slightly surpasses the combined time of rewriting
and reduction because pre-processing and post-processing time
are also counted. We can see that for the 1024×1024 multiplier
with architecture SP-DT-LF, the speedup ratio can reach more
than 15×.



TABLE I Verification runtime comparison with Amulet 2.2 on large multipliers.

architecture size #gates Amulet 2.2 [13] Ours (16 threads)
rewriting (s) reduction (s) overall (s) rewriting (s) reduction (s) overall (s)

SP-AR-LF
128×128

194314 0.98 0.16 1.30 0.43 0.57 1.15
SP-DT-LF 193806 2.26 0.38 2.82 0.45 0.82 1.39
SP-WT-BK 197774 2.31 2.65 5.24 0.48 1.26 1.92

SP-AR-LF
256×512

781834 6.20 0.87 7.72 2.37 1.52 4.55
SP-DT-LF 780814 17.85 2.09 20.80 1.79 3.57 6.06
SP-WT-BK 790610 17.84 25.85 44.66 1.86 5.63 8.16

SP-AR-LF
512×512

3136522 55.42 5.70 63.81 10.94 6.97 20.13
SP-DT-LF 3134478 185.53 12.02 201.13 8.28 15.22 26.33
SP-WT-BK 3157890 186.46 322.87 512.96 8.84 33.05 45.02

SP-AR-LF
1024×1024

12564490 506.55 39.39 573.05 54.26 37.41 102.11
SP-DT-LF 12560398 1817.96 92.74 1940.23 38.32 73.96 123.68
SP-WT-BK 12606714 1807.25 3519.13 5356.14 37.65 311.19 360.71

Average Ratio 15.64 2.80 6.24 1.00 1.00 1.00

128-bit 256-bit 512-bit 1024-bit
0

0.5

1

Multiplier input width

R
ed

uc
tio

n
Ti

m
e

Default DB only DB+OS

Fig. 7 Gröbner basis reduction time with/without memory
optimization techniques. “Default” refers to the original im-
plementation. “DB” is short for double buffering, and “OS” is
short for operator scheduling.

C. Ablation Study

Scalability: To begin with, we increased the number of threads
and recorded the speedup ratio for Gröbner basis rewriting on
the largest 1024-bit multipliers. The results are displayed in
Fig. 6(a). Additionally, we explored how the overall speedup
ratio scales as the multiplier input width increases. As depicted
in Fig. 6(b), we can see that our proposed techniques perform
better as the multipliers become larger with 16 threads.

Effectiveness of Memory Optimization: We also investigated
the impact of double buffering and operator scheduling on
the time required for Gröbner basis reduction. The normalized
runtime shown in Fig. 7 demonstrates that both memory op-
timization techniques can significantly decrease the Gröbner
basis reduction time.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel approach to accelerate SCA-
based verification systems for integer multipliers. By leveraging
parallel computing and a double buffering scheme with an
operator scheduler, the proposed techniques result in a signif-
icant speedup compared to the original implementation. Our

future work includes integrating our acceleration framework
into more verification tools like RevSCA 2.0 [9] and exploring
a new Gröbner basis rewriting method that can be beneficial
for parallel computing.

REFERENCES

[1] H. Sharangpani and M. Barton, “Statistical analysis of floating point flaw
in the pentiumtm processor (1994),” Intel Corporation, vol. 30, 1994.

[2] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits using
binary moment diagrams,” International Journal on Software Tools for
Technology Transfer, vol. 3, pp. 137–155, 2001.

[3] A. Biere, “Collection of combinational arithmetic miters submitted to the
SAT competition 2016,” SAT Competition, vol. 2016, p. 1, 2016.

[4] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining gröbner basis
with logic reduction,” in Proc. DATE, 2016, pp. 1048–1053.

[5] A. Mahzoon, D. Große, and R. Drechsler, “Polycleaner: clean your
polynomials before backward rewriting to verify million-gate multipliers,”
in Proc. ICCAD, 2018, pp. 1–8.

[6] D. Kaufmann, A. Biere, and M. Kauers, “Incremental column-wise ver-
ification of arithmetic circuits using computer algebra,” Formal Methods
in System Design, vol. 56, pp. 22–54, 2020.

[7] ——, “Verifying large multipliers by combining SAT and computer
algebra,” in Proc. FMCAD, 2019, pp. 28–36.

[8] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based
on and-inverter graphs,” IEEE TCAD, vol. 37, no. 9, pp. 1907–1911, 2017.

[9] A. Mahzoon, D. Große, and R. Drechsler, “Revsca-2.0: Sca-based formal
verification of nontrivial multipliers using reverse engineering and local
vanishing removal,” IEEE TCAD, vol. 41, no. 5, pp. 1573–1586, 2021.

[10] D. Cox, J. Little, and D. OShea, Ideals, varieties, and algorithms:
an introduction to computational algebraic geometry and commutative
algebra, 2013.

[11] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based
polynomial extraction,” Microprocessors and Microsystems, vol. 39, no. 2,
pp. 83–96, 2015.

[12] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the
algebraic approach for verifying gate-level multipliers,” in Proc. DATE,
2018, pp. 1556–1561.

[13] D. Kaufmann and A. Biere, “Fuzzing and Delta Debugging And-Inverter
Graph Verification Tools,” in International Conference on Tests and
Proofs, 2022, pp. 69–88.

[14] A. Mahzoon, D. Große, and R. Drechsler, “GenMul: Generating archi-
tecturally complex multipliers to challenge formal verification tools,” in
Recent Findings in Boolean Techniques, 2021, pp. 177–191.

[15] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free Verilog synthesis
suite,” in Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013, p. 97.

[16] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. CAV, 2010, pp. 24–40.


