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ABSTRACT
In this paper, we explore the burgeoning intersection of Large Lan-
guage Models (LLMs) and Electronic Design Automation (EDA). We
critically assess whether LLMs represent a transformative future
for EDA or merely a fleeting mirage. By analyzing current advance-
ments, challenges, and potential applications, we dissect how LLMs
can revolutionize EDA processes like design, verification, and op-
timization. Furthermore, we contemplate the ethical implications
and feasibility of integrating these models into EDA workflows. Ulti-
mately, this paper aims to provide a comprehensive, evidence-based
perspective on the role of LLMs in shaping the future of EDA.
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1 INTRODUCTION
The advent of Large Language Models (LLMs) has ushered in a
new era in the realm of artificial intelligence, redefining the bound-
aries of machine learning and its applications. One such field that
stands on the cusp of potential transformation is Electronic De-
sign Automation (EDA). EDA, a cornerstone in the semiconductor
industry, encompasses a suite of software tools for designing elec-
tronic systems such as integrated circuits and printed circuit boards.
The integration of LLMs into EDA promises to revolutionize this
field, offering unprecedented capabilities in design automation, error
detection, and process optimization.

This paper seeks to explore the intersection of LLMs with EDA,
critically examining whether this integration heralds a new future
or is merely an overhyped concept. The surge in LLM capabilities,
characterized by models such as GPT-4, has demonstrated profound
potential in understanding and generating human-like text. This
capability, when applied to EDA, could offer transformative solutions
in automating complex design processes, providing natural language
interfaces for design tools, and enhancing the accuracy of predictive
models used in circuit design and analysis.

However, the marriage of LLMs with EDA is not without its chal-
lenges. The complexity of EDA tasks, coupled with the specialized
nature of electronic design languages, poses a significant hurdle.
Moreover, the integration of LLMs raises pertinent ethical and prac-
tical concerns. Issues such as data privacy, model reliability, and the
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potential for automation-induced obsolescence in skilled professions
are critical considerations that must be addressed.

In this paper, we delve into the nuances of applying LLMs to EDA.
We analyze current trends, potential applications, and the challenges
faced in actualizing this integration. By examining case studies and
emerging research, we aim to provide a comprehensive overview of
how LLMs could potentially reshape the future of EDA, evaluating
whether this integration is a groundbreaking advancement or an
overestimated prospect.

2 APPLICATIONS FOR EDA
There are many applications applying LLM into circuit design and
the EDA flow. For example, ChipNeMo [1] aims to optimize the
utilization of LLMs in chip design by employing domain adaptation
techniques instead of relying solely on off-the-shelf LLMs. These
techniques include custom tokenizers, domain-adaptive continued
pretraining, supervised fine-tuning with domain-specific instruc-
tions, and domain-adapted retrieval models. The effectiveness of
these techniques is evaluated through three selected LLM applica-
tions: an engineering assistant chatbot, EDA script generation, and
bug summarization and analysis. By training on 128 A100 GPUs,
ChipNeMo has demonstrated impressive results in the selected ap-
plications. However, the evaluation results indicate a considerable
disparity compared to human expert performance. To bridge this
performance gap, several approaches are being considered by the au-
thors, including data collection with more internal proprietary data,
integrating better code-based base model, conducting reinforcement
learning from human feedback (RLHF) [2], and investigating better
RAG methods.

The most popular application is to help circuit design with LLM:
prior works [3–7], among many others, are all very recent attempts
towards this direction. VerilogEval [5] introduces a benchmarking
framework specifically designed to evaluate the performance of
LLMs in generating Verilog code for hardware design and verifica-
tion. The evaluation dataset covers a wide range of Verilog code
generation tasks, varying from simple combinational circuits to com-
plex finite state machines. To assess the functional correctness of the
generated Verilog code, transient simulation outputs are compared
with a golden solution, enabling automated testing. Similarly, Thakur
et al. [3] fine-tune pre-trained LLMs using Verilog datasets sourced
from GitHub and Verilog textbooks. They develop an evaluation
framework that includes test-benches for functional analysis and a
flow to test the syntax of the generated Verilog code across various
problem scenarios. GPT4AIGChip [6] is a framework that leverages
LLMs and human natural languages to democratize AI accelera-
tor design. The framework features an automated demo-augmented
prompt-generation pipeline that utilizes in-context learning to guide
LLMs in generating high-quality AI accelerator designs. The authors
highlight the insights and guidelines derived from understanding the
limitations and exploitable capabilities of LLMs for AI accelerator
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design automation, such as decoupled hardware template design, pri-
oritizing in-context learning given limited data, and proper prompt
engineering. ChipChat [4] authors argue that when human feed-
back is incorporated into the more advanced ChatGPT-4 model or
used for co-design, the language model acts as a ’force multiplier’,
enabling quick exploration and iteration of the design space.

The second interesting direction is to help the design flow with
LLM. ChatEDA [8] addresses the challenge of integrating EDA tools
to improve interoperability in circuit design, by leveraging LLM
capabilities in natural language processing and comprehension. An
autonomous agent for EDA that utilizes the AutoMage LLM in con-
junction with EDA tools as executors is proposed. It offers users
a conversational interface to interact with these tools. Users can
communicate their requirements using natural language prompts,
and ChatEDA’s goal is to generate executable programs (scripts) that
fulfill the user’s specific needs. Acting as the controller, ChatEDA
orchestrates the collaboration between these tools. It starts by cre-
ating a task list based on user requirements and then generates
scripts for each task. The conversational interaction may inspire
next-generation EDA tool evolution.

The third direction is debugging in Verilog: RTLFixer [9] is an au-
tomated framework that addresses syntax-related errors in Verilog
code using LLMs. It consists of an LLM for code generation, RAG for
accessing expert guidance, and ReAct for task decomposition and
planning. The framework starts by formulating an input prompt
combining a benchmark problem with a template. RAG and ReAct
are then used to revise the code and resolve errors. Persistent syntax
errors are addressed with feedback from compiler error logs and
retrieved human guidance. This iterative debugging process contin-
ues until all errors are resolved. RTLFixer achieves a high success
rate of 98.5% in fixing compilation errors and significantly improves
pass rates in VerilogEval benchmarks. Specifically, it enhances the
pass@1 success rates by 32.3% in VerilogEval-Machine and 10.1% in
VerilogEval-Human benchmarks.

3 CONCLUSION AND FUTURE DIRECTIONS
This paper has embarked on a comprehensive exploration of the
integration of LLMs into EDA. Our analysis reveals a landscape
brimming with potential, yet punctuated by significant challenges
and uncertainties. The promise of LLMs in enhancing EDA processes
is undeniable, offering novel approaches to design automation, error
detection, and efficiency improvements. However, the path to fully
realizing this potential is fraughtwith technical, ethical, and practical
obstacles.

The future of LLMs in EDA hinges on several key factors. Firstly,
the development of more specialized LLMs tailored to understand
the intricacies of electronic design languages and processes is crucial.
The current generation of LLMs, while advanced, is predominantly
trained on general language data. For LLMs to be truly transforma-
tive in EDA, they must evolve to comprehend the specialized syntax
and semantics of electronic design, a process that requires exten-
sive domain-specific data and training. Data generation techniques
like self-instruct [10] are of great significance. Careful selection or
combination between RAG and fine-tuning [11] is also crucial in
achieving optimal results.

Secondly, addressing ethical and practical concerns is paramount.
Issues such as data security, privacy, and the ethical use of AI in
professional settings need rigorous standards and regulatory frame-
works. Recent studies have demonstrate the vulnerabilities of LLMs
when faced with malicious user interactions, and prompt injection
techniques are proposed [12]. As LLMs become more integrated into
EDA, it is vital to ensure that these tools are used responsibly, with
a clear understanding of their limitations and potential biases.

Looking ahead, the future directions of LLM integration into
EDA are manifold. One promising avenue is the development of
AI-assisted design tools that seamlessly integrate with existing EDA
software, offering enhanced capabilities in design optimization and
error correction. Another area of exploration is the use of LLMs
in educational settings, where they can aid in training the next
generation of electronic designers, providing interactive learning
experiences and personalized feedback.

Furthermore, there is substantial scope for collaborative research
between AI experts and EDA professionals. Such collaboration can
accelerate the development of customized LLMs that cater specifi-
cally to the needs of the EDA industry. Additionally, exploring the
potential of LLMs in related fields like chip layout optimization
and predictive maintenance of electronic systems could open new
frontiers in the application of AI in electronics.

In conclusion, while the integration of LLMs into EDA presents a
landscape rich with opportunities, it remains a complex and evolv-
ing field. Continued research, interdisciplinary collaboration, and
mindful consideration of ethical implications are essential in steer-
ing this integration towards a future that is not only technologically
advanced but also responsible and inclusive. As we stand at the
cusp of this technological evolution, it is imperative to navigate this
journey with a balanced perspective, embracing innovation while
remaining cognizant of the challenges that lie ahead.
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