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Abstract

Knowledge distillation aims at transferring knowledge from
the teacher model to the student one by aligning their dis-
tributions. Feature-level distillation often uses L2 distance
or its variants as the loss function, based on the assumption
that outputs follow normal distributions. This poses a signif-
icant challenge when distribution gaps are substantial since
this loss function ignores the variance term. To address the
problem, we propose to decompose the transfer objective into
small parts and optimize it progressively. This process is in-
spired by diffusion models from which the noise distribution
is mapped to the target distribution step by step. However, di-
rectly employing diffusion models is impractical in the distil-
lation scenario due to its heavy reverse process. To overcome
this challenge, we adopt the structural re-parameterization
technique to generate multiple student features to approxi-
mate the teacher features sequentially. The multiple student
features are combined linearly in inference time without extra
cost. We present extensive experiments performed on various
transfer scenarios, such as CNN-to-CNN and Transformer-to-
CNN, that validate the effectiveness of our approach. Code is
available at https://github.com/yaoxufeng/KDiffusion.

Introduction
The revolutionary advancement of Deep Neural Network
(DNN) models has exhibited immense success in various
domains of computer vision. However, their remarkable tri-
umph comes at the cost of significant computation and mem-
ory consumption, presenting a formidable challenge in de-
ploying these models in resource-limited industrial applica-
tions. To address this, recent research suggests Knowledge
Distillation as a promising resolution wherein knowledge
from a large model (i.e., teacher) can be efficiently trans-
ferred to a lightweight model (i.e., student).

In the seminal work by Hinton et al. (Hinton, Vinyals, and
Dean 2015), the concept of Knowledge Distillation (KD)
was introduced and the transfer objective was achieved by
minimizing the KL-Divergence (Kullback and Leibler 1951)
between softened outputs (logits) of the teacher and student.
On the other hand, many efforts have focused on enhancing
the effectiveness of feature-level distillation. For instance,
FitNet (Romero et al. 2014) leverages intermediate features
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Figure 1: (a) Conventional feature-level distillation directly
predicts teacher by student. (b) Our proposed diffusion KD
decouples the objective into multiple timesteps and transfer
step by step.

to facilitate knowledge transfer, while CRD (Tian, Krishnan,
and Isola 2020) utilizes a contrastive objective for distilla-
tion by maximizing mutual information between representa-
tions. Other approaches such as multi-level feature distilla-
tion (Ahn et al. 2019; Chen et al. 2021b) have also demon-
strated promising results when applied to similar architec-
tures (e.g., CNN-to-CNN) in recent studies.

Our New Finding. However, it is observed that the dis-
tillation performance may be disrupted in the presence of
significant distribution gaps. As outlined in Table 1, some
conventional feature-level distillation techniques, such as
CRD (Tian, Krishnan, and Isola 2020), exhibit inferior per-
formance when confronted with the difficult Transformer-
to-CNN scenario. Such methods yield only marginal distilla-
tion improvement, and may even introduce negative transfer
effects.

Feature-level KD mainly uses L2 distance as the loss
function. From the perspective of maximum likelihood es-
timation, this loss function is based on the assumption
that the outputs conform to the normal distribution, and
the objective is to predict the corresponding µ̂ and σ̂.
We can construct the density function as p(xT |xS) =

1√
2πσ̂

exp (− 1
2
(xT−µ̂)2

σ̂2 ). The loss function can, therefore,
be expressed as follows:

Ltrans = − log p(xT |xS) ∝ log σ̂ +
(xT − µ̂)2

2σ̂2
. (1)

In the standard L2 loss paradigm, variance is treated as a
constant value. This assumption may pose a significant chal-
lenge when confronting large distribution gaps. Also, since



Teacher Swin Swin Swin
94.48% 94.48% 94.48%

Student MobileNetV2 ResNet18 ShuffleNetV2
84.04% 84.42% 76.86%

CRD 83.72% 84.26% 77.88%
-0.32 -0.16 +1.02

Table 1: Top-1 accuracies of teacher and student networks on
ImageNet100. Please refer to experiments for more details.

the L2 distance is isotropic, it may lead to noise amplifica-
tion during training in the absence of appropriate constraints.
Nonetheless, scrutinizing true distributions is a demanding
task, particularly when both teacher and student features are
sampled from complex distributions. In this work, we pro-
pose a solution that utilizes diffusion techniques to address
this issue.

Motivation and Our Solution. The objective of KD can
be formulated as matching student and teacher distributions.
As a generative techinique, diffusion models have been used
to map noise distribution to the target one by employing a
DNN model to approximate the reverse process in each step.
A significant advantage of utilizing diffusion techniques in
KD is the ability to break down the transfer objective into
smaller parts and transfer knowledge gradually. Addition-
ally, diffusion models can model the distribution without
loss of dimension compared with GAN (Goodfellow et al.
2020) or VAE (Kingma and Welling 2013), which is also
crucial in the distillation scenario where there may be a high-
dimensional optimization problem due to the large distribu-
tion gaps. As shown in Figure 1, classical feature-level distil-
lation directly optimizes − log p(x0|xn) , where x0 and xn

represent teacher and student features, respectively. How-
ever, this approach may lead to instability during training, as
previously explained. In contrast, our method progressively
approximates intermediate features constructed by diffusion
process, enabling us to optimize middle steps with low vari-
ance, and transfer knowledge with greater safety.

Although diffusion is known to be a practical approach to
map the student distribution to the teacher one, it requires
the involvement of multiple student features in the train-
ing process. To overcome this constraint, we apply recent
advancements in the field of structural-reparameterization
techniques, as presented in (Ding et al. 2021), to generate
numerous student features. Throughout the training phase,
we make use of these generated student features to approxi-
mate the corresponding teacher target features sequentially.
In the inferece stage, we can efficiently merge all student
features without additional inference costs by leveraging
their linear properties. Our contributions are summarized as
follows.

• We identify a limitation of classical KD methods
when faced with large distribution gaps, and propose
a diffusion-based framework that overcomes this chal-
lenge.

• We introduce a new challenging Transformer-to-CNN
setting and benchmark ten different distillation methods
on this task. Through our experiments, we demonstrate

the effectiveness of our proposed algorithm compared to
other state-of-the-art methods.

• We evaluate our approach on a range of computer vision
tasks and achieve competitive results across multiple do-
mains.

Related Work
Knowledge Distillation. As a model compression tech-
nique (Buciluǎ, Caruana, and Niculescu-Mizil 2006),
knowledge distillation aims to transfer the knowledge from a
teacher model to a student model by aligning their distribu-
tions. Conventional KD (Hinton, Vinyals, and Dean 2015)
minimizes the KL divergence between teacher and student
logits-level output. Extensive methods focus on feature-level
distillation since intermediate features contain rich informa-
tion. For instance, FitNet (Romero et al. 2014) uses L2 loss
to minimize the distance between teacher and student’s mid-
dle features. OFD (Heo et al. 2019) introduces partial L2
loss instead to prevent negative transfer. (Yim et al. 2017;
Zagoruyko and Komodakis 2016) either use gram matrix or
attention map to maximize the correlation. CRD (Tian, Kr-
ishnan, and Isola 2020) proposes a contrastive-based transfer
objective where the cosine similarity between normalized
representations is proportional to L2 distance. Additionally,
methods like Review (Chen et al. 2021b), AFD (Ji, Heo, and
Park 2021), and SemCKD (Chen et al. 2021a) guide single-
level student features to learn multi-level teacher features.
However, these methodologies overlook the large distribu-
tion issue.

Incorporating generative techniques to emulate teacher
distributions has also been explored within the KD frame-
work. For example, KDGAN (Wang et al. 2018) deploys
GANs to ensure the student classifier aligns with the genuine
teacher distribution. VID (Ahn et al. 2019) employs a varia-
tional information maximization approach to maximize mu-
tual information between student and teacher outputs. These
strategies, lacking a multi-step optimization approach, may
pose optimization challenges.

Diffusion Models. Denoising diffusion models have ex-
hibited the ability to produce high-quality samples across
many domains (Ho, Jain, and Abbeel 2020; Song, Meng,
and Ermon 2020; Rombach et al. 2022; Ramesh et al. 2022).
As a family of generative models, diffusion models are pro-
ficient in establishing the connection between a noise distri-
bution and the target one. Among the most imperative ad-
vantages conferred by diffusion models is the capacity to
construct intermediate steps between the source and target,
thus simplifying the complex and high-dimensional opti-
mization problem into smaller parts, which can be subse-
quently solved progressively. Therefore, the adoption of dif-
fusion techniques is bound to be effective in the distillation
of large discrepancies between the teacher and student dis-
tributions.

Method
In this study, our objective is to enhance distillation perfor-
mance by progressively transferring knowledge through ap-
proximating the diffusion reverse process. To address this,



we first provide a comprehensive review of the general for-
mulation of transfer learning. We then motivate the diffusion
process in knowledge distillation. Meanwhile we review dif-
fusion process and examine the limitations of directly us-
ing diffusion models in KD. Then we introduce proposed
alogrithm which distills knowledge via re-parameterizing
diffusion reverse process. To further enhance the reversal
process, we incorporate our algorithm with target-guided
and shuffle sampling strategies.

General Formulation of Transfer Learning
Generally, the objective of transfer learning is to align the
teacher and student distributions. We define P and Q are
corresponding distributions, then the conventional KL di-
vergence between teacher and student distributions can be
defined as :

KL(P ||Q) =
∑
x

p(xT ) log(
p(xT )

q(xS)
), (2)

where xT and xS are teacher and student feature outputs,
respectively. If two distributions are equivalent, the KL di-
vergence are zero. In deep transfer learning, we often use a
small neural network to predict teacher feature outputs xT

by student feature xS . With regard to the maximum likeli-
hood estimation approach, the transfer objective can be de-
fined as − log(qθ(x

T |xS)). Normally we use L2 loss (or the
variants of L2 loss) between teacher and predicted teacher
feature outputs based on the assumption that outputs are
Gaussian.

In the context of large distribution gaps, modeling
−(log qθ(x

T |xS) presents a significant challenge. In this
work, we address this issue by decomposing the problem
into small pieces and solving it progressively. By assuming
the Markov chain for the intermediate steps between teacher
and student, the transfer objective can be reformulated as:

− log (qθ(x
T
0 |xT

1 ) · · · qθ(xT
t−1|xT

t ) · · · qθ(xT
n−1|xS

n)), (3)

where xT
0 and xS

n are original teacher and student feature
outputs. xT

1 ,x
T
2 , · · · ,xT

n denote intermediate features be-
tween xT

0 and xS
n . Instead of directly predicting xT

0 by xS
n ,

which may lead to negative transfer, we can optimize the in-
termediate steps (e.g., − log qθ(x

T
t−1|xT

t )) and safely trans-
fer the knowledge.

In order to enhance the optimization of intermediate pro-
cesses, it is imperative to construct intermediate features and
their corresponding probability density functions. To accom-
plish this task, we employ diffusion techniques that enable
us to effectively address the problem at hand.

Review Diffusion Process
Assume we have a series student features xS

0 ,x
S
1 · · ·xS

n
which are sampled independently from the standard Normal
distribution. Given the teacher target features xT

0 and stu-
dent source features xS

t , the diffusion forward process can
be given by:

xT
t = αtx

T
t−1 + βtx

S
t = α̂tx

T
0 + β̂tx

S
0 , (4)

where α̂t = α1 · · ·αt and β̂t =

√
1− α̂2

t . We use the de-
fault setting by taking α2

t + β2
t = 1. Since any xS are sam-

pled from the normal distribution, we can write down the
density function of any intermediate features xT

t by:

q(xT
t |xT

0 ) := N (xT
t ; α̂tx

T
0 , β̂

2
t I). (5)

In the reverse process, we endeavor to recover the pre-
vious step xT

t−1 by current step xT
t sequentially, which is

often achieved by using a neural network (e.g., UNet (Ron-
neberger, Fischer, and Brox 2015)). If the student features
are from noise distributions, the learning process can be re-
garded as a denoising process.

Assume we have a well-trained diffusion model uθ, xT
t−1

can be recovered by:

xT
t−1 =

1√
αt

(xT
t − 1− αt√

1− α̂t

µθ(x
T
t , t)) + σtx

S
t . (6)

We can establish a basic distillation pipeline based on
the diffusion models. In the training process, we can train
a diffusion model to establish a connection between teacher
and student features. In the inference stage, we can recover
teacher features from student features via trained diffusion
models.

However, this basic design has several drawbacks. Firstly,
the reverse of diffusion process is time-consuming and the
introduction of a diffusion model in the inference stage is
quite costly. Secondly, the diffusion theories rely on sam-
pling multiple student features. Unfortunately, we only have
one student feature xS

n in our basic design setting.

Knowledge Transfer via Re-parameterizing
Diffusion Reverse Process
Structural Re-parameterization. In order to overcome
the issues of limited sampling and heavy reverse process,
we propose the utilization of structural re-parameterization
techniques (Ding et al. 2021) for generating more feature
samples. Structural re-parameterization leverages the linear
properties of a set of linear modules f0, f1, · · · , fn which
can produce diverse outputs with a common input, i.e.,
f0(x), f1(x), ..., fn(x). The combination of these modules
can be expressed as follows:

α1f0(x)+ · · ·+αnfn(x) = (α1f0 + · · ·+αnfn)(x). (7)

Since both MLP and convolution operations in neu-
ral networks contain linear functions, structural re-
parameterization techniques can be employed to produce an
arbitrary number of feature outputs without additional infer-
ence cost. It is worth noting that we only generate multiple
student feature outputs from the last layer of each stage to
enable a fair comparison in our experiments. Please refer to
the appendix for further details due to the page limit.

Contructing the diffusion forward process. We follow
the same setting in (Kingma. et al. 2013; Ahn et al. 2019)
that assumes feature outputs follow normal distributions. In
this work, given multiple student features after a batch nor-
malization (Ioffe and Szegedy 2015) layer, we define they
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Figure 2: Proposed knowledge transfer via re-parameterizing diffusion reverse progress.

follow a complex normal distribution N (0, σ2
S). We can ob-

tain the probability distributions of each intermediate fea-
tures xT

t by:

q(xT
t |xT

0 ) := N (xT
t ; α̂tx

T
0 , β̂

2
t σ

2
S). (8)

Formulating the diffusion reverse process. The objec-
tive of our algorithm is to leverage multiple student features
to approximate the diffusion reverse process, while ensuring
that all student features can be linearly integrated at the fi-
nal stage. Despite the fact that we can generate numerous
student features without incurring additional inference cost,
the process of training a large student network can be quite
expensive. Hence, we opt to create m (m ≪ n) student fea-
tures and subsequently recover the teacher features using m
steps. Assuming that the duration for each reverse step is t
(t ≈ n

m ), the objective in timestep {n−t} is to recover xT
n−t

using xT
n .

Since we do not know the probability distribution of
q(xT

n−t|xT
n ), similiar to (Ho, Jain, and Abbeel 2020; Song,

Meng, and Ermon 2020), we introduce q(xT
0 ) to achieve the

density function:

q(xT
n−t|xT

n ,x
T
0 ) =

q(xT
n |xT

n−t)q(x
T
n−t|xT

0 )

q(xT
n |xT

0 )
. (9)

Equation (9) is also Gaussian, so the density function can
be given as Equation (10).

q(xT
n−t|xT

n ,x
T
0 ) := N (xT

n−t;u(x
T
n ) + v(xT

0 ), w(σ
2
S)),

where u(xT
n ) =

ˆβ2
n−t ˆαn2t

β̂2
n

xT
n , v(x

T
0 ) =

ˆβ2
n2t ˆαn−t

β̂2
n

xT
0

w(σ2
S) =

ˆβ2
n2t

ˆβ2
n−t

β̂2
n

σ2
S , ˆαn2t =

α̂n

ˆαn−t
, ˆβ2

n2t = 1− ˆα2
n2t.

(10)
Upon observation of the reverse process, there are two

parts in reverse process that needs to predict, i.e., u(xT
n ) and

v(xT
0 ).

Establishing transfer objective on intermediate steps.
We take one intermediate step xT

n−3t as an example. To re-
verse xT

n−3t, we need to predict xT
n−2t and xT

0 . Since xT
n−2t

is given by the previous step, we first consider u(xT
0 ). In dif-

fusion models this term is predicted by uθ(x
T
n−2t) where uθ

parameterizes a neural network. In our setting, we do not
want to introduce a diffusion model, then we use the current
step of student features xS

n−2t to predict this term directly.

As xT
n−2t is predicted by the previous steps of student fea-

tures, the transfer objective of the intermediate step can be
defined as:

DKL(p(x
T
n−3t|xT

n−2t,x
T
0 )||qθ(xT

n−3t|xS
n−2t · · ·xS

n)).
(11)

As shown in Figure 2, in each intermediate steps {n −
3t}, we use {xS

n , · · · ,xS
n−2t} student features to predict it,

where xS
n−2t is used to predict corresponding xT

0 part and
the rest are used to predict xT

n−2t parts (which is predicted
by the previous step). Equation (11) consists of a log vari-
ance term and mean term, since both p(xT

n−3t|xT
n−2t,x

T
0 )

and qθ(x
T
n−3t|xS

n−2t · · ·xS
n)’s variance term is based on σ2

S
because of re-parameterization trick (Kingma and Welling
2013), the log variance term can be ignored. Then we can
optimize them by directly minimizing L2 distance between
the corresponding mean value, the middle step loss Lmiddle

can be given by:∥∥(u(xT
n−2t) + v(xT

0 ))− (u(f(xS
n ,x

S
n−t)) + v(xS

n−2t))
∥∥2 ,

where f is the determined combination rules for last step, u
and v are discussed previously.

Other training Strategies
Target guided diffusion training. As a form of generative
models, pure diffusion models do not take task information
(e.g., classification, detection, segmentation) into consider-
ation. However, it’s natural to combine task information to
further improve performance. Inspired by class guided dif-
fusion (Dhariwal and Nichol 2021), which offers a practical
solution on conditional diffusion that considers class infor-
mation (i.e., y), we can introduce y into our formulation:

log p(xT
0 |xS

n , · · · ,xS
1 , y) = log p(xT

0 |xS
n , · · · ,xS

1 )

+(log p(y|xT
0 )− log p(y|xS

n , · · · ,xS
1 )),

(12)
where the first term can be included in the Lmiddle. The

second term measures the distance between the target pre-
dicted by the teacher and student accordingly. Here y can be
any target information such as class label or next-layer pre-
diction. Assume the weights of next teacher layer is wt, for
xT
0 and predicted x̂T

0 , we simply use L2 loss, that is:

Lguided =
∥∥∥xT

0 wt − ˆxT
0 wt

∥∥∥2 . (13)

Note that we also observe that some previous works such
as (Yang et al. 2021) construct the similar formulation with
different motivations.



Shuffle sampling strategy. One issue is that if we strictly
follow diffusion weights rule, the last step of student fea-
tures will dominate large weights such that other features
are not fully stimulated to learn target features. We resolve
this problem by introducing the shuffle sampling strategy.
For each training iteration, we randomly shuffle all student
features such that all student features are forced to learn tar-
get features from different timesteps. In the inference stage,
all student features gain similar abilities, allowing us to as-
sign uniform weights for all student features. The setting of
uniform weights is not trivial, since we assume all student
features are from the same complex normal distribution, the
density function of uniformly weighted of all student fea-
tures is:

p(
1

m
(xS

n + · · ·+ xS
1 )) = N (0,

1

m
σ2
S). (14)

Then we implicitly reduce the variance of the whole predic-
tion. However, we acknowledge that directly using uniform
weights for training may not be practical, and thus provide
ablation in the experiments to validate our approach.

Whole loss function The whole loss function of our
framework is defined as:

L = Lce + α

m∑
i=1

Lmiddle + βLguided, (15)

where Lce is the conventional cross-entropy loss. m repre-
sents the number of re-parameterizing student features. α
and β are corresponding weight factor.

Experimental Results
We experiment with different settings varying architectures
and datasets, including: CIFAR-100 (Krizhevsky, Hinton
et al. 2009) which consists 32 × 32 images with 100 cat-
egories. Training and validation sets are composed of 50k
and 10k images. ImageNet1k (Deng et al. 2009) which con-
tains over 1280k images with 1000 categories. ImageNet-
100 is a subset of ImageNet which contains roughly 120k
images. The training and validation splitting rule is intro-
duced in (Wang and Isola 2020). Our implementation is
mainly based on the DKD (Zhao et al. 2022) Review (Chen
et al. 2021b) and CRD (Tian, Krishnan, and Isola 2020) with
the default training and testing setting.

Main Results
Results on CIFAR-100. Table 2 presents a summary of the
results obtained on CIFAR-100 by our proposed teacher and
student models with different architecture styles. Previous
methods have been categorized into various groups based on
the features they utilize. Specifically, methods in the Single
Layer group utilize only one layer of feature information.
Among them, FitNet (Romero et al. 2014), PKT (Passalis
and Tefas 2018), and RKD (Park et al. 2019) utilize middle
features, whereas CRD (Tian, Krishnan, and Isola 2020) uti-
lizes representation features, which correspond to the output
features of penultimate layers. Our proposed method also
has the capability to utilize only single-layer feature infor-
mation. In this work, we adopt representation features in our

single-layer implementation, and our method outperforms
all previous methods in the Single-Layer group.

Moreover, we conduct experiments on the Multiple-Layer
group and observe that our proposed method achieves
competitive results compared to other methods. Since our
method mainly distills knowledge at the timestep-level, it
is compatible with other methods that use multiple-layer
feature information. Furthermore, we perform an ablation
study on our proposed method using a simple average strat-
egy. The latter approach utilizes the L2 distance between
the teacher feature and the summation of all student features
(i.e., 10) with average weights. Our observations indicate
that simply using average weights without other strategies
cannot fully stimulate the ability of all student features.

Results on ImageNet-100. We investigate the per-
formance of our proposed method on a larger dataset,
ImageNet-100, which is a subset of ImageNet-1k. Follow-
ing the splitting rule introduced in (Wang and Isola 2020),
we conduct experiments in a challenging setting where the
teacher is swin-transformer (Liu et al. 2021), and the stu-
dents belong to different tiny CNN architectures. The chal-
lenges in this setting arise from two aspects. Firstly, the ar-
chitecture gaps are significant. Secondly, the performance
gaps are also substantial, given that we utilize an ImageNet-
1k pre-trained model.

Table 3 presents the results obtained on ImageNet-100,
where we observe some interesting phenomena. Specif-
ically, some conventional feature-level KD methods that
have proven effective in the CNN-to-CNN scenario failed
to produce similar impressive results in this setting. On the
other hand, some logits-level methods, such as KD (Hin-
ton, Vinyals, and Dean 2015) and DKD (Zhao et al. 2022),
achieve stable improvements as in the CNN-to-CNN sce-
nario. However, our proposed method exhibits consistently
prominent advantages, outperforming all previous methods
on all architectures.

Results on ImageNet-1k. We also conduct experi-
ments on ImageNet to verify our method. Top-1 and top-
5 accuracies of image classification are reported in Ta-
ble 4. Kdiffusion1 indicates for single layer distillation
and Kdiffusion2represents multi-layer representation. Our
method achieves a consistent improvement, particularly on
ResNet50-to-MobileNetV2 setting, highlighting the efficay
of our approach in addressing large distribution gaps.

Ablation Studies
We analyze the effectiveness of our method on various as-
pects. First we ablate structural reparameterization to show
that the proposed algorithm is the main reason for perfor-
mance improvement. Then we ablate the number of struc-
tural reparameterization student features. We also provide
ablation studies on different stage reparameterization.

Ablation: Influence on structural reparameterization.
Structural reparameterization is an effective technique to im-
prove model performance without additional inference cost.
By augmenting more features in each layer (Ding et al.
2021), it can boost the performance by a large margin. In
this work, we leverage this technique solely in the final
layer of each stage, in order to ensure a fair comparison



Distillation
Manner

Teacher ResNet32x4 WRN40-2 VGG13 ResNet50 ResNet32x4
Acc 79.42 75.61 74.64 79.34 79.42

Student ShuffleNetV1 ShuffleNetV1 MobileNetV2 MobileNetV2 ShuffleNetV2
Acc 70.50 70.50 64.6 64.6 71.82

Logits KD 74.07 74.83 67.37 67.35 74.45
Logits DKD 76.45 76.70 69.71 70.35 77.07

Single Layer FitNet 73.59 73.73 64.14 63.16 73.54
Single Layer PKT 74.10 73.89 67.13 66.52 74.69
Single Layer RKD 72.28 72.21 64.52 64.43 73.21
Single Layer CRD 75.11 76.05 69.73 69.11 75.65

Multiple Layers AT 71.73 73.32 59.40 58.58 72.73
Multiple Layers VID 73.38 73.61 65.56 67.57 73.40
Multiple Layers OFD 75.98 75.85 69.48 69.04 76.82
Multiple Layers Review 77.45 77.14 70.37 69.89 77.78

Single Layer Avgerage 75.01 75.32 66.45 67.56 75.46
Single Layer Kdiffusion 76.62 75.83 69.14 69.20 76.87

Multiple Layer Kdiffusion 77.90 76.83 69.91 69.95 77.34
+ Target Guide Kdiffusion 78.14 77.26 70.49 71.14 77.84

Table 2: Results on CIFAR-100 with the teacher and student having different architectures.

Distillation
Manner

Teacher Swin Swin Swin Swin Swin
Acc 94.48 94.48 94.48 94.48 94.48

Student MobileNetV2 MobileNetV3 ResNet18 ShuffleNetV1 ShuffleNetV2
Acc 84.04 84.98 84.42 74.74 76.86

Logits KD 85.00 86.76 85.12 77.30 79.18
Logits DKD 85.38 86.86 85.50 77.28 80.02

Single Layer FitNet 84.86 86.44 85.46 76.58 78.58
Single Layer PKT 84.32 86.84 85.36 76.72 78.86
Single Layer SP 85.02 85.90 85.20 76.96 78.86
Single Layer RKD 78.68 85.06 84.82 76.90 77.48
Single Layer CRD 83.72 84.94 84.26 73.20 77.88

Multiple Layers AT 84.70 85.86 85.23 77.26 76.74
Multiple Layers VID 85.42 86.46 85.12 77.56 79.46
Multiple Layers Review 84.94 86.94 85.22 76.88 79.92

Single Layer Kdiffusion 85.88 87.48 86.18 77.90 80.54
Multiple Layer Kdiffusion 86.20 87.88 86.30 78.04 80.68

Table 3: Results on ImageNet-100 with the teacher and student having different architectures.

with other results. Figure 3 reveals that in the absence of
teacher supervision, the student model’s performance suf-
fers despite the incorporation of additional student features.
It is worth noting that a careless design of such features may
lead to training difficulties and consequently, degraded per-
formance. Our findings strongly support the effectiveness of
our approach.

Ablation: Number of re-parameterizing student fea-
tures. To study the potential impact of increasing the num-
ber of structural reparameterization student features super-
vised by teacher features, we perform an ablation study. As
presented in Table 5, indicate that increasing the number
of student features leads to improved performance. Despite
this, we have to consider practical limitations such as mem-
ory constraints, which impose an upper limit on the num-
ber of student features that can be utilized. Nevertheless, it
would be of interest to explore the upper bound on perfor-
mance with an increased number of student features.

Student Stage Acc
1 2 3 4

F
ea
tu
re

N
u
m 64.60

X 64.22
X X 63.32

X X X 62.31
X X X X 61.96

Figure 3: Ablation study on the influence of the structural
reparameterization. The student model is MobileNet-V2 and
the baseline performance without any extra student features
is 64.60. We re-parameterize 10 student features as default.

Ablation: Re-parameterizing on different stages. Ta-
ble Table 6 summarizes results on structural reparameteriza-
tion at different stages. These results conclude that the pro-
posed method performs better on deeper stages that contain



Setting Teacher Student KD AT OFD CRD Review DKD Kdiffusion1 Kdiffusion2

(a) Top-1 76.16 68.87 68.58 69.56 71.25 71.37 72.56 72.05 73.48 73.62
Top-5 92.86 88.76 88.98 89.33 90.34 90.41 91.00 91.05 91.62 91.82

(b) Top-1 73.31 69.75 70.66 70.69 70.81 71.17 71.61 71.70 71.68 72.04
Top-5 91.42 89.07 89.88 90.01 89.98 90.13 90.51 90.41 90.48 90.53

Table 4: Results on ImageNet. (a) MobileNet as student, ResNet50 as teacher. (b) ResNet18 as student, ResNet34 as teacher.

Teacher Student Baseline Feature Numbers
2 4 8 16

Res32x4 Sf1 70.50 74.85 75.96 76.28 76.80
Res50 Mv2 64.60 67.87 68.46 68.91 70.16

Table 5: Ablation study on different number of student fea-
tures, we use the outputs of penultimate layers (i.e., the fi-
nal stage outputs), Sf1 and Mv2 represent shufflenet-v1 and
mobilenet-v2, respectively.

Teacher Student Baseline Student Stage
1 2 3 4

Res32x4 Sf1 70.50 72.78 74.44 77.36 76.62
Res32x4 Sf2 71.82 73.15 75.28 77.32 76.87
Res50 Mv2 64.60 64.69 68.71 69.82 69.20

Table 6: Ablation on different stages.

more channels. From a structural reparameterization per-
spective, larger channels provide a larger solution space that
could be further improved.

More Analysis
Comparison to CRD. Contrastive representation distilla-
tion (Tian, Krishnan, and Isola 2020) is a widely used
feature-level method for representation-level distillation.
However, CRD faces a challenging high-dimension opti-
mization problem and maps both student and teacher repre-
sentations to a low dimension (e.g., 256 or 128) to optimize
the transfer objective smoothly. This approach unavoidably
results in information loss, making it difficult to apply the
same strategy to the middle feature-level. In contrast, our
approach leverages diffusion techniques to optimize the fea-
ture in high-dimension, enabling the student model to learn
potentially more useful features. Moreover, our method can
perform middle feature-level alignment without requiring
any additional design. High-dimension feature optimization
presents a double-edged sword, offering more supervision
information but also potentially introducing negative trans-
fer. Our work presents a promising solution that encourages
further exploration in this direction, offering valuable in-
sights and paving the way for future research.

Comparison to Review. Feature-level distillation in-
volves a crucial trade-off that necessitates the inclusion of
a bridge module to enable the mapping of the student model
to the teacher model in the same dimension. While the stu-
dent model abandons the bridge module during inference to
circumvent any additional inference costs, the design of the
bridge module presents a challenging task. An overly pow-
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Figure 4: Extra training parameters vs. accuracy on CIFAR-
100. We set ResNet50 as the teacher and MobileNetV2 as
the student. The table shows the accuracy and number of
extra parameters of each method.

erful bridge module can hinder the acquisition of teacher
knowledge, whereas an excessively weak one can lead to
unstable training or negative transfer. Therefore, designing
an ideal bridge module is a critical consideration for effec-
tive feature-level distillation. Review (Chen et al. 2021b) is a
classical work that dedicatedly designs two bridge modules
that utilize multiple layers of features. As shown in Figure 4,
we can observe that our method outperforms Review (Chen
et al. 2021b) on both performance and training parameters.
Besides this work provides a potential direction for solving
the bridge module problem. With more student features, we
can safely use a relatively weak bridge module since more
student features can reduce the transfer variance.

Discussion and Conclusion
This paper presents a novel point of view of knowledge dis-
tillation with large distribution gaps between teacher and
student models. This setting is a potential research direction
when the teacher models become larger and larger and other
model compression techniques such as model pruning and
post-quantization can not afford the retraining cost. In this
study, we reveal that the classical L2 loss may incur negative
transfer when confronting large distribution gaps. To solve
the problem, we present a novel transfer method based on re-
parameterizing the diffusion reverse process. The insight is
the reverse target can be decoupled into two parts, then dif-
ferent re-parameterizing features can take charge of differ-
ent parts and combine linearly in the end. This method does
not require sophisticated bridge modules to align distribu-
tions, instead naturally combining extra training parameters
without additional inference cost. Experiments have demon-
strated consistent improvements in various tasks.
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