
iPD: An Open-source intelligent Physical Design
Toolchain

(Invited Paper)

Xingquan Li1,3∗, Simin Tao1, Shijian Chen1,2, Zhisheng Zeng1,2, Zhipeng Huang1, Hongxi Wu4,3, Weiguo Li5,3, Zengrong Huang1,
Liwei Ni1,2, Xueyan Zhao2,10,3, He Liu6,1, Shuaiying Long1, Ruizhi Liu2,10,3, Xiaoze Lin1,2, Bo Yang1,8, Fuxing Huang4,3,

Zonglin Yang7,3, Yihang Qiu10,3, Zheqing Shao9,3, Jikang Liu7,3, Yuyao Liang7,3, Biwei Xie2,1,B, Yungang Bao2,10,3,1,B, and Bei Yu11,B

1Peng Cheng Laboratory, 2Institute of Computing Technology, Chinese Academy of Sciences, 3Beijing Institute of Open Source Chip,
4Fuzhou University, 5Minnan Normal University, 6Peking University, 7Shenzhen University, 8Sun Yat-sen University,

9University of Science and Technology of China, 10University of Chinese Academy of Sciences, 11The Chinese University of Hong Kong
Email: ∗lixq01@pcl.ac.cn, Bxiebiwei@ict.ac.cn, Bbaoyg@ict.ac.cn, Bbyu@cse.cuhk.edu.hk

Abstract—Open-source electronic design automation (EDA)
shows promising potential in unleashing EDA innovation and
lowering the cost of chip design. The open-source EDA toolchain
is a comprehensive set of software tools designed to facilitate the
design, analysis, and verification of electronic circuits and systems.
We developed a physical design EDA toolchain (named iPD) from
netlist to GDS-II, including design, analysis, and verification. iPD
now covers the whole flow of physical design (including floorplan,
placement, clock tree synthesis, routing, timing optimization etc.),
part of the analysis tools (timing analysis and power analysis), and
part of the verification tools (design rule check). For more friendly
support EDA research and development and chip design, we
design a reliability, extendibility, ease-of-use, and feature richness
physical design toolchain. This paper introduces the software
structure, functions, and metrics of the iPD toolchain.

I. INTRODUCTION

The rapid advancement of digital technology has led to a
substantial increase in demand for the growth of the integrated
circuit (IC) industry. However, Moore’s law is reaching its
limits [1]. To meet the growing needs for computing and
storage, we may explore alternative integration technologies,
such as 3D chip design or package and chiplets. Moreover, we
should strive to improve the quality of chip design, especially
in the area of EDA. EDA tool and design methodology have
been the subject of research for many years. Fortunately,
new techniques such as artificial intelligence (AI), hardware
acceleration, and collaborative design of chips and EDA have
demonstrated their capacity and practical value in EDA. These
advancements open up the potential for further optimizing EDA
tools and methodology.

To maximize the benefits of new techniques in EDA, we need
open-source EDA tools with accessible to all EDA enthusiasts.
The desirable open-source EDA tools should be automated,
well-designed, and compatible while supporting tapeout while
offering high performance and scalability, providing compre-
hensive documentation, and easy-to-learn. In the pursuit of
designing high-quality open-source EDA tools, there have been
numerous valuable explorations and contributions in the past.
Many researchers and developers have dedicated their efforts
to advancing the field and creating useful tools. These tools
are classified according to the integrated circuit design process,
including simulation, logic synthesis, formal, physical design

Modules

……

Scheme 1

Digital Chip EDA

Logic
synthesis

Physical
design

Sign-off

Physical
verification

Layout
synthesis

Logic compiling

Logic optimization

Tech mapping

Floorplan

Placement

CTS

Routing

STA

Power analysis

EM / IR

DRC / ERC

LVS

Initial placement

Global placement

Post global
placement

Legalization

Detail placement

Assign cell to region

Cell respreading

Align cell to row

Reorder cell in a row

Spread cell in a row

Greedy

Refinement

Check legality

Tetris

Abacus: Dynamic
programming

Quadrable
programming

Linear
programming

Local search
method

RTL design

Simulation
/Verification

Formal

Design optimization

Parasitic extraction

Buffering

Filler

Scheme 2

Tools

……

Sub-tools

……

Algorithms

……

Steps

……

Fig. 1: EDA decomposition.
and sign-off, etc. Existing open-source tools can be combined
into a design process from RTL to GDSII. Nowadays, there
are already several open-source digital physical design tools,
such as EDA tools in OpenROAD [2], DREAMPlace [3],
Xplace [4], Ripple [5], Rsyn [6], graywolf [7], Qrouter [8]
CUGR [9], Dr.CU 2.0 [10], and OpenTimer [11]. And they
work well to promote open collaboration and innovation in the
EDA community.

In summary, open-source EDA tools are currently in a stage
of diverse opinions, with each project having its own character-
istics and gradually becoming more established. They cover the
most important tools and can meet chip design requirements.
However, most open-source EDA tools are developed and main-
tained by professors and students in academia. Initially, the code
for some tools often comes from research papers. Most existing
open-source EDA tools only support one algorithmic approach.
To be compatible with a wider range of chip design goals
and requirements, an EDA tool system must support various
solutions and algorithms. Additionally, existing open-source
EDA tools face challenges in achieving optimal reliability,
extendibility, ease-of-use, and feature richness. These situations
discourage contributors and users from actively participating
in open-source EDA projects, resulting in a lack of diverse
contributors.

This work focuses on designing an open-source intelligent
physical design EDA toolchain (iPD)1. Besides supporting chip

1https://github.com/OSCC-Project/iEDA/tree/master/src/operation

https://github.com/OSCC-Project/iEDA/tree/master/src/operation

design from netlist to GDS-II, a more important objective of
iPD is to provide a EDA tool research and development (R&D)
platform for EDA practitioners (researchers, EDA designers,
algorithm developers, and software engineers, etc). To support
various algorithmic solutions, the EDA tool platform needs
to be highly extendable and have a solid EDA foundation
and evaluation system. Efforts are being made to improve
the quality and reliability of open-source EDA tools. This
includes enhancing documentation, establishing community-
driven development processes, promoting industry collabora-
tion, and providing long-term support. The iPD project aims to
attract diverse academic disciplines, foster collaboration, and
bridge the gap between industry and academia, facilitating the
development of valuable EDA design methodologies. Currently,
the iPD toolchain can support chip implementation from netlist
to GDS-II for block-level chips and system-on-chips (SoCs) at
the 28nm process node. It offers a reliable, highly extendable,
and user-friendly physical toolchain, breaking through basic
core technologies. iPD consists of nine physical design and
analysis EDA tools designed through a decomposition and
integration way.

II. DECOMPOSITION, INTEGRATION AND SOFTWARE

The physical design is a complex process that involves multiple
objectives and constraints to be optimized. It includes assess-
ing electrical objectives such as timing, power consumption,
noise, signal and power integrity (SI/PI), and electromigration;
checking design rules, electrical rules, manufacturability, and
reliability requirements. Especially for modern chip designs that
require features of process nodes, physical design has become
extremely challenging and is considered the most difficult step
in the entire chip design process. Therefore, to ensure feasibility
and optimization, traditional physical design is typically divided
into multiple stages and steps.

A. Decomposition and Problem
To design a robust and comprehensive physical design
toolchain, we first perform a hierarchical decomposition of
the physical design module as shown in Fig. 1. The physical
design module can be decomposed into multiple tools, includ-
ing floorplan, placement, cts, routing, and design optimization;
Each of these tools can be further decomposed into multiple
sub-tools, such as placement, which can be further divided
into initial placement, global placement, post-global placement,
legalization, detailed placement, buffering, and filler; Each sub-
tool can be further decomposed into several key steps to
implement, such as the following steps to achieve legalization:
aligning cells to a valid region, spreading cells within the
region, aligning cells to rows, rearranging cells within rows,
spreading cells within rows, refinement, and checking legality;
For each step, there are multiple valuable algorithms, such as
modeling the spreading of cells within rows. With the different
data representation, spreading of cells within rows can be
modeled as dynamic programming, quadratic programming or
linear programming and so on. Under different test cases, these
algorithms will have different performance and advantages.

Through such tool decomposition, we can decompose the
EDA system into multiple modules and tools, hundreds of steps,

Analysis and Verification

Static Timing Analysis

Power Analysis

iSTA

iPA

Netlist

GDS II

iFP/
iPDN

iPL

iCTS

iTO

iRT

Floorplaning
Power Delivery Network

Placement

Clock Tree Synthesis

Timing Optimization

Routing

Physical Design

Design Rule Check iDRC

iMPMacro Placement

(a)

Operator
SolverEvaluator Analyzer

Interface
TCLPython GUIShell

File System

IO Parser

Database
EDA DataBasic Data Immediate Data

Manager
Tool ManagerFlow Manager

File ManagerData Manager

Reporter

iDB

共有数据访问接口层
支持所有业务数据)

iLS_DB iFP_DBiMAP_DB iGP_DB iDP_DB iTO_DB iCTS_DB iGR_DB

iSM_DB iDRC_DB iERC_DB iLVS_DB iRCX_DB iSTA_DB iPA_DB iOPC_DB

iDR_DB

……

Engine数据转换层

工具数据适配访问层

基础数据结
构

Utility
Statistics

PlotGDS

Def2GDS

Log

Tool
Interface

GlobalRouter

TimingEngine

iGP

Database NCellBin BinGrid NPin

Data Adapter

NNet
ModelD

B

perators
aussSmooth

VTree/Flute

/Nesterov/SGD

KL/FM

User
nterface

Command

Setting

T/DCT/DDCT

CTS

/GA/Memeti
c

Solver

QP

NonlinearOptmizer

CG/SGD/Adam

Nesterov

ADMM

CellMoving

SelectCell

CalcCadidateLo
c

CellMovement

Objective

WireLength

Slack

Congestion

CellGroup

Region

CellAlignment

Constraint

Density

Distance

Slack

Region

Overlap

Scheduler

OptWireLength

OptRegion

OptPinAccess

OptRoutability

OptSlack

Functional Module

iEDA-Database

iPL

iEDA-Inferface

DB-API

Database
(Wrapper)

Functional Module

Utility

Config API

Input
(.v/.lef/.def/.lib/.sdc)

Output
(.v/.def)

Initial_placer

global_placer

post_global_placer

legalizer

detail_placer

buffer_inserter

filler_inserter

checker

evaluator

grid_manager

topo_manager

iEDA-
Manager

Tool

Data

iEDA-
Operator

Solver

Analyzer

Evaluator

Reporter

(b)

Fig. 2: (a) Chip design steps and iPD tools; (b) The software
structure of iPL (the same for others).

and thousands of algorithmic problems. To address the key
challenges, we can abstractly describe the critical problems and
form a white paper on EDA key problems. By collaborating
with scholars from multiple disciplines, we can jointly tackle
these challenges. For example, some problems are listed as
follows: How can we obtain more accurate metric evaluation in
macro placement? How can we establish a differentiable timing,
power and congestion model integrated in placement? How can
we achieve good coordination between clock tree synthesis and
placement and routing? How can we quickly generate a good
Steiner tree or routing result on weighted layout? How can we
quickly solve large-scale high-order interconnect delay model?

B. Solution and Integration
For complex EDA systems, a basic consensus is that no
algorithm can perform best for any case. This is because each
algorithm has its own advantages and limitations, and the
performance of the algorithm varies in different application
scenarios and conditions. To obtain a tool that supports various
functional extensions and various algorithms. The design phi-
losophy of the tools in the iPD toolchain mainly consists of two
principles. Firstly, each tool is designed as a hierarchical set of
subtools, steps, and algorithms. Secondly, multiple algorithms
are supported for each key technology.

The design process of iPD can be summarized as follows:
firstly, each tool is decomposed into subtools and steps; then
several valuable solutions are designed to address the key
problems; then these solutions are integrated to form feasible
algorithms for each step, multiple steps are integrated to form
subtools, and subtools are combined to form the basic version
of the tool. For different design requirements, functional exten-
sions can be made at different levels.

C. Software Architecture
iPD is designed to construct open-source EDA research tools
and algorithm sets, with the aim of designing more extensible
EDA tools at minimal cost. We adopt a decoupled design struc-
ture, with key design requirements, including: firstly, designing
based on the open-source EDA infrastructure iEDA to reduce
development costs; secondly, separating data and operational
functions within the tool; thirdly, the tool being a hierarchical
algorithm set, embedded in the overall design chain through an

plug-and-play approach; and fourthly, all tools in iPD having
the same structure.

An example tool structure of placement (named iPL) is
shown in Fig. 2(b), which utilizes iEDA’s database, operator,
manager, and interface to organize data and algorithms. The iPL
mainly includes the iPL-database and functional modules. Users
can configure tool functions and parameter flows through the
config files, and then obtain corresponding functional outputs
through the API.

III. IPD: PHYSICAL DESIGN TOOLCHAIN

iPD aims to support the flow of chip design from Netlist design
to GDS-II layout. The chip design steps and the iPD tools
are shown in Fig. 2(a). Each tool is composed of several low-
coupling functional operations, which work by calling a series
of different algorithms on designated data models.

A. Floorplan and Power Delivery Network
As the initial stage of chip physical design, floorpaln aims
to determine chip area, meet the requirements of routing, and
ensure timing closure and chip stability.
Functions. In the iPD toolchain, floorplan is implemented by
iFP and iPDN, including the following main functions: layout
initialization, I/O planning, physical cell placement and power
delivery network (PDN) generation. iFP and iPDN provide
various of interfaces to support initializing design process files
(including tech lef file and verilog file), planning IO ports, pads,
tap cell, endcap cell and blocks, generating connected PDN
wires and vias for all layers. iFP and iPDN also offer some
useful APIs to accelerate chip flow development. iFP and iPDN
can show floorplan result as layout, can present data summary
report which statistics some typical data such as core utilization,
net numbers, PDN distribution in different layer and so on.
Implemented Key Technologies. In iFP, we achieve distance-
based cluster and hierarchical cluster methods to group IO
cells and pins according to instance connection and some user
defined requirements.

B. Macro Placement
Macro placement serves as the initial stage in the place-
ment process, provides opportunities for design optimization.
Nonetheless, macro placement presents challenges due to po-
tential deviation in metrics evaluation, as well as a vast solution
space with multiple objectives and constraints, making the
exploration process considerably daunting. At present, conven-
tional chip macro placement relies on engineers’ expertise and
decision-making.
Functions. iMP is an automated tool for macro placement
that aids engineers in reducing design time, optimizing various
targets, and enhancing macro placement quality. Our iMP
has several functions, including determining the location of
macros, planning the region of standard cells, and satisfying
constraints such as blockage, guidance, and so on. At present,
the evaluation metric employed for iMP is the half-perimeter
wirelength (HPWL) between macros and clusters.
Implemented Key Technologies. To achieve a better macro
placement result, the main techniques utilized in iMP include a

simulated annealing (SA) algorithm that employs sequence pair
representation, and a non-linear programming method based
on Poisson equation [12]. Since netlist partition or cluster in
physical design are valuable solvers, we implement hMetis
partition and multilevel cluster in iMP.

C. Standard Cell Placement

Placement mainly ensures the proper coordinate of each cell
mapped in the netlist within a designated region, which must
comply with design rules and be conducive to routing, timing
convergence, and power consumption.
Functions. iPL is mainly composed of initial placer, global
placer, post-global placer, legalizer, detail placer, filler, buffer
inserter and checker. The objective of iPL is to minimize
wirelength, timing and congestion. iPL supports reading and
writing layout-related data from the iEDA data source and sup-
ports user-defined placement parameters, can easily use iEDA
infrastructure interface. iPL constructs topology manager and
grid manager for netlist and placement area management. The
topology manager is responsible for extracting and managing
hypergraph information. iPL uses it to construct wire length
models such as HPWL, Steiner tree WL (STWL), and weighted
average WL (WAWL), as well as the RC-tree required by
iSTA. The grid manager manages layout information, includ-
ing the management of cell distribution area on bin and the
management of the legality check site. iPL prepares for timing
optimization and routability optimization. iPL supports calling
iSTA to obtain timing information of placement status, supports
calling the early global routing to obtain routing information,
supports incremental legalization, and supports inserting buffers
to optimize wire length and timing. iPL supports netlist in-
formation printing as well as layout timing and pre-routing
information reporting.
Implemented Key Technologies. For the placement process,
iPL uses the electric field density model and WAWL model for
global placement of cells, uses the Abacus and Tetris algorithm
with the minimum movement target for cell legalization, and
finally uses greedy algorithms such as in-line cell shift, global
cell exchange, and local reordering. In the initial and global
placement stages of iPL, we have achieved quadratic program-
ming, conjugate gradient method and Nesterov optimization
method and non-uniform fast Fourier transform. In legalization
and detail placement, we implement dynamic programming and
minimum-cost flow method. iPL supports timing optimization,
uses timing path endpoint information dissemination to con-
struct net/path weights, and uses net-weighted global placement
iteration and search window relocation to optimize timing
indicators. With the congestion evaluation by Rudy metric and
calling iRT, iPL supports routability optimization. Based on the
pre-routing information of the evaluated layout area Bin, global
cell expansion and network flow movable cell methods are used
to eliminate congestion.

D. Clock Tree Synthesis

Clock tree synthesis (CTS) aims to deal with clock net and to
balance skew among flip-flops while optimizing design resource
usage, under timing constraints. It facilitates the creation of

KLayout	0.26.2 cts_fly_line.gds	[top]

周四	10⽉	26	09:35:20	2023 (-122.77482,	-8.68105	...	471.25687,	357.16310)

(a)

KLayout	0.26.2 cts_design.gds	[top]

周四	10⽉	26	09:37:27	2023 (-122.76706,	-8.68050	...	471.22712,	357.14055)

(b)

Fig. 3: iCTS results: (a) Clock net topology; (b) Clock net
routing result.

topologies with diverse objectives through the utilization of
multiple merging criteria.
Functions. iCTS has a built-in timing calculation model and
utilizes robust clustering methods to detect violations in nets,
allowing for the reassignment of cells and nets. iCTS sup-
ports the construction of buffering solutions using buffers with
different sizes. It provides comprehensive layout and routing
results during the clock tree construction process. It also offers
optimization for clock nets, including fanout, wirelength, and
capacitance. iCTS enables the creation of clock trees with lower
latency and controllable skew. It supports various topology
generation strategies, such as greedy distance, greedy merge
cost, bi-partition, and bi-cluster. Additionally, iCTS supports
a hierarchical architecture, allowing for the specification of
different constraint schemes at different levels. The iCTS pro-
vides generation of latency and skew reports through interaction
with iSTA. It also provides statistics on inserted buffers and
wirelength. An illustrative clock tree result of iCTS is shown
in Fig. 3.
Implemented Key Technologies. In terms of timing, we have
implemented a cell-driving capability machine learning model
to estimate cell delay that effectively guides users in design
constraints. By incorporating a lower bound estimation of cell
delay, we address the hysteresis issue that arises from buffering
in the clock tree merging process. For clustering methods,
we have developed multiple focused clustering techniques for
CTS, such as K-means cluster, distance cluster and min-cost
flow. Additionally, we have optimized the violation metrics
by utilizing simulated annealing (SA). To construct a desir-
able clock tree, we have designed the balanced skew latency
tree (BEAT) based on the deferred-merge embedding (DME)
framework [13]. We have also incorporated the Steiner shallow-
light tree (SALT) approach [14]. BEAT ensures a balance
between routability, hierarchical design, and various constraints,
resulting in superior performance and design robustness while
utilizing fewer resources.

E. Routing
Routing involves the physical interconnection between embed-
ded components within a chip. Our routing tool is called iRT,
which aims to meet performance and functional requirements
while considering factors such as design rule check (DRC)
and signal integrity. iRT supports constructing data from iEDA

Fig. 4: Timing regression between iSTA and PT.

database, and its main modules include pin accessor, resource
allocator, global router, track assigner, detailed router, and
violation repairer. Additionally, it also provides interfaces for
early global router, timing evaluation, and net physicalization.
Functions. From the perspective of the routing flow, firstly, the
pin accessor can find the best accessible pin points. To coordi-
nate routing resource among nets and reduce the negative effect
of net order, iRT supports routing resource pre-assignment, i.e,
it will assign appropriate resources for each net before routing.
Next, the global router combines the congestion map and
resource map (from the resource allocator) to perform routing
on a three-dimensional grid using the routing algorithm. iRT
can carefully evaluate and control overflow through rip-up and
reroute, and it can adaptively choose the routing layer. iRT
pre-route long wire at track assignment stage by considering
the routability of subsequent detailed routing. At detail routing,
iRT optimizes design rules by calling a built-in DRC engine and
evaluates timing by calling the APIs of iSTA. To obtain better
routing results, the violation repairer step of iRT will eliminate
local routing violations. iRT considers wirelength and number
of vias as basic objectives. It utilizes iDRC to count design
rule violations and employs iSTA to evaluate the timing of the
routing.
Implemented Key Technologies. To establish legal access
points for pins, we achieve static and dynamic conflict elimi-
nation by constructing a conflict graph at the pin accessor step.
The resource allocator is modeled as a quadratic programming
(QP) and is solved by using fast gradient descent to obtain a
resource map for each net. The global router considers finer-
grained resource control and uses a fast Steiner tree gener-
ation (SLUTE) algorithm and routing algorithms (including
pattern routing, dynamic routing and multiple sources and
multiple sinks A∗ routing) to account for potential overflow
in subsequent stages. At the track assigner, we consider non-
preferential measures to increase routing space and extend the
endpoint to the pin for detailed routing. The detailed router
iteratively eliminates a large number of design rule violations
by performing 3D A∗ algorithm.

F. Static Timing Analysis
iSTA is a static timing analysis (STA) tool that provides easy-to-
use interfaces for accessing required timing data. iSTA supports

Clock Group Hold TNS Hold WNS

CLK_chiplink_tx_clk 0 0
CLK_clk_hs_peri -185.768 -1.27825
CLK_div2_core -2606.7 -0.106129
CLK_div2_hs_peri -216.759 -0.028571
CLK_div3_hs_peri -72.5124 -0.028571
CLK_div4_core -1304.1 -0.106129
CLK_div4_hs_peri -185.768 -1.27825
CLK_div4_peri -231.408 -0.042802
CLK_sdram_clk_o 0 0
CLK_spi_clk 0 0
CLK_spi_clk_out 0 0
CLK_u0_chiplink_rx_clk_pad_PAD -89.8732 -0.028408
CLK_u0_clk_XC -2987.42 -0.106129
CLK_u0_pll_FOUTPOSTDIV -8546.64 -0.106129
CLK_u1_clk_XC -2755.16 -0.106129

Clock Group Hold TNS Hold WNS

CLK_chiplink_tx_clk 0 0
CLK_clk_hs_peri 0 0
CLK_div2_core 0 0
CLK_div2_hs_peri 0 0
CLK_div3_hs_peri 0 0
CLK_div4_core 0 0
CLK_div4_hs_peri 0 0
CLK_div4_peri 0 0
CLK_sdram_clk_o 0 0
CLK_spi_clk 0 0
CLK_spi_clk_out 0 0
CLK_u0_chiplink_rx_clk_pad_PAD 0 0
CLK_u0_clk_XC 0 0
CLK_u0_pll_FOUTPOSTDIV 0 0
CLK_u1_clk_XC 0 0

Fig. 5: iTO hold time reports without/with hold optimization.

timing path analysis, including setup and hold analysis, removal
and recovery analysis, latch analysis, and multicycle analysis.
Moreover, iSTA offers incremental timing propagation, detailed
timing reports, advanced delay calculation, etc.
Functions. iSTA supports industry-standard format input data
including verilog (netlist), sdc, spef, sdf and liberty files. If the
input netlist is a hierarchy design, iSTA will flatten the netlist
and analyze the timing performance. The delay calculation
methods of iSTA can be divided into cell delay and connected
net delay. The iSTA supports extensive multi-threads on read
input data such as the timing-consume lib data, timing prop-
agation including slew and delay propagation, and arrive time
and require time propagation, etc. To achieve more authentic
analysis, the iSTA tool supports basic on-chip variation (OCV)
derate, and advanced OCV (AOCV). To support the low-power
design, the iSTA supports clock-gate analysis. As the cross-
talk effect becomes more important, the iSTA supports the
basic crosstalk analysis. The delay deviations between iSTA and
advanced commercial tools for all timing paths are considered
as the quality metric of iSTA. After AI-based calibration, iSTA
achieves impressive accuracy. A deviation and ratio comparison
between iSTA and PT on open-source Skywater 130 process as
shown in Fig. 4.
Implemented Key Technologies. Performance and analysis
accuracy are two critical evaluations for timing analysis. The
implemented cell delay includes the non-linear delay model
(NLDM) and composite current source (CCS) model. The
implemented connected net delay includes first-order Elmore,
effective capacitance metric (ECM), second-order delay with
two moments (D2M) model, modified D2M (MD2M), and
high-order model with Arnoldi reduction. The iSTA uses a
thread pool to manage the thread creation and destruction,
which would make full use of CPU cores. To improve the
calculation accuracy of cell delay, iSTA uses a machine learning
method to achieve non-linear interpolation based on CCS
model. To reduce the path delay deviation between iSTA and
advanced commercial tools, we train a neural network to fit the
two results and correct the deviation [15].

G. Timing Optimization
Timing optimization aims to ensure that the chip design is
functionally correct and meets the design requirements for
performance. iTO offers distinct and user-friendly interfaces
to optimize timing design rule violations (DRVs), hold time
violations, and setup time violations. Our goal is to eliminate
all timing violations and enhance overall performance of chip.
Functions. The primary functions of iTO are to optimize timing

TABLE I: Comparison on power analysis results
cases iPA total power Innovus total power deviation

aes cipher top 22.22mW 23.74mW 6.4%
gcd 0.38mW 0.37mW 3.6%
uart 0.51mW 0.49mW 3.9%

DRVs, hold time violations, and setup time violations. iTO
interacts with the iSTA to extract timing information from nets
and timing paths. When violations are detected, iTO will insert
buffer or adjust gate sizes to meet the timing constraints. Ad-
ditionally, the built-in place legalization module automatically
identifies the best legal location near the desired buffer location.
iTO interacts with iSTA to generate a timing optimization
report, which includes the pre- and post-optimization timing
information, as well as details of the number of inserted buffers
and gate sizing during the optimization process. An example
report is shown in Fig. 5.
Implemented Key Technologies. iTO utilizes the HV-Tree
or the rectilinear Steiner minimal tree (RSMT) constructed
through FLUTE [16] to achieve the RC-tree of a net required
by iSTA. To optimize timing DRVs, iTO employs a bottom-up
traversal of the RSMT for the net. During this traversal, buffers
are inserted to meet timing constraints, such as maximum
load capacitance constraints. To optimize hold time, iTO first
evaluates the potential delay introduced by delay buffers. It
then inserts an appropriate number of delay buffers along the
violating timing path based on the available timing slack. For
setup time optimization, iTO implements a buffer insertion
algorithm based on dynamic programming. This algorithm ef-
ficiently outputs the maximum time slack solution in quadratic
time. In addition, to obtain a better setup time slack, iTO
simultaneously optimizes buffer insertion and gate sizing by
training a reinforcement learning (RL) model.
H. Power Analysis
iPA is a power analysis tool that supports both basic vectorless
analysis without waveform data and vector analysis with VCD
and SAIF data. It features fast toggle and static probability
propagation.
Functions. iPA can read relevant data from iSTA and waveform
data from VCD files, and generate comprehensive power analy-
sis reports. iPA offers a range of essential power calculation al-
gorithms, such as power graph construction, toggle propagation,
static probability propagation, and static and dynamic power
calculation for different types. To evaluate the accuracy of iPA
on power analysis, we output the power consumption report
and compare the results with the commercial tool Innovus on
several test cases. TABLE I lists the comparison results, it can
be seen that the average deviation is near 5%.
Implemented Key Technologies. To improve performance, iPA
implements waveform compression and parallel techniques for
reading VCD file. It proposes a depth-first search (DFS) tech-
nique based on latch thread pool for power graph construction
and adopts thread pool technology for toggle propagation and
static probability propagation.
I. Design Rule Check
iDRC is a design rule check (DRC) tool renowned for its dual
capabilities in both local and global rule verification. It distin-

Floorplan PDN Placement

CTS Routing DRC

Fig. 6: The layouts from floorplan to routing designed by iPD.

guishes itself with its robust extensibility and comprehensive
checking capabilities.
Functions. iDRC supports twenty-eight nano-meter and above
process node geometric rule check of mainstream foundries.
The fundamental back-end process design rules are mainly
composed of metal layers and cut layers. The detailed geometric
design rules include cut different layer spacing, cut end-of-line
spacing, cut enclosure, cut enclosure edge, cut spacing, metal
corner, filling spacing, metal end-of-line spacing, metal jog-
to-jog spacing, metal notch spacing, metal parallel-run-length
spacing, metal short, min hole, min step, minimal area. iDRC
supports generating summary reports of design rules, allowing
users to quickly assess the overall compliance of the layout.
In addition, detailed reports are generated to pinpoint specific
DRC violations within the layout.
Implemented Key Technologies. To achieve an efficient DRC
tool, we have utilized advanced technologies like R-Tree data
structures for region-based searching. This technique allows
for efficient spatial indexing, which in turn reduces the com-
putational complexity of rule checks. Moreover, we employ
geometric computing algorithms to detect geometric shapes
accurately.

J. Flow
To verify the functionality and effectiveness of iPD, we devel-
oped iFlow, which is implemented in Python by calling TCL-
based or Python-based tool commands. It is worth noting that,
since iPD supports only from netlist to GDS-II, iFlow integrates
some commercial tools for signoff analysis and verification. We
implement and tape out three chips with iPD: one 5-stage RISC-
V chip supporting RT-Thread on 110nm; two 11-stage RISC-V
chips supporting Linux on 110nm and 28nm in respective. An
example of RISC-V chip design on 28nm process is designed
by iFlow with iPD toolchain from Netlist-to-GDS II. The result
and report of each step tool are shown in Fig. 6 and TABLE II.

IV. CONCLUSIONS

To provide an R&D platform on EDA designs, algorithms and
tools, we present an open-source physical design EDA tool

TABLE II: Metrics on physical design steps.
part metrics iPL (place) iCTS iTO iRT (route)
#inst 1043440 1057291 1057549 1057549
#net 1015532 1029383 1029641 1029641
utilization 0.563929 0.570644 0.570768 0.570768
HPWL 34108823398 35042653984 35044866877 50157263995*STWL 46195026227 46580611921 46581568292
frequency 245.245 238.226 241.386 224.254
#DRC 0 0 0 233335
* Total wirelength after routing

design framework and a set of tools. To ensure maximum algo-
rithm support, we have developed an EDA software architecture
that emphasizes expandability through a decomposition and
integration approach. Throughout the paper, we have introduced
each tool in our iPD toolchain, highlighting their main func-
tions, implemented key technologies, and evaluation metrics.
Additionally, we have demonstrated a design flow with results
and reports using the iPD toolchain. This toolchain provides a
valuable resource for researchers and practitioners in the field
of physical design.

ACKNOWLEDGMENT

This work is supported in part by the Major Key Project of
PCL (No. PCL2023A03), the National Key R&D Program of
China (No. 2022YFB4500403).

REFERENCES

[1] M. S. Lundstrom and M. A. Alam, “Moore’s law: The journey ahead,”
Science, vol. 378, no. 6621, pp. 722–723, 2022.

[2] T. Ajayi, D. Blaauw et al., “OpenROAD: Toward a Self-Driving,
Open-Source Digital Layout Implementation Tool Chain,” in Proc.
of GMACTC, 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:210937106

[3] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled GPU acceleration for modern VLSI
placement,” in Proc. of DAC, 2019.

[4] L. Liu, B. Fu, M. D. F. Wong, and E. F. Y. Young, “Xplace: An extremely
fast and extensible global placement framework,” in Proc. of DAC, 2022.

[5] H. Li, W.-K. Chow, G. Chen, B. Yu, and E. F. Young, “Pin-accessible
legalization for mixed-cell-height circuits,” IEEE Trans. on CAD, vol. 41,
no. 1, pp. 143–154, 2022.

[6] G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis, “Rsyn: An
extensible physical synthesis framework,” in Proc. of ISPD, 2017.

[7] R. T. Edwards, “graywolf,” 2019. [Online]. Available: https://github.com/
rubund/graywolf.

[8] ——, “Qrouter,” 2019. [Online]. Available: https://github.com/
RTimothyEdwards/qrouter/.

[9] J. Liu, C.-W. Pui, F. Wang, and E. F. Young, “CUGR: Detailed-routability-
driven 3D global routing with probabilistic resource model,” in Proc. of
DAC, 2020.

[10] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Young, “Dr. CU 2.0: A
scalable detailed routing framework with correct-by-construction design
rule satisfaction,” in Proc. of ICCAD, 2019.

[11] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing
analysis tool,” in Proc. of ICCAD, 2015.

[12] F. Huang, D. Liu, X. Li, B. Yu, and W. Zhu, “Handling orientation and
aspect ratio of modules in electrostatics-based large scale fixed-outline
floorplanning,” in Proc. of ICCAD, 2023.

[13] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew
clock and Steiner routing,” ACM Trans. on DAES, vol. 3, no. 3, pp.
341–388, Jul. 1998.

[14] G. Chen and E. F. Y. Young, “SALT: Provably Good Routing Topology
by a Novel Steiner Shallow-Light Tree Algorithm,” IEEE Trans. on CAD,
vol. 39, no. 6, pp. 1217–1230, Jun. 2020.

[15] H. Liu, S. Wu, S. Tao, B. Xie, X. Li, and G. Li, “Accurate timing path
delay learning using feature enhancer with effective capacitance,” in Proc.
of ISEDA, 2023.

[16] C. Chu and Y. C. Wong, “FLUTE: Fast lookup table based rectilinear
steiner minimal tree algorithm for VLSI design,” IEEE Trans. on CAD,
vol. 27, no. 1, pp. 70–83, 2008.

https://api.semanticscholar.org/CorpusID:210937106
https://api.semanticscholar.org/CorpusID:210937106
https://github.com/rubund/graywolf.
https://github.com/rubund/graywolf.
https://github.com/RTimothyEdwards/qrouter/.
https://github.com/RTimothyEdwards/qrouter/.

