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Abstract—Optimizing circuit performance presents a pivotal
challenge in the realm of automatic analog physical design.
The intricacy of analog performance arises from its sensitivity
to layout implementation, frequently lacking a viable approach
for direct optimization. This talk initiates with a comprehensive
overview of the present challenges and the techniques currently
in use. The emphasis will be laid on the recent advance-
ments in employing black-box optimization for enhancing analog
performance. Subsequently, we will delve into a detailed case
study and analysis of post-layout performance distribution for a
typical analog circuit. This study will showcase various layout
implementations generated by the open-source analog layout
generator, MAGICAL. Future directions will be discussed based
on the case study.

I. INTRODUCTION

In the realm of electronics, the design layout for analog
integrated circuits (ICs) has traditionally heavily relied on
manual processes. This dependence has emerged as a signifi-
cant bottleneck in the modern IC design cycle, delaying both
innovations and product releases. Although recent academic
advancements in electronic design automation (EDA) have
shown promising progress in automating analog layout design.

Recent trends in analog layout automation research heavily
focus on demonstrating an end-to-end flow. Conventionally,
research in academic analog place-and-route (PNR) algorithms
often targets the optimization of proxy objectives, such as
wire length and area [1]. Such an approach fails to reveal the
capability of the automation algorithms for important metrics
such as performance and manufacturability. Modern analog
layout generation frameworks complete the layout generation
flow and can demonstrate their effectiveness through post-
layout simulation and validation. There are template-based
methods, such as BAG [2] and LAYGO [3], [4], which utilize
user-defined layout patterns or floorplans to implement the
layout. Several studies propose the use of digital PNR tools to
complete the physical design [5], [6]. These approaches either
have limitations in the circuit architecture or require extensive
manual efforts. Analog PNR-based layout generation, on the
other hand, provides a fully automated solution where the
physical design process is treated as an optimization process.
MAGICAL [7], [8] and ALIGN [9] are two representative
open-source analog PNR software tools, both incorporating
machine learning (ML) techniques to enhance their capabili-
ties [10]. The success of these automation methods has been
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Fig. 1: Typical analog physical design flow. Performance-
driven analog physical design needs to consider post-layout
circuit performance in the placement and routing stages.

demonstrated in various silicon tapeouts, including template-
based methods [11]–[15], digitally synthesized methods [16],
and PNR methods [17], [18]. However, a general and effec-
tive approach to considering post-layout circuit performance
remains an open question.

Analog circuit performance is highly sensitive to layout
intricacies and can be adversely affected by layout parasitics,
coupling, and noise. Manual design often relies on experience,
design expertise, and trial-and-error to search for a satisfactory
layout. Template-based automation also encounters challenges
and may require human efforts to design and adjust the layout
templates. In contrast, automatic PNR algorithms intrinsically
optimize the layout design and have the potential to create
a fully automated, performance-driven automation paradigm.
Nevertheless, evaluating and optimizing performance remains
a challenge.

Evaluating post-layout analog circuit performance typically
involves parasitic extraction and simulations after the layout
implementation. Figure 1 illustrates a typical physical design
flow for analog ICs. Given a netlist and design specifications,
a placer determines the device locations and creates their
physical implementation in the chip layout. Subsequently, a



router implements the interconnect based on the placement
solution. Parasitics from the resulting layout are extracted,
and simulations are conducted on the extracted netlist to
assess post-layout performance. The parasitic extraction and
simulation processes are often complex, and their explicit
calculations are not practical. Furthermore, analog circuits
exhibit diverse architectures and various performance metrics.
It is commonly assumed that a universal performance model,
akin to the static timing model used in digital designs, is
unavailable in the analog IC domain [19]. The challenge
of evaluating and modeling post-layout analog performance
persists, making performance-driven analog physical design
an unresolved issue.

In this paper, we provide a comprehensive overview of the
current state and offer our insights into performance-driven
analog physical design. We introduce related research on this
topic, encompassing both conventional approaches and recent
advancements (Section II). We also present several case studies
along with their analysis, focusing on analog performance
in automatically generated analog layouts, using the open-
source analog layout generator MAGICAL [7] (Section III).
Subsequent to the analysis, we present our perspectives on
future directions in this field (Section IV). Finally, we conclude
the paper in Section V.

II. RELATED WORK

Analog physical design has been a well-established field for
decades. ILAC [20], one of the early initiatives in automating
analog layout generation, explored the use of PNR algorithms
to optimize analog layout. ILAC incorporates an optimization-
based layout generator called MOSAIC, which employs a
simulated annealing algorithm to place layout modules and
route the design. Over time, this methodology has been ex-
tended to accommodate various technologies and constraints.
However, in traditional approaches, performance optimization
is not directly addressed; instead, it is indirectly achieved
through the optimization of proxy objectives. Section II-A
provides a concise overview of these conventional techniques
in analog physical design. Furthermore, Section II-B delves
into existing methods that focus on performance-aware analog
physical design, highlighting the evolution of strategies in this
domain. With the advent and advancement of machine learning
(ML) techniques, a new challenge has emerged in modeling
performance during the PNR process. Section II-C introduces
this aspect of analog performance modeling, emphasizing
its significance and the novel opportunities it presents for
advancing analog physical design.

A. Conventional analog physical design

Conventional analog PNR formulations rely on geometric
constraints to meet performance requirements. In essence,
the problem formulation is akin to digital PNR, with the
incorporation of supplementary geometric constraints.

Analog placement often resembles a floorplan problem,
where multiple modules must be arranged within a plane. Typ-
ically, the algorithm’s objective is to optimize area and wire

length while adhering to analog placement constraints. Sym-
metry constraints have played a crucial role in analog layout
design, ensuring the symmetrical placement of specific cells,
as observed in early research [20]–[22]. Various extensions
to this concept include symmetry islands [23], which group
symmetry devices, common-centroid layouts [24], and array-
like module arrangements for regularity [25], [26]. To mini-
mize parasitics, proximity constraints [24], [27] and boundary
constraints [28], [29] are also employed, which serve to reduce
wire lengths.

Routing in analog design also introduces additional con-
straints beyond the standard routing formulation. Symmetry
pair routing constraints are widely adopted in this context [21],
[30]–[40]. Other works focus on forbidding routing over the
active regions of transistors [31], [33], optimizing power
routing [41], [42], and proposing methods for shielding critical
nets [36]. Exact routing is proposed to match the interconnect
parasitic between two nets [43], [44]. This approach necessi-
tates that the pair of wire lengths be the same for every layer
so that the wiring parasitics are precisely matched. In contrast,
Chen et al. [38] propose to maximize the degree of symmetry
even without an explicit symmetry constraint.

Optimization-based PNR methods have greatly facilitated
numerous demonstrations of automatically generated analog
layouts. A comprehensive survey of related methods can
be found in [45]. However, it’s important to note that the
constraints and objectives employed in these methods do not
guarantee post-layout circuit performance.

B. Recent Developments in Performance-aware Analog Phys-
ical Design

In addition to advancements in algorithmic improvements
over conventional problem formulations [26], [38], [40], [46]–
[49], there has been a growing interest in performance-aware
analog physical design within many studies.

Several studies have concentrated on minimizing wire load
in routing [35], [50]. The proposed methods enable planar
routing [35] or incorporate routing considerations into incre-
mental placement [50], aiming to reduce VIA usage. These
approaches align with traditional physical design objectives,
emphasizing wire length and VIA count minimization. Sim-
ilar practices involve enforcing a monotonic direction for
placement along current flows, as investigated in [51]–[54].
Building upon this concept, some studies explicitly consider
critical signal flows, as demonstrated in [48], which presents
a signal flow-aware framework for analog and mixed-signal
placement, showcasing performance improvements in post-
layout analysis. These additional constraints and objectives
enrich the conventional problem formulation, although their
primary focus is not direct performance optimization.

Some research has focused on mitigating layout-dependent
effects (LDE) and thermal effects that could adversely impact
performance. For instance, in [55]–[57], placement techniques
are proposed to reduce LDEs, such as the well proximity
effect (WPE), length of diffusion (LOD), and oxide-to-oxide
spacing effect (OSE). The WPE is also directly related to the



well island generation problem, which has been studied in the
placement stage [58]–[60]. Additionally, thermal effects are
considered in analog placement [61], [62], aiming to prevent
performance degradation caused by these related effects. How-
ever, while these methods address specific challenges, they do
not provide a comprehensive methodology for performance
preservation in general.

To establish a general methodology for ensuring perfor-
mance, researchers have explored the use of machine learning
(ML) techniques to extend the retargeting approach into gen-
eral layout synthesis. Retargeting typically involves extracting
geometric constraints from manual layouts to form layout
templates. These resulting layout templates can generate new
layouts with different technologies and sizing, preserving
the structures present in manual designs to maintain perfor-
mance [63]. However, this method cannot be used for unseen
designs. To bridge this gap, several methods have leveraged
ML modeling. Zhu et al. [37] propose the use of generative
ML models to learn design strategies from manual layouts.
They train a variational autoencoder (VAE) model to predict
the routing regions chosen by designers. These predicted
routing regions are then translated into routing guidance that
an automatic detailed router can follow to produce human-
like routing solutions. This learned knowledge can be ap-
plied to unseen designs, thus extending the retargeting idea
into general automatic layout synthesis. Similarly, in [60], a
generative adversarial network (GAN) is employed to learn
manual well design and integrate this knowledge into auto-
matic placement. Another approach, presented in [64], uses
VAE in analog primitive cell layout synthesis tasks. These
”learn-from-human” methods offer an approach to preserving
performance in analog physical design. However, they also
face challenges related to small dataset sizes and the absence
of direct performance optimization.

With the availability of an end-to-end layout generation
flow, it has become possible to directly optimize post-layout
performance. In the work presented in [65], the approach treats
layout generation and performance evaluation as a black box
and employs Bayesian optimization (BO) to directly optimize
post-layout performance. In this method, net weights are
considered as input parameters, and BO is utilized to optimize
performance with respect to these net weights. This work-
flow automatically explores different placements and identifies
those that yield good performance. As a result, this framework
can effectively discover high-quality layouts. However, due to
the slow nature of the simulations involved, the method may
have limitations in terms of runtime efficiency and may be
best suited for smaller circuits.

C. Machine Learning-Based Analog Performance Modeling

Conducting extraction and simulation within the optimiza-
tion loop is expensive and inefficient. A potential solution is to
employ ML-based performance modeling. Optimizing a neural
network output can be much more efficient.

The recent progress focuses on modeling post-layout per-
formance from the placement stage. The work [19] proposes a

method that utilizes machine learning to predict performance
with various placement solutions. It leverages MAGICAL [7]
to generate tens of thousands of different placements for
the same circuit. These placements are extracted into several
images, and a convolutional neural network is employed to
predict the corresponding performance based on these im-
ages. The model demonstrates transferability between dif-
ferent schematic designs. Subsequently, the accuracy of this
model is further enhanced through neural network architecture
search [66].

Several efforts have been made to employ prediction models
to enable performance-driven automatic analog placement. The
work [67] introduces a performance-driven analog placement
approach based on wire length estimation derived from star
models. However, it may suffer from inaccuracies because
it does not use actual layout data for training and may face
challenges in transferring the model between different circuits.
In contrast, the work [46] addresses a similar learning problem
as [19], where the labels are simulated performance data.
It employs a graph neural network model as the underlying
machine learning architecture, which can produce predictions
that are transferable between different designs. This approach
combines a simulated annealing-based placement framework
that optimizes the predicted performance, allowing for direct
performance optimization.

III. CASE STUDY ON MAGICAL-GENERATED LAYOUTS

A. Introduction to the Analog Performance Modeling Lifecycle

In the performance modeling of analog circuits, an aspect
that is often overlooked is the time required for various stages
in the modeling lifecycle. We divide the analog performance
modeling cycle into three stages: data acquisition, model
training, and performance-aware PNR inference.

The data acquisition stage includes PNR and parasitic pa-
rameter extraction (PEX), as well as post-layout performance
simulation (Post-Sim). The PNR stage is often completed
with a single layout design, while post-layout performance
simulation is carried out along with the PEX process. The
layout obtained from PNR is typically used as the input x
for performance modeling, while the post-layout performance
results serve as the corresponding labels y.

Figure 2 presents a case study focusing on the lifecycle
for building a performance model on Operational Transcon-
ductance Amplifier (OTA) layout design. The first significant
observation is that the data collection time occupies most
of the performance modeling lifecycle, while the training
and inference time only account for a small portion. The
training and inference time comprise only 7.11% of the entire
lifecycle, while data collection time accounts for 92.89%.
Data collection becomes a significant bottleneck in the entire
lifecycle.

The second important observation is that the time required
to obtain model inputs is much smaller compared to the time
required to obtain model labels. The time required to obtain
labels through the PEX and Post-Sim stage, as shown in Figure



1, is roughly equivalent to the time it takes to perform 3-4 PNR
iterations.

These two observations provide us with important insights.
By reducing the time spent on data acquisition, especially
PEX and Post-Sim, we can effectively shorten the performance
modeling lifecycle. On the one hand, from recent advance-
ments in hardware-accelerated EDA workflows [68], [69], we
can see that parallelizing PEX and Post-Sim is an effective
solution. On the other hand, by considering the cost of ac-
quiring data inputs and labels, selecting representative samples
through active learning [70] may also be an economically
efficient approach.

B. Exploring Model Transferability in Performance Modeling
on OTA Designs

The transferability of performance models is a widely
discussed topic in analog performance modeling. Even if the
implemented functionalities are similar, the topology design
and transistor sizes may vary. Due to the scarce cost of ob-
taining labels, it is natural to consider transferring performance
models from one dataset to another for inference.

In the case shown in the Table I, we quantitatively discuss
the issue of performance model transferability on OTA de-
signs. We mainly consider two scenarios: transfer between
the same topology with different sizing configurations and
transfer between different topologies. We verify two scenarios
of performance model construction, namely From Scratch
and Transfer.

From Scratch: If there is no available layout data for
the current design, we propose obtaining a small amount of
sampling data. We then model the prediction of the model as
a binary classification problem and use balanced sampling to
enable the model to achieve accurate predictions with a small
amount of data, as in [71].

Transfer: Another way is to leverage the transferability of
the pre-trained model obtained from other designs. In this way,
we can obtain a relatively accurate model with a few samples
through fine-tuning, which requires less time.

From these data results, we can identify two important
findings. Overall, the accuracy of the transferred models is
reliable. Compared to training from scratch, which requires
more data collection time, the accuracy reduction ranges from
3% to 22%. However, there are still cases where the model
performance deviates. This is because the transferability of the
models varies under different scenarios and metrics. Transfer
between different sizing configurations is often easier than
transfer between different topologies. Different topologies and
sizing settings result in different performance distributions in
the layout, which can cause the transfer to fail.

On the one hand, from a generalization perspective, we
consider how to improve transfer training by obtaining effec-
tive pretraining weights using methods like meta-learning [72].
On the other hand, from a detection perspective, we consider
different distributions to determine when transfer is possible.
Current research on out-of-distribution (OOD) detection [73]

TABLE I: Placement prediction results with collected data for
training from scratch and transfer learning results.

Design Prediction Accuracy Metrics From Scratch Transfer Acc-∆

OTA1

Offset Voltage(%) 95.54 91.67 3.87
CMRR(%) 91.96 77.68 14.29

BandWidth(%z) 96.43 95.54 0.89
DC Gain(%) 93.62 88.01 5.61

Noise(%) 91.96 79.14 12.82

OTA2

Offset Voltage(%) 81.35 65.39 15.96
CMRR(%) 82.33 62.02 20.31

BandWidth(%) 80.71 72.14 8.58
DC Gain(%) 81.35 59.50 21.85

Noise(%) 88.80 69.29 19.52

provides technical support for identifying when the model is
effective.

C. Navigating the Multi-Objective Pitfall in Post-Layout Per-
formance Optimization

In this case, we aim to demonstrate the importance of multi-
objective optimization by comparing the placements obtained
through weighted-based Bayesian optimization (BO) and
multi-objective optimization Bayesian optimization (MOBO)
[74] in four OTA benchmarks.

It is necessary to optimize the layout-related parameters
toward different objectives to enhance performance metrics,
which improves the overall performance of analog layouts.
It is common practice to use a user-defined figure-of-merit
(FOM) representation, a weighted sum of post-layout simula-
tion metrics.

However, when it comes to performance-driven analog
placement and routing, it becomes necessary to consider the
trade-offs between conflicting metrics to achieve the desired
layout solutions. It goes beyond what can be accomplished
through a simple linear combination. One alternative objective
is to find solutions not dominated by others, known as Pareto
optimal solutions. The problem of finding Pareto optimal
solutions given multiple criteria is called multi-objective opti-
mization.

As shown in Figure 3, the MOBO method outperforms
Weighted-BO in terms of the number of top-1 metrics achieved
for the obtained layout. MOBO achieves top-1 performance in
almost all metrics in Offset Voltage, CMRR, BandWidth, and
DC Gain. For all designs, MOBO outperforms the Weighted-
BO for 3 to 5 metrics. The results corroborate that the
multi-objective optimization method moves the layout solution
toward the Pareto frontier.

Recent advancements have been witnessed in the field
of multi-objective optimization, especially for gradient-based
strategies [75]–[77]. It is imperative to carefully consider how
these advancements in the field of multi-objective optimization
can be applied to enhance performance-driven analog layout
automation.

IV. PERSPECTIVES AND FUTURE DIRECTIONS

Our quantitative case study demonstrates important future
directions in performance model training and physical de-
sign optimization. The need for efficient and performance-
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driven analog physical design calls for further research. In
this section, we give our perspectives on the challenges and
opportunities in future research in the field.

A. On Modeling Performance

Efficient Data Acquisition
Data collection is a major bottleneck in building the per-

formance models. Both PEX and Post-Sim cost significant
time, which makes the data collection expensive. Efficient data
acquisition can benefit the development of analog performance
models.

Selecting representative samples can reduce the amount
of data needed for the training. Active learning dynamically
selects representative samples for the training process [70]. A
similar approach can be applied to analog performance data
acquisition. By smartly choosing the layouts to be simulated,
the performance model training process can be more efficient
using fewer samples and, therefore, save costs in running PEX
and Post-Sim.

Accelerating the simulation may be beneficial to the data
collection. For example, recent studies further accelerate cir-
cuit simulation via efficient matrix multiplication [78] and
reinforcement learning-based stochastic stepping policy [79].
Faster SPICE simulation can help the performance model
training obtain more training data within a limited budget.

Better transferability
Transferring pre-trained models to unseen circuits is crucial

in ensuring both accuracy and inference efficiency. As our
case studies indicate, the performance models have good
transferability between different sizing of the same netlists
and slightly slower accuracy for transferring between different
typology designs. Increasing the accuracy and the scope of

circuits can avoid or reduce costs in finetuning the models in
inference time.

Neural network architecture is critical in determining the
model performance. One of the challenges in predicting analog
performance lies in managing the multimodal input features.
These features originate from various stages, such as pre-
layout schematics, placement, and routing, and are repre-
sented in diverse data formats. Existing research has used
a convolutional neural network to process placement infor-
mation [19] and a graph neural network to extract topology
knowledge [80]. A general multimodal neural network for
performance modeling may benefit the field.

Adopting a pretraining methodology can further boost the
transferability. Analog circuits involve different types, archi-
tectures, topologies, and sizing. The circuit performance is
also affected by the manufacturing technologies. It would be
costly to train individual models separately for each scenario.
In [81] proposes to use a “pretrain-then-finetune” approach
for increasing data efficiency in layout constraint and parasitic
prediction tasks. A similar methodology may apply to layout
performance modeling as well.

B. On Optimization Physical Design

Placement and Routing Representation
Representing placement and routing in the ML-enabled

performance-driven analog physical design is an overlooked
problem. The work [80] treats the performance modeling
as a black box. It uses randomized simulated annealing to
generate different placements and uses the model to evaluate
its performance. In [65], a BO-based framework tunes net
weights as a proxy to generate different placements. The net
weights decide the priority of different nets and, therefore,
impact the resulting layouts. Bridging the placement and
routing representation can potentially increase the efficiency
of optimization.

Multi-objective optimization
Analog circuit performance is more complicated than digital

circuits. Each circuit can have multiple performance metrics.
Many of them are competing with the others. The analog
design cycle requires efficient optimization given different
design specifications. Therefore, efficient and effective multi-
objective physical design optimization is essential. As illus-
trated in the case studies, MOBO can produce higher-quality
layouts than a simple weighted-BO strategy. Integrating multi-



objective optimization in the physical design process will be
an important future direction in the field.

V. CONCLUSION

In this paper, we present an overview of the recent develop-
ments in performance-aware analog physical design and give
our perspectives. Several case studies are conducted using the
open-source analog layout generator, MAGICAL, to illustrate
the important issues for the problems. The statistical findings
highlight the significance of efficiently building ML-based
performance models and polishing the optimization algorithms
in physical design. Several future directions are suggested
based on the case studies.
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