

Performance-Driven Analog Layout Automation: Current Status and Future Directions

Peng Xu, Jintao Li, Tusng-Yi Ho, Bei Yu, Keren Zhu

CSE Department The Chinese University of Hong Kong

Jan. 23, 2024

1 Introduction

- **2** Related Work
- 3 Case Study
- **4** Perspectives and Future Directions

Introduction

Digital vs Analog Circuits

Analog IC Design & Challenges

Courtesy [Razavi, Design of Analog IC]

- Heavily manual, iterative process involving multiple steps to achieve performance, power and area closure.
- More challenging with performance closure: complicated circuit performance metrics, sensitive signal integrity and performance trade-offs
- Open question: how can we optimize performance in automated layout generation?

AMS Design Automation

• Analog IC automation typical flow:

• Today we will focus on the back-end side

Develop optimization-based PNR algorithms for analog layouts **Pros**

- Automatic optimization
- Low human efforts

Cons

- What is the optimization problem?
- How to consider performance?

The design flow of analog circuits.

Related Work

Analog circuit placement and routing are critical to optimal performance, but obtaining a decent circuit layout requires significant time and expertise:

- Unlike digital circuits, analog circuits are sensitive to layout parasitics and coupling, which can complicate the relationship between performance and layout.
- There lacks a practical way to produce generalized performance models for layout implementation¹.

Let's first take a look on existing attempts to consider performance in PNR

¹Hao Chen et al. (1993). "Challenges and opportunities toward fully automated analog layout design". In: *The Journal of Supercomputing* 41.11, pp. 1674–4926.

JAC

The existing analog layout placement methods are mainly focused on optimizing *proxy* objectives for performance:

• Symmetry and common centroid²;

For example, using common centroid placement to reduce parasitic mismatch. **Question:** Is symmetry good enough for the performance?

2-D symmetry (b) does not include placement (a) which also satisfies the common centroid constraint.

A packing with two common centroid groups.

²Qiang Ma, Evangeline F. Y. Young, and K. P. Pun (2007). "Analog placement with common centroid constraints". In: *Proc. ICCAD*, pp. 579–585.

Signal Path regularity for Performance-Driven Placement

• Current path and signal flow³

Zhu et al.⁴ propose to consider the critical signal paths in automatic AMS placement. **Question**: enough for general circuits?

³Keren Zhu, Hao Chen, Mingjie Liu, et al. (2020). "Effective Analog/Mixed-Signal Circuit Placement Considering System Signal Flow". In: *Proc. ICCAD*, pp. 1–9.

11/34

Geometric Matching in Performance-Driven Routing

12/34

The analog router cannot adopt specialized layout strategies for specific circuit classes like human layout experts, so *proxy* heuristic method is honored in performance-driven analog routing.

• **Symmetry** has been widely adopted as an essential component of the analog routing problem⁵.

Example: different levels of geometrical matching constraints⁶.

(a) Symmetric constraint. (b) Common-centroid constraint. (c) Topology-matching constraint. (d) Length-matching constraint.

⁵Hung-Chih Ou, Hsing-Chih Chang Chien, and Yao-Wen Chang (2012). "Non-uniform multilevel analog routing with matching constraints". In: *Proceedings of the 49th Annual Design Automation Conference*, pp. 549–554.

Other works optimize power routing⁷ and propose shielding critical nets⁸.

⁷Ricardo Martins et al. (2014). "Electromigration-aware and IR-drop avoidance routing in analog multiport terminal structures". In: 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, pp. 1–6.

⁸Qiang Gao et al. (2010). "Analog circuit shielding routing algorithm based on net classification". In: *Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design*, pp. 123–128. 13/34

14/34

• Linear approximation model

Lampaert et al.⁹ uses performance degradation term. Characterising performance degradation ΔP_i using the precalculated sensitivity information:

$$\Delta P_j = \sum_{k=1}^m \left(S_{\mathcal{C}_{p,k}}^j \mathcal{C}_{p,k} + \sum_{i=1}^{n_k} S_{\mathcal{R}_{p,ki}}^j \mathcal{R}_{p,ki} \right)$$
(1)

Issues: sensitivity computation scalability and accuracy.

A packing with two common centroid groups.

⁹U. Choudhury and A. Sangiovanni-Vincentelli (1995). "A performance-driven placement tool for analog integrated circuits". In: *IEEE Journal Solid-State Circuits* 30.7, pp. 773–780.

How to Directly Model Analog Circuit Performance?

Machine learning methods provide a **direct** way to model the post-layout analog performance¹⁰

- Automatically generate layout data and extract effective placement features based on functionality;
- Utilize 3D Convolutional Neural Networks (CNNs) as the performance predictor, incorporating coordinate channels.

CNN

¹⁰Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020b). "Towards Decrypting the Art of Analog Layout: Placement Quality Prediction via Transfer Learning". In: *Proc. DATE*, pp. 496–501. 15/34

There are also attempts to apply learning models to analog placement¹¹:

- Utilize the GNN performance model as a predictor.
- Employ the performance predictor to guide the simulated annealing process.

¹¹Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu, Sachin S. Sapatnekar, et al. (2020). "A Customized Graph Neural Network Model for Guiding Analog IC Placement". In: *Proc. ICCAD*, pp. 1–9.

The performance modeling cycle can be divided into three stages:

- **Data Acquisition**: The data acquisition stage includes **PNR** and parasitic parameter extraction (**PEX**) and post-layout performance simulation (**Post-Sim**).
- **Model Training**: The model training stage mainly includes the **Training** time for performance models.
- **Performance-aware PNR Inference**: The performance-aware PNR inference includes the model **Inference** time and a single **augmented PNR** process.

Profiling lifecycle for building a performance model on Operational Transconductance Amplifier (OTA) layout design using MAGICAL.

The runtime breakdown of different methods on OTA1 benchmarks.

The runtime breakdown of different methods on OTA1 benchmarks.

We can draw two important observations from Case 1:

- The Data Collection occupies most of the modeling lifecycle, which accounts for 92.89%.
- 2 The time required to obtain inputs << the time required to obtain labels. (*The PEX and Post-Sim time is roughly equivalent to 3-4 PNR iterations.*)

How to shorten the performance modeling lifecycle effectively?

Reduce the time spent on data acquisition, especially PEX and Post-Sim.

There are several promising solutions:

- From advancements in hardware-accelerated EDA workflows¹², we can see that parallelizing PEX and Post-Sim is an effective solution.
- Considering the cost of acquiring data inputs and labels, selecting representative samples through active learning¹³ may also be an economically efficient approach.

• ...

¹²Siting Liu et al. (2022). "FastGR: Global Routing on CPU-GPU with Heterogeneous Task Graph Scheduler". In: *Proc. DATE*; Zhuolun He, Yuzhe Ma, and Bei Yu (2022). "X-Check: GPU-Accelerated Design Rule Checking via Parallel Sweepline Algorithms". In: *Proc. ICCAD*.

¹³Yuzhe Ma et al. (2018). "Cross-layer optimization for high speed adders: A pareto driven machine learning approach". In: *IEEE TCAD* 38.12, pp. 2298–2311.

In the case shown in the Table 1, we quantitatively discuss the issue of performance model transferability on OTA designs.

From Scratch

- A small amount of sampling data for the current design is collected.
- We then model the prediction as a binary classification problem to achieve accurate predictions¹⁴.

Transfer

- The pre-trained model obtained from other designs is leveraged.
- We can obtain a relatively accurate model with a few samples through fine-tuning, which requires less time.

¹⁴Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020b). "Towards Decrypting the Art of Analog Layout: Placement Quality Prediction via Transfer Learning". In: *Proc. DATE*, pp. 496–501. 22/34

We mainly consider two scenarios of Transfer:

Transfer between the same topology

- We first train a performance model on OTA3. **OTA3 has the same topology and different sizing configurations as OTA1.**
- We then test the accuracy of model predictions on OTA1.

Transfer between different topologies

- We first train a performance model on OTA3. **OTA3 has different topologies from OTA2.**
- We then test the accuracy of model predictions on OTA2.

Table: Placement prediction results for training from scratch and transfer learning results.

Design	Prediction Accuracy Metrics	From Scratch	Transfer	Acc- Δ
OTA1	Offset Voltage(%)	95.54	91.67	3.87
	CMRR(%)	91.96	77.68	14.29
	BandWidth(%z)	96.43	95.54	0.89
	DC Gain(%)	93.62	88.01	5.61
	Noise(%)	91.96	79.14	12.82
OTA2	Offset Voltage(%)	81.35	65.39	15.96
	CMRR(%)	82.33	62.02	20.31
	BandWidth(%)	80.71	72.14	8.58
	DC Gain(%)	81.35	59.50	21.85
	Noise(%)	88.80	69.29	19.52

From these data results, we can identify two important findings:

- The transferability of the models varies under different scenarios and metrics, with the accuracy reduction ranging from 3% to 22%.
- Transfer between different sizing configurations is often easier than transfer between different topologies.

From a Generalization Perspective

• We consider how to improve transfer training by obtaining effective pretraining weights using methods like meta-learning¹⁵.

From a Detection Perspective

- We consider different distributions to determine when the transfer is safe.
- Current research on out-of-distribution (OOD) detection¹⁶ provides technical support for identifying when the model is effective.

¹⁵Timothy Hospedales et al. (2021). "Meta-learning in neural networks: A survey". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 44.9, pp. 5149–5169. ¹⁶Qitian Wu et al. (2022). "Energy-based Out-of-Distribution Detection for Graph Neural Networks". In: *Proc. ICLR*.

Case 3: Navigating the Multi-Objective Pitfall

In this case, we aim to demonstrate the importance of multi-objective optimization by comparing the placements obtained through weighted-based Bayesian optimization (BO) and multi-objective optimization Bayesian optimization (MOBO)¹⁷ in four OTA benchmarks.

Weighted Method

• It is common practice to use a user-defined figure-of-merit (FOM) representation, a weighted sum of post-layout simulation metrics.

Multi-objective Optimization

- One alternative objective is to find solutions not dominated by others, known as **Pareto optimal solutions**.
- The problem of finding Pareto optimal solutions given multiple criteria is called **multi-objective optimization**.

¹⁷Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020a). "Closing the Design Loop: Bayesian Optimization Assisted Hierarchical Analog Layout Synthesis". In: *Proc. DAC*, pp. 496–501.

As shown in Figure 12, the MOBO method outperforms Weighted-BO in terms of the number of top-1 metrics achieved for the obtained layout.

The number of top-1 metrics for different methods.

- MOBO achieves top-1 performance in almost all metrics in Offset Voltage, CMRR, BandWidth, and DC Gain.
- For all designs, MOBO outperforms the Weighted-BO for 3 to 5 metrics.

- The results corroborate that the multi-objective optimization method moves the layout solution toward the Pareto frontier.
- Recent advancements have been witnessed in the field of multi-objective optimization, especially for gradient-based strategies¹⁸.
- It is imperative to carefully consider how these advancements in the field of multi-objective optimization can be applied to enhance performance-driven analog layout automation.

¹⁸Jörg Fliege and Benar Fux Svaiter (2000). "Steepest descent methods for multicriteria optimization". In: *Mathematical Methods of Operations Research* 51, pp. 479–494; Stefan Schäffler, Reinhart Schultz, and Klaus Weinzierl (2002). "Stochastic method for the solution of unconstrained vector optimization problems". In: *Journal of Optimization Theory and Applications* 114, pp. 209–222; Jean-Antoine Désidéri (2012). "Multiple-gradient descent algorithm (MGDA) for multiobjective optimization". In: *Comptes Rendus Mathematique* 350.5-6, pp. 313–318.

Perspectives and Future Directions

Efficient Data Acquisition

- Data collection bottleneck in building performance models;
- Active learning for selecting representative samples¹⁹;
- Smart layout selection for an efficient training process;
- Accelerating simulation for more training data²⁰;

¹⁹Yuzhe Ma et al. (2018). "Cross-layer optimization for high speed adders: A pareto driven machine learning approach". In: *IEEE TCAD* 38.12, pp. 2298–2311.

²⁰Tengcheng Wang et al. (2023). "Accelerating Sparse LU Factorization with Density-Aware Adaptive Matrix Multiplication for Circuit Simulation". In: *Proc. DAC*; Dan Niu et al. (2023). "OSSP-PTA: An Online Stochastic Stepping Policy for PTA on Reinforcement Learning". In: *IEEE TCAD* 42.11, pp. 4310–4323.

Better Transferability

- Transferring pre-trained models to unseen circuits Managing multimodal input features;
- A general multimodal neural network for performance modeling may benefit the field²¹;
- Adopting a pretraining methodology for data efficiency²²;

²¹Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020c). "Towards Decrypting the Art of Analog Layout: Placement Quality Prediction via Transfer Learning". In: *Proc. DATE*; Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu, Sachin Sapatnekar, et al. (2020). "A Customized Graph Neural Network Model for Guiding Analog IC Placement". In: *Proc. ICCAD*.

²²Keren Zhu, Hao Chen, Walker J. Turner, et al. (2022). "TAG: Learning Circuit Spatial Embedding from Layouts". In: *Proc. ICCAD*. 31/34

Placement and Routing Representation

- Placement and Routing Representation: An overlooked problem in ML-enabled performance-driven analog physical design is how to represent placement and routing. The work²³ treats the performance modeling as a black box.
- Bridging Placement and Routing Representation for Optimization: BO-based framework tunes net weights as a proxy to generate different placements in²⁴.

²³Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu, Sachin Sapatnekar, et al. (2020). "A Customized Graph Neural Network Model for Guiding Analog IC Placement". In: *Proc. ICCAD*.

²⁴Mingjie Liu, Keren Zhu, Xiyuan Tang, et al. (2020). "Closing the Design Loop: Bayesian Optimization Assisted Hierarchical Analog Layout Synthesis". In: *Proc. DAC*.

Multi-objective Optimization

- Complexity of analog circuit performance
- Multiple competing performance metrics
- Efficient and effective multi-objective physical design optimization

THANK YOU!