
Performance-Driven Analog Layout Automation:
Current Status and Future Directions

Peng Xu, Jintao Li, Tusng-Yi Ho, Bei Yu, Keren Zhu

CSE Department
The Chinese University of Hong Kong

Jan. 23, 2024



1 Introduction

2 Related Work

3 Case Study

4 Perspectives and Future Directions

Outline

2/34



Introduction



Data

Boolean

Real

Reliability

Robust

Sensitive

Design

Automated

Manual

Digital vs Analog Circuits

4/34



Courtesy [Razavi, Design of Analog IC]

• Heavily manual, iterative process involving multiple steps to achieve performance,
power and area closure.

• More challenging with performance closure: complicated circuit performance
metrics, sensitive signal integrity and performance trade-offs

• Open question: how can we optimize performance in automated layout generation?

Analog IC Design & Challenges
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• Analog IC automation typical flow:

• Today we will focus on the back-end side

AMS Design Automation
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Develop optimization-based PNR algorithms for
analog layouts
Pros

• Automatic optimization

• Low human efforts

Cons
• What is the optimization problem?

• How to consider performance?
The design flow of analog circuits.

Placement and Routing for Analog Layout
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Related Work



Analog circuit placement and routing are critical to optimal performance, but
obtaining a decent circuit layout requires significant time and expertise:

• Unlike digital circuits, analog circuits are sensitive to layout parasitics and coupling,
which can complicate the relationship between performance and layout.

• There lacks a practical way to produce generalized performance models for layout
implementation1.

Let’s first take a look on existing attempts to consider performance in PNR

1Hao Chen et al. (1993). “Challenges and opportunities toward fully automated analog layout
design”. In: The Journal of Supercomputing 41.11, pp. 1674–4926.

Existing Problems
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The existing analog layout placement methods are mainly focused on optimizing
proxy objectives for performance:

• Symmetry and common centroid2;

For example, using common centroid placement to reduce parasitic mismatch.
Question: Is symmetry good enough for the performance?

2-D symmetry (b) does not include placement (a)
which also satisfies the common centroid
constraint.

A packing with two common centroid groups.

2Qiang Ma, Evangeline F. Y. Young, and K. P. Pun (2007). “Analog placement with common
centroid constraints”. In: Proc. ICCAD, pp. 579–585.

Geometric Matching in Placement
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• Current path and signal flow3

Zhu et al.4 propose to consider the critical signal paths in automatic AMS
placement. Question: enough for general circuits?

3Keren Zhu, Hao Chen, Mingjie Liu, et al. (2020). “Effective Analog/Mixed-Signal Circuit
Placement Considering System Signal Flow”. In: Proc. ICCAD, pp. 1–9.

4Keren Zhu, Hao Chen, Mingjie Liu, et al. (2020). “Effective Analog/Mixed-Signal Circuit
Placement Considering System Signal Flow”. In: Proc. ICCAD, pp. 1–9.

Signal Path regularity for Performance-Driven Placement
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The analog router cannot adopt specialized layout strategies for specific circuit
classes like human layout experts, so proxy heuristic method is honored in
performance-driven analog routing.

• Symmetry has been widely adopted as an essential component of the analog routing
problem5.

Example: different levels of geometrical matching constraints6.

(a) Symmetric constraint. (b) Common-centroid constraint. (c) Topology-matching constraint. (d)
Length-matching constraint.

5Hung-Chih Ou, Hsing-Chih Chang Chien, and Yao-Wen Chang (2012). “Non-uniform
multilevel analog routing with matching constraints”. In: Proceedings of the 49th Annual Design
Automation Conference, pp. 549–554.

6Hung-Chih Ou, Hsing-Chih Chang Chien, and Yao-Wen Chang (2012). “Non-uniform
multilevel analog routing with matching constraints”. In: Proceedings of the 49th Annual Design
Automation Conference, pp. 549–554.

Geometric Matching in Performance-Driven Routing
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Other works optimize power routing7 and propose shielding critical nets8.

Optimize power routing. Shielding critical nets.

7Ricardo Martins et al. (2014). “Electromigration-aware and IR-drop avoidance routing in analog
multiport terminal structures”. In: 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, pp. 1–6.

8Qiang Gao et al. (2010). “Analog circuit shielding routing algorithm based on net classification”.
In: Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design,
pp. 123–128.

Other Heuristics in Analog Routing
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• Linear approximation model

Lampaert et al.9 uses performance degradation term. Characterising performance
degradation ∆Pj using the precalculated sensitivity information:

∆Pj =

m∑
k=1

(
Sj

Cp,k
Cp,k +

nk∑
i=1

Sj
Rp,ki

Rp,ki

)
(1)

Issues: sensitivity computation scalability and accuracy.

A packing with two common centroid groups.

9U. Choudhury and A. Sangiovanni-Vincentelli (1995). “A performance-driven placement tool
for analog integrated circuits”. In: IEEE Journal Solid-State Circuits 30.7, pp. 773–780.

Sensitivity Analysis in Performance-Driven Placement
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Machine learning methods provide a direct way to model the post-layout analog
performance10

• Automatically generate layout data and extract effective placement features based on
functionality;

• Utilize 3D Convolutional Neural Networks (CNNs) as the performance predictor,
incorporating coordinate channels.

CNN

10Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020b). “Towards Decrypting the Art of Analog Layout:
Placement Quality Prediction via Transfer Learning”. In: Proc. DATE, pp. 496–501.

How to Directly Model Analog Circuit Performance?
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There are also attempts to apply learning models to analog placement11:
• Utilize the GNN performance model as a predictor.

• Employ the performance predictor to guide the simulated annealing process.

11Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu,
Sachin S. Sapatnekar, et al. (2020). “A Customized Graph Neural Network Model for Guiding
Analog IC Placement”. In: Proc. ICCAD, pp. 1–9.

How to Optimize Performance in Placement and Routing?
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Case Study



The performance modeling cycle can be divided into three stages:
• Data Acquisition: The data acquisition stage includes PNR and parasitic parameter

extraction (PEX) and post-layout performance simulation (Post-Sim).

• Model Training: The model training stage mainly includes the Training time for
performance models.

• Performance-aware PNR Inference: The performance-aware PNR inference includes
the model Inference time and a single augmented PNR process.

Case 1: Analog Performance Modeling Lifecycle
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Profiling lifecycle for building a performance model on Operational
Transconductance Amplifier (OTA) layout design using MAGICAL.
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(b)

The runtime breakdown of different methods on OTA1 benchmarks.

Case 1: Analog Performance Modeling Lifecycle
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The runtime breakdown of different methods on OTA1 benchmarks.

We can draw two important observations from Case 1:

1 The Data Collection occupies most of the modeling lifecycle, which accounts for
92.89%.

2 The time required to obtain inputs << the time required to obtain labels. (The PEX
and Post-Sim time is roughly equivalent to 3-4 PNR iterations.)

Observations from Case 1

20/34



How to shorten the performance modeling lifecycle effectively?

Reduce the time spent on data acquisition, especially PEX and Post-Sim.

There are several promising solutions:
• From advancements in hardware-accelerated EDA workflows12, we can see that

parallelizing PEX and Post-Sim is an effective solution.

• Considering the cost of acquiring data inputs and labels, selecting representative
samples through active learning13 may also be an economically efficient approach.

• ...

12Siting Liu et al. (2022). “FastGR: Global Routing on CPU-GPU with Heterogeneous Task Graph
Scheduler”. In: Proc. DATE; Zhuolun He, Yuzhe Ma, and Bei Yu (2022). “X-Check: GPU-Accelerated
Design Rule Checking via Parallel Sweepline Algorithms”. In: Proc. ICCAD.

13Yuzhe Ma et al. (2018). “Cross-layer optimization for high speed adders: A pareto driven
machine learning approach”. In: IEEE TCAD 38.12, pp. 2298–2311.

Lessons from the Performance Modeling Lifecycle
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In the case shown in the Table 1, we quantitatively discuss the issue of
performance model transferability on OTA designs.

From Scratch

• A small amount of sampling data for the current design is collected.

• We then model the prediction as a binary classification problem to achieve accurate
predictions14.

Transfer

• The pre-trained model obtained from other designs is leveraged.

• We can obtain a relatively accurate model with a few samples through fine-tuning,
which requires less time.

14Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020b). “Towards Decrypting the Art of Analog Layout:
Placement Quality Prediction via Transfer Learning”. In: Proc. DATE, pp. 496–501.

Case 2: Exploring Model Transferability
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We mainly consider two scenarios of Transfer:

Transfer between the same topology

• We first train a performance model on OTA3. OTA3 has the same topology and
different sizing configurations as OTA1.

• We then test the accuracy of model predictions on OTA1.

Transfer between different topologies

• We first train a performance model on OTA3. OTA3 has different topologies from
OTA2.

• We then test the accuracy of model predictions on OTA2.

Case 2: Exploring Model Transferability
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Table: Placement prediction results for training from scratch and transfer learning results.

Design Prediction Accuracy Metrics From Scratch Transfer Acc-∆

OTA1

Offset Voltage(%) 95.54 91.67 3.87
CMRR(%) 91.96 77.68 14.29

BandWidth(%z) 96.43 95.54 0.89
DC Gain(%) 93.62 88.01 5.61

Noise(%) 91.96 79.14 12.82

OTA2

Offset Voltage(%) 81.35 65.39 15.96
CMRR(%) 82.33 62.02 20.31

BandWidth(%) 80.71 72.14 8.58
DC Gain(%) 81.35 59.50 21.85

Noise(%) 88.80 69.29 19.52

From these data results, we can identify two important findings:
• The transferability of the models varies under different scenarios and metrics, with

the accuracy reduction ranging from 3% to 22%.

• Transfer between different sizing configurations is often easier than transfer between
different topologies.

Observations from Case 2
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From a Generalization Perspective

• We consider how to improve transfer training by obtaining effective pretraining
weights using methods like meta-learning15.

From a Detection Perspective

• We consider different distributions to determine when the transfer is safe.

• Current research on out-of-distribution (OOD) detection16 provides technical support
for identifying when the model is effective.

15Timothy Hospedales et al. (2021). “Meta-learning in neural networks: A survey”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 44.9, pp. 5149–5169.

16Qitian Wu et al. (2022). “Energy-based Out-of-Distribution Detection for Graph Neural
Networks”. In: Proc. ICLR.

Lessons from the Performance Modeling Transferability
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In this case, we aim to demonstrate the importance of multi-objective optimization
by comparing the placements obtained through weighted-based Bayesian
optimization (BO) and multi-objective optimization Bayesian
optimization (MOBO)17 in four OTA benchmarks.

Weighted Method

• It is common practice to use a user-defined figure-of-merit (FOM) representation, a
weighted sum of post-layout simulation metrics.

Multi-objective Optimization

• One alternative objective is to find solutions not dominated by others, known as
Pareto optimal solutions.

• The problem of finding Pareto optimal solutions given multiple criteria is called
multi-objective optimization.

17Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020a). “Closing the Design Loop: Bayesian
Optimization Assisted Hierarchical Analog Layout Synthesis”. In: Proc. DAC, pp. 496–501.

Case 3: Navigating the Multi-Objective Pitfall
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As shown in Figure 12, the MOBO method outperforms Weighted-BO in terms of
the number of top-1 metrics achieved for the obtained layout.
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The number of top-1 metrics for different methods.

• MOBO achieves top-1 performance in almost all metrics in Offset Voltage, CMRR,
BandWidth, and DC Gain.

• For all designs, MOBO outperforms the Weighted-BO for 3 to 5 metrics.

Observations from Case 3
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• The results corroborate that the multi-objective optimization method moves the
layout solution toward the Pareto frontier.

• Recent advancements have been witnessed in the field of multi-objective
optimization, especially for gradient-based strategies18.

• It is imperative to carefully consider how these advancements in the field of
multi-objective optimization can be applied to enhance performance-driven analog
layout automation.

18Jörg Fliege and Benar Fux Svaiter (2000). “Steepest descent methods for multicriteria
optimization”. In: Mathematical Methods of Operations Research 51, pp. 479–494; Stefan Schäffler,
Reinhart Schultz, and Klaus Weinzierl (2002). “Stochastic method for the solution of unconstrained
vector optimization problems”. In: Journal of Optimization Theory and Applications 114, pp. 209–222;
Jean-Antoine Désidéri (2012). “Multiple-gradient descent algorithm (MGDA) for multiobjective
optimization”. In: Comptes Rendus Mathematique 350.5-6, pp. 313–318.

Lessons from the Multi-Objective Pitfall
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Perspectives and Future Directions



Efficient Data Acquisition

• Data collection bottleneck in building performance models;

• Active learning for selecting representative samples19;

• Smart layout selection for an efficient training process;

• Accelerating simulation for more training data20;

19Yuzhe Ma et al. (2018). “Cross-layer optimization for high speed adders: A pareto driven
machine learning approach”. In: IEEE TCAD 38.12, pp. 2298–2311.

20Tengcheng Wang et al. (2023). “Accelerating Sparse LU Factorization with Density-Aware
Adaptive Matrix Multiplication for Circuit Simulation”. In: Proc. DAC; Dan Niu et al. (2023).
“OSSP-PTA: An Online Stochastic Stepping Policy for PTA on Reinforcement Learning”. In: IEEE
TCAD 42.11, pp. 4310–4323.

Challenges in Modeling Performance-I
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Better Transferability

• Transferring pre-trained models to unseen circuits Managing multimodal input
features;

• A general multimodal neural network for performance modeling may benefit the
field21;

• Adopting a pretraining methodology for data efficiency22;

21Mingjie Liu, Keren Zhu, Jiaqi Gu, et al. (2020c). “Towards Decrypting the Art of Analog Layout:
Placement Quality Prediction via Transfer Learning”. In: Proc. DATE; Yaguang Li, Yishuang Lin,
Meghna Madhusudan, Arvind Sharma, Wenbin Xu, Sachin Sapatnekar, et al. (2020). “A Customized
Graph Neural Network Model for Guiding Analog IC Placement”. In: Proc. ICCAD.

22Keren Zhu, Hao Chen, Walker J. Turner, et al. (2022). “TAG: Learning Circuit Spatial Embedding
from Layouts”. In: Proc. ICCAD.

Challenges in Modeling Performance-II
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Placement and Routing Representation

• Placement and Routing Representation: An overlooked problem in ML-enabled
performance-driven analog physical design is how to represent placement and
routing. The work23 treats the performance modeling as a black box.

• Bridging Placement and Routing Representation for Optimization: BO-based
framework tunes net weights as a proxy to generate different placements in24.

23Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu,
Sachin Sapatnekar, et al. (2020). “A Customized Graph Neural Network Model for Guiding Analog
IC Placement”. In: Proc. ICCAD.

24Mingjie Liu, Keren Zhu, Xiyuan Tang, et al. (2020). “Closing the Design Loop: Bayesian
Optimization Assisted Hierarchical Analog Layout Synthesis”. In: Proc. DAC.

Challenges in Physical Design Optimization-I
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Multi-objective Optimization

• Complexity of analog circuit performance

• Multiple competing performance metrics

• Efficient and effective multi-objective physical design optimization

Challenges in Physical Design Optimization-II
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THANK YOU!
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