
V-GR: 3D Global Routing with Via Minimization and
Multi-Strategy Rip-up and Rerouting
Ping Zhang1, Pengju Yao1, Xingquan Li2, Bei Yu3, and Wenxing Zhu1

1 Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou, China
2Pengcheng Laboratory, Shenzhen, China

3 Department of Computer Science and Engineering, Chinese University of Hong Kong

Abstract—In VLSI, a large number of vias may reduce manufactura-
bility, degrade circuit performance, and increase layout area required for
interconnection. In this paper, we propose a 3D global router V-GR, which
considers minimizing the number of vias. V-GR uses a modified via-aware
routing cost that considers the impact of wire density on the via. This
cost function is more sensitive to the number of vias. Meanwhile, a novel
multi-strategy rip-up & rerouting framework is developed for V-GR to
solve the overflowed net, effectively optimizing wire length, overflow, and
minimizing the number of vias. The proposed framework first leverages
two proprietary routing techniques, namely the 3D monotonic routing and
3D 3-via-stack routing, to control the number of vias and reduce overflow.
Additionally, the framework incorporates an RSMT-aware expanded source
3D maze routing algorithm to build routing paths with shorter wire length.
Experimental results on the ICCAD’19 contest benchmarks show that, V-
GR achieves high-quality results, reducing vias by 8% and overflow by
7.5% in the global routing phase. Moreover, to achieve a fair comparison,
TritonRoute is used to conduct detailed routing, and Innovus is used to
evaluate the final solution. Comparison shows that V-GR achieves 4.7%
reduction in vias and 8.7% reduction in DRV, while maintaining almost
the same wire length.

I. INTRODUCTION

Routing is a core stage in VLSI physical design, which is typically
divided into two steps: global routing and detailed routing. In global
routing, nets are routed over a coarse-grained grid graph to determine
within which areas each net should be routed. In detailed routing, the
routing scheme determined by global routing is used as a guide to
achieve a specific routing result. A good global router should have
shorter wire length, less number of vias and less amount of overflow,
and at the same time can guide detailed routing to achieve high
routability. Therefore, the final routing quality largely depends on the
performance of global routing.

Vias are interconnections between different routing metal layers. A
large number of vias can reduce manufacturing yield, cause circuit
performance degradation, and increase layout area required for intercon-
nections [1], [6]. In VLSI physical design, meeting the DFM (Design
for Manufacturability) constraints is essential, and these constraints
often include strict requirements regarding vias. As a result, it becomes
crucial to minimize the number of vias during the VLSI physical design
process while ensuring that the routability of the design is not compro-
mised. Global routing captures precise pin and congestion information,
and thereby enables direct consideration of the via minimization issue.

Most academic global routers use pattern routing to obtain initial
solution quickly. However, the lack of candidate scheme for pattern
routing results in significantly high overflow for the initial solution.
Hence rip-up & rerouting is usually employed with various strategies
to solve overflowed nets. A well-designed rip-up & rerouting framework
can effectively optimize the wire length, as well as address the issues
of vias and overflow present in the initial solution. However, existing
rip-up and rerouting techniques do not fully consider via minimization.
In this paper, we shall present a 3D global router with via minimization
and multi-strategy rip-up and rerouting.

This work was supported by the National Natural Science Foundation of China
under Grant 62174033.

A. Related Work

There are two main categories for global routing: two-dimensional
(2D) global routing followed by layer assignment, and three-
dimensional (3D) global routing. 2D method compresses routing layers
onto a 2D plane, builds a 2D routing graph and routes on the 2D plane
followed with layer assignment. While, 3D approach routes directly
on multiple metal layers. These global routers pay more attention to
routability and minimizing the wire length without overflow, but the
number of vias is not fully considered.

In order to balance runtime and routing performance, most global
routers belong to the first category, such as NTHU-Route 2.0 [2],
NCTU-GR 2.0 [3], SPRoute 2.0 [4] and FastRoute 4.0 [6]. They first
decompose each multi-pin net into two-pin nets, and then use pattern
routing or monotonic routing to quickly obtain an initial solution. Then,
maze routing is used to rip up & reroute congested nets to optimize
the initial routing result. To reduce the number of vias, FastRoute 4.0
[6] used 3-bend routing and maze routing in sequence instead of only
using the maze routing. After rip-up & rerouting, layer assignment
was performed and the result was restored to 3D grid graph, which
determines the final number of vias.

During 2D routing, only the number of turns is known on a routing
path, hence we cannot obtain accurate via information before layer
assignment, which may lead to an increase in the number of final
vias. Therefore, one significant challenge of 2D global routing is that,
it cannot effectively control the number of vias. In contrast, another
routing strategy, 3D global routing, can effectively deal with this issue.

3D global routing routes nets directly on a 3D grid graph. FGR
[15] used maze routing to directly rip up & reroute nets, based on the
discrete Lagrangian cost framework. GRIP [8] determined 3D routing
candidate patterns for each net in advance, and then used ILP for
optimal selection. MGR [9] used pattern routing and layer assignment
to obtain a 3D initial solution, and then adopted 3D maze routing to rip
up & reroute the nets in congestion areas. CUGR [10] used 3D pattern
routing based on dynamic programming to obtain an initial routing, and
used multi-level 3D maze routing for rip-up and rerouting to obtain a
final global routing solution.

Note that, the rip-up & rerouting stages of 3D global routers utilize
a single-strategy rip-up & rerouting framework, employing solely
the maze routing algorithm [9], [10], [12], [13], [14]. Although this
approach effectively reduces overflow, it may lead to an increase in the
number of generated vias. Therefore, it would be desirable to propose
a novel rip-up and rerouting scheme which can minimize the number
of vias while optimizing wirelength and overflow.

B. Our Contributions

By considering the pros and cons of existing 2D and 3D global
routing algorithms, this work proposes a novel via-aware 3D global
router V-GR to handle via minimization in 3D space throughout the
entire global routing flow. The main contributions of this work are
summarized as follows:

• We propose a modified via-aware routing cost function that takes
into account the effect of wire density on the via. This function



can guide the proposed global router to generate a global routing
solution with fewer vias.

• We propose a novel multi-strategy rip-up & rerouting framework,
comprising two stages: local and global rip-up & rerouting. This
framework effectively optimizes overflow while minimizing in-
creases in wire length and the number of vias.

• During the local rip-up & rerouting stage, a 3D monotonic routing
algorithm is proposed to generate a routing path in a bounding-
box, with the aim of reducing overflow and the number of vias,
while maintaining an optimized wire length. During the global
rip-up & rerouting stage, a 3D 3-via-stack routing algorithm and
an RSMT-aware expanded source 3D maze routing algorithm are
proposed to reduce overflow while minimizing the increase in the
number of vias and wire length.

• Compared with the CUGR, experimental results show that V-GR
achieves a comprehensive improvement in the global routing stage.
For generating detailed routing solutions, we employ TritonRoute.
Subsequently, we evaluate these solutions using Innovus, which
reports a 4.7% reduction in vias and an 8.7% reduction in DRV,
while maintaining almost the same wire length.

II. PRELIMINARIES

In this section, we introduce the 3D global routing problem and the
cost scheme that will be modified and used in our global routing.

A. 3D Global Routing Problem

In global routing, the chip area is partitioned into an array of
rectangular area cells called G-cells, and modeled as a 3D grid graph
G(V,E) with the set of nodes V and the set of edges E, as shown in
Fig. 1(c). Each G-cell corresponds to a node v ∈ V in the grid graph.
Between two adjacent G-cells in the same metal layer, there exists a
global edge which corresponds to an edge e ∈ E in the grid graph.
The capacity cap(e) of a grid edge indicates the maximum number of
wires that can use the grid edge, and the demand of an edge, d(e),
denotes the number of tracks currently passed through by wires. The
resource of an edge, r(e), is the portion of the capacity that can still be
utilized while routing. Furthermore, the overflow of an edge represents
the amount of exceeding demand.

The global routing problem is: given a grid graph and a set of nets
composed of pins, find a routing scheme for every net to connect its
pins such that the total overflow is minimized. Additionally, minimizing
the wire length and the number of vias are also important goals.

Fig. 1(a) shows a two-pin net with its feasible 2D global routing
path. Figs. 1(b) and 1(c) give two different scenarios that may be
obtained when the routing path is restored to 3D. They respectively
generate 5 and 3 vias under the same wire length. Since 2D routing
only knows how many turns there are in the path, it cannot accurately
obtain the number of vias, which leads to different numbers of vias
in the 3D routing paths with the same 2D routing result. Therefore, in
order to effectively realize minimizing the number of vias, the proposed
algorithms in this work are all in 3D space.

B. Cost Scheme in Existing Global Routing

In global routing, the costs of edges have significant impact on the
pathfinding process. Therefore, a cost scheme must be able to accurately
reflect the resource quantities of edges and vias in the grid graph and
can effectively guide the routing, which is essential for global routing.
CUGR [10] has designed a carefully considered cost scheme that takes
into account wire length, as well as the possibility of overflow. This
scheme minimizes both the wire length and the number of vias, while
ensuring that overflow does not occur.

A connection path of a net consists of both edges and vias. In CUGR
[10], the total cost of a path P is:

cost(P ) =
∑

e(u,v)∈P

costw(u, v) +
∑

via(u,u′)∈P

costv(u, u
′),

(a) (b) (c)

Fig. 1: Two 3D global routing results with the same 2D routing path.

where costw(u, v) is the cost of wire edge (u, v), and costv(u, u
′) is

the cost of via (u, u′). Further, the wire edge cost is computed by the
wire length cost and the congestion cost as follows:

costw(u, v) = wl(u, v) + eo(u, v)× lg(u, v),

eo(u, v) = wl(u, v)× d(u, v)

c(u, v)
× uoc,

lg(u, v) = (1.0 + exp(slope× r(u, v)))−1,

where wl(u, v) is the wire length of the wire edge (u, v), eo(u, v) is
the expected overflow cost, lg(u, v) is the sigmoid function of r(u, v),
and uoc is a given constant which is the unit length overflow cost.
slope is an adjustable parameter in the sigmoid function, which defines
sensitivity to overflow of the global router. Calculation of the via cost
is similar to that of the wire edge:

costv(u, u
′) = uvc× (1 + lg(u) + lg(u′),

lg(u) = (1.0 + exp(slope× r(u)))−1,

where uvc gives the unit via cost, r(u) is the half of the total resource
of two edges connecting u.

The above cost scheme will be adopted in this work. However, we
found that an edge with higher wire density has a higher probability of
producing vias, so we will modify the via cost for our work.

III. FLOW OF OUR GLOBAL ROUTER AND ROUTING COST

In this section, we first introduce the detailed design flow of the
proposed global router V-GR. After that, we introduce the modified
via-aware routing cost used in our global routing.

A. Flow of our Global Router

The proposed global router V-GR consists of two parts: initial routing
and multi-strategy rip-up & rerouting, as shown in Fig. 2. For the
initial routing, we first use FLUTE [7] to generate an RSMT for each
net, which decomposes each multi-pin net into a set of two-pin nets.
Subsequently, we apply 3D pattern routing [10] with the cost scheme
presented in Subsection III-B to route all nets and obtain an initial 3D
global routing solution. The multi-strategy rip-up & rerouting is divided
into local and global rip-up & rerouting stages. Each stage performs
rip-up & rerouting of nets in ascending order of net area.

The local rip-up & rerouting is first executed using the 3D monotonic
routing proposed in Subsection IV-A once to reduce the total overflow
while reducing the number of vias and maintaining the wire length.
Then in global rip-up & rerouting, we first perform the 3D 3-via-
stack routing proposed in Subsection IV-B once, which is capable of
detouring, controlling the number of vias, and can reduce congestion
similar to maze routing. And then, we iteratively use the RSMT-aware
expanded source 3D maze routing (RSMT-aware ESMR) proposed
in Subsection IV-B to reroute the remaining congested nets until the



Fig. 2: Design flow of our global router V-GR.

termination condition is satisfied, while reducing overflow and avoiding
excessive wire length generated.

B. Modified Via-Aware Routing Cost Function

Several variations of cost functions have been discussed in previous
works. NTHU-Route 2.0 [3] proposed a history-based cost function.
A probability-based cost scheme was introduced in CUGR [10]. FGR
[15] developed a discrete Lagrange multiplier cost framework. Although
these cost schemes perform well, their via penalties are based on a
constant cost function, or, the cost of via may decrease over time.
In order to better minimize the number of vias and overcome their
shortcoming, we propose a dynamic via-aware cost function.

Rectangular Uniform wire Density (RUDY) [11] is commonly used
in routability prediction, in which the wire density of a net is defined
as the wire length per unit area of its bounding-box. Instead of RUDY
using the half-perimeter wirelength, we adopt the length of the RSMT
for an estimation of the wire density:

wdn(u, v) =

{
rl

area
, (u, v) ∈ bdb(n);

0, (u, v) /∈ bdb(n),

where wdn(u, v) denotes the wire density of net n on edge e(u, v),
bdb(n) is the bounding-box of net n, and rl is the RSMT length of the
net n. Additionally, area is the area of the bounding-box of the net.

The wire density of an edge is defined as the sum of the wire densities
of all nets N along that edge: wdN (u, v) =

∑
n∈N wdn(u, v). An

edge with higher wire density consumes more routing capacity. When
the routing capacity of an edge on the current layer is exhausted, the
tendency is to use the corresponding edges of other layers, which leads
to an increase in the number of vias.

Increasing the via cost will reduce the use of vias, but will also
increase the overflow. Therefore, we balance the increase in overflow
with the decrease in the number of vias, while taking into account the
impact of wire density on vias. Based on the CUGR cost scheme, we
modify it and define the via cost given as:

costv(u, u
′) =

γ × uvc× (1 + lg(u) + lg(u′))

(1.0 + exp(wdN (u) + wdN (u′))−1
,

where γ is a given parameter, wdN (u) represents the half of the sum
of wire densities of two edges connecting u. In this cost function, the
cost of a via is neither a fixed constant nor a value that decreases over
time, but can be dynamically adjusted according to the wire density
and the degree of congestion.

IV. MULTI-STRATEGY RIP-UP & REROUTING FRAMEWORK

This section introduces our multi-strategy rip-up & rerouting frame-
work, which comprises two distinct stages: local rip-up & rerouting and
global rip-up & rerouting. Each stage employs different routing algo-
rithms to effectively handle the overflowed nets within their respective
regions meanwhile optimizing wirelength and the number of vias.

(a) (b) (c)

Fig. 3: 3D monotonic routing. (a) The d(u) of grid point u with the
same x or y or z-coordinate as point s is determined, and the arrow of
each point indicates its predecessor node. (b) Predecessor nodes of all
points inside 3D bounding-box are determined. (c) 3D monotonic path
is obtained by backtracking.

A. Local Rip-up & Rerouting

After the initial routing, there are still many overflowed nets to be
dealt with. We propose a 3D monotonic routing extended from 2D
monotonic routing [5], aiming to reduce overflow and minimizing the
number of vias without compromising on wire length.

3D monotonic routing works in the bounding-box of a net and
requires that, during its routing process, the next path node to be
found must satisfy a decrease or maintenance of the 3D Manhattan
distance. As a result, for a two-pin net, this algorithm exhibits the
characteristic that each grid point can only have one to three predecessor
nodes. Algorithm 1 is the pseudo-code for the 3D monotonic routing
algorithm. The source and sink points have coordinates (x1, y1, z1)
and (x2, y2, z2), respectively. cost(u, v) represents the routing cost of
grid edge or via, while d(u) represents the minimum cost from the
source to the point u inside the 3D bounding-box. prev(u) refers to
the predecessor node of u.

Algorithm 1 3D Monotonic Routing

Input: cost array d, source s(x1, y1, z1), sink t(x2, y2, z2).
Output: resulting path.
1: d(s) = 0, prev(s) = null;
2: for x = x1 + 1 to x2 do
3: left = (x− 1, y1, z1), cur = (x, y1, z1);
4: d(cur) = d(left) + cost(left, cur), prev(cur) = left;
5: end for
6: for y = y1 + 1 to y2 do
7: after = (x1, y − 1, z1), cur = (x1, y, z1);
8: d(cur) = d(after) + cost(after, cur), prev(cur) = after;
9: end for

10: for z = z1 + 1 to z2 do
11: down = (x1, y1, z − 1), cur = (x1, y1, z);
12: d(cur) = d(down) + cost(down, cur), prev(cur) = down;
13: end for
14: for z = z1 to z2 do
15: for x = x1 to x2 do
16: for y = y1 to y2 do
17: left = (x− 1, y, z), cur = (x, y, z);
18: after = (x, y − 1, z), down = (x, y, z − 1);
19: d(cur) = min(d(left) + cost(left, cur),

d(after) + cost(after, cur), d(down) + cost(down, cur));
20: prev(cur) = min location(left, after, down);
21: end for
22: end for
23: end for
24: trace back:path.

In Algorithm 1, lines 1 to 13 calculate the minimum cost for the
points with the same x or y or z-coordinate as point s (Fig. 3(a)). In
lines 14 to 23, a dynamic programming algorithm is used to compute the
minimum cost of each point in sequence at each layer (Fig. 3(b)). In line
24, the algorithm searches for the predecessor node from the sink until
it encounters the source, and finally determines the minimum cost 3D
monotonic path (Fig. 3(c)). The time complexity of the 3D monotonic



(a) (b) (c)

Fig. 4: 3D 3-via-stack routing. (a) Connect s to point mid 1 using
L-shape pattern routing. (b) Connect t to point mid 2 using L-shape
pattern routing. (c) Connect mid 1 and mid 2 using a via-stack.

routing algorithm is O(|B|), where |B| represents the volume of the
3D bounding-box.

B. Global Rip-Up & Rerouting

Since the local rip-up & rerouting is executed inside a 3D bounding-
box, there exist nets still with overflow. To address this issue, we
perform two techniques globally, namely 3D 3-via-stack routing and
RSMT-aware ESMR. They both reduce overflow, but 3D 3-via-stack
routing focuses on adding as few vias as possible, while RSMT-aware
ESMR increases wire length as less as possible.

1) 3D 3-Via-Stack Routing: The 3D 3-via-stack routing completes
the connection of two pins. It has up to three stack of vias, and
has stronger congestion reduction capability than 3D pattern routing.
Moreover, its advantage over 3D monotonic routing and 3D maze
routing is that it may produce fewer vias and is faster.

Fig. 4 provides an illustration of the 3D 3-via-stack routing. In the
figure, the black lines represent congested edges. Obviously, 3D pattern
routing and 3D monotonic routing cannot get a routing path without
overflow within the congested 3D bounding-box, while the 3D 3-via-
stack routing obtains a routing path without overflow, and produces as
few vias as possible.

Algorithm 2 3D 3-Via-Stack Routing

Input: s(x1, y1, z1), t(x2, y2, z2), 3D expanded bounding-box B.
Output: best 3D 3-via-stack path.

1: Cost best = +∞;
2: for x = B.minx to B.maxx do
3: for y = B.miny to B.maxy do
4: for z1 = B.minz to B.maxz do
5: mid 1 = (x, y, z1);
6: for z2 = B.minz to B.maxz do
7: mid 2 = (x, y, z2);
8: cost sum = cost L path(mid 1, s)

+cost L path(mid 2, t)
+cost via(mid 1,mid 2);

9: if cost sum < Cost best then
10: update best 3D 3-via-stack path;
11: end if
12: end for
13: end for
14: end for
15: end for

The pseudo-code of the 3D 3-via-stack routing is given in Algorithm
2. B.minx and B.maxx represent the min-max value of the x-
coordinate of the 3D expanded bounding-box B, respectively. The same
meaning applies to B.miny and B.maxy; B.minz and B.maxz.
cost L path(p1, p2) and cost via(p1, p2) denote the minimum cost
and via cost of connecting p1 and p2 using 3D L-shape pattern routing,
respectively. A 3D 3-via-stack path consists of three parts: two 3D L-
shape paths and a stack of vias, like using s → mid 1, mid 2 → t,
and mid 1 → mid 2. The 3D 3-via-stack routing is faster than 3D
maze routing and offers good congestion reduction. We use it before

(a) (b) (c)

Fig. 5: RSMT-aware ESMR. (a) Connect pin p1. (b) Connect pin p2.
(3) Connect pin p3.

3D maze routing to reduce the number of overflowed nets, resulting in
lower total overflow and via counts.

2) RSMT-Aware ESMR: After completing the 3D 3-via-stack routing
algorithm, only a small number of nets have congestion, and we need to
use 3D maze routing to process these nets. Traditional 3D maze routing
usually uses 3-terminal maze routing, but it does not perform well
in terms of wire length. Hence, we propose ESMR, which integrates
RSMT awareness to achieve RSMT-aware ESMR, aiming to avoid the
generation of excessively long wire length.

ESMR: The main idea of ESMR is that, the finished routing tree
edge in a net can be reused. Our set of source and sink changes
dynamically and is not restricted to any two points. As shown in Fig.
5, red line represents the set of sources, while blue line represents a
routing path to a pin that is routed in the current iteration. Suppose we
need to complete the routing of a net N . First, a pin is selected as the
source, and the remaining pins as the sinks. Then, ESMR is utilized
to find the minimum cost path to connect the source to any sink (Fig.
5(a)). In this case, points on the path formed by already connected pins
are regarded as sources, and the remaining unconnected pins are still
regarded as sinks. This process is repeated (Figs. 5(b)(c)) until all pins
are connected.

ESMR is presented in Algorithm 3. Each node contains information
about its predecessor node and the cost from the source to the current
node. visit indicates the node status. Q represents a priority queue
sorted by cost, and need is the remaining pins that need to be connected.
The function expand source adds nodes on the connection path to the
source set. Lines 2 to 15 take a node from Q. The adjacent directions of
node p are traversed sequentially. If the adjacent node p′ is a pin, which
means that the shortest path is found, then p′ is marked as “visited”,
and need will be reduced by one. Further, add each node on the shortest
path to the source set. If p′ is not a pin, then update the cost of p′, and
add p′ to Q. When the need is equal to 0, the routing of this net is
finished. In line 16, the final routing path of this net can be obtained
by backtracking the predecessor nodes.

RSMT-Aware ESMR: The RSMT-aware routing scheme proposed
in NCTU-GR 2.0 [3] enables the router to find a routing solution with
a shorter wire length. However, it only used the information of flat
segments in RSMT and did not involve non-flat segments. To reduce
the wire length of ESMR, we utilize information from the entire RSMT
and propose the RSMT-aware ESMR.

First, we get an RSMT by FLUTE [7] for a multi-pin net N . Then,
we mark each G-cell traversed by the RSMT and also mark each G-cell
in every layer with the same x, y coordinates as the endpoints of the
RSMT. In the 3D grid graph, each edge connects two adjacent G-cells,
and we modify the cost of edge based on the number of times the
connected G-cells have been marked. The cost of edge is defined as:

cost(e) =

{
wl(e) ∗ C

2
+ eo(e)× lg(e), e is marked twice;

wl(e) ∗ C + eo(e)× lg(e), e is marked once,

where C is an adjustable parameter. In the process of RSMT-aware
ESMR, the path selection tends to select the edges with marked G-
cells rather than other edges.



Algorithm 3 Expanded Source 3D Maze Routing

Input: net, cost array d.
Output: resulting path.

1: Q.push(s), visit = {s}, need = n− 1;
2: while Q! = empty do
3: p = Q.pop();
4: for p′ in all directions of p do
5: if p′ is a pin and is not in visit then
6: need−−, visit = visit ∪ {p′};
7: expand source(p′);
8: else
9: Q.push(p′);

10: end if
11: end for
12: if need == 0 then
13: break;
14: end if
15: end while
16: traceback : path.

(a) (b) (c) (d)

Fig. 6: Comparison of different maze algorithms. (a) Traditional maze
routing. (b) ESMR. (c) RMST for Net N . (d) RSMT-aware ESMR.

Fig. 6 compares the routing effects of the traditional maze routing,
ESMR, and RSMT-aware ESMR. In the figure, black dots represent
pins, gray shaded areas indicate obstacles or congestion, and the rest
are routable. The paths generated by each algorithm are shown in orange
lines. Fig. 6(a) demonstrates that the traditional maze routing generates
a routing with the total wire length of 15, as it lacks the ability to reuse
the routing result that has already been completed. In contrast, ESMR
is capable of reusing the routing result, resulting in a shorter path and a
reduced total wire length of 13 (Fig. 6(b)). Fig. 6(c) depicts the RSMT
for this net, where the black cell represents the Steiner point and the
pink areas represent marked G-cells. Obviously, RSMT-aware ESMR
further reduces the total wire length to 12 (Fig. 6(d)).

V. EXPERIMENTAL RESULTS

The proposed global router V-GR is implemented in C/C++ language,
and tested on the benchmarks of ICCAD19 contest [16] and evaluated
using the methodology from [16]. All experiments are conducted on
a 64-bit Linux workstation with an Intel Core 2.4 GHz CPU and 32
GB memory. Moreover, the obtained global routing solutions are used
as routing guide for Dr. CU 2.0 [17] or TritonRoute [18] to generate
detailed routing solutions, and subsequently Cadence Innovus [19] is
used to evaluate detailed routing solutions and report scores.

A. Effectiveness of 3D Monotonic Routing and 3D 3-Via-Stack Routing

In this subsection, in order to evaluate the effectiveness of the 3D
monotonic routing and 3D 3-via-stack routing algorithms, we conduct
two sets of experiments: one using 3D monotonic routing, 3D 3-via-
stack routing and the RSMT-aware ESMR, and another using only the
RSMT-aware ESMR. The comparison results are presented in TABLE
I. The results show that the router with 3D monotonic routing and 3D
3-via-stack routing achieves effectiveness in vias reduction. On average,
6.5% of vias are reduced, while the wire length is almost in the same
level.

B. Effectiveness of RSMT-Aware ESMR

TABLE II is to demonstrate the effectiveness of the RSMT-aware
ESMR in reducing the wire length, where the second and third columns

TABLE I: Comparison of the Results of V-GR with and without 3D
Monotonic Routing and 3D 3-Via-Stack Routing Algorithms.

Benchmarks Ours without the Algorithms Ours with the Algorithms
Wire Length #Via Wire Length #Via

18test5 27019100 816721 27029600 761579
18test5m 27329100 804629 27343000 759084
18test8 64225300 2062620 64235200 1895530
18test8m 63155300 1970615 63195000 1855570
18test10 66635400 2194560 66720800 2019910
18test10m 69689400 2117990 69695800 1979430
19test7 118296000 3218160 118377000 3041740
19test7m 106591000 3234286 106508000 3034040
19test8 181935000 5594214 181836000 5213620
19test8m 179116000 5553435 179229000 5263920
19test9 273311000 9126440 273237000 8617980
19test9m 271199000 9438193 271278000 8853840
Avg. 120708466 3844321 120723700 3608020
Norm. 99.9% 106.5% 100% 100%

TABLE II: Comparison of the Results of RSMT-Aware ESMR and
Traditional Maze Routing.

Benchmarks Traditional MR RSMT-Aware ESMR
Wire Length #Via Wire Length #Via

18test5 27326925 766148 27029600 761579
18test5m 27589087 762879 27343000 759084
18test8 64819740 1905955 64235200 1895530
18test8m 63763755 1864840 63195000 1855570
18test10 67287926 2032231 66720800 2019910
18test10m 70323062 1989327 69695800 1979430
19test7 119442393 3056948 118377000 3041740
19test7m 107466572 3049210 106508000 3034040
19test8 183472524 5239688 181836000 5213620
19test8m 180842061 5290239 179229000 5263920
19test9 275696133 8661069 273237000 8617980
19test9m 273719502 8898109 271278000 8853840
Avg. 121812473 3626386 120723700 3608020
Norm. 100.9% 100.5% 100% 100%

list the wire length and the number of vias of traditional maze routing,
respectively. While, the fourth and fifth columns present the correspond-
ing values by RSMT-aware ESMR. For these benchmarks, both routing
algorithms perform similarly in terms of overflow reduction. However,
RSMT-aware ESMR outperforms traditional maze routing on reducing
wire length by 0.9% and vias by 0.5%. This is because RSMT-aware
ESMR is able to consciously route paths with shorter wire length on
the basis of RSMT.

C. Comparison with the State-of-the-Art

We compare the performance of V-GR with CUGR in TABLE III.
We perform the two global routers on the same machine, and all
benchmarks are run in an eight-threaded environment. It is essential to
note that, the ‘DR Score’ in TABLE III reflects the result reported by
Innovus after utilizing TritonRoute due to its superior quality compared
to Dr. CU 2.0. The global routing results show that, our algorithm
achieves an average reduction of approximately 8.0% on the number
of vias and 7.5% on overflow, while maintaining the same level of wire
length. Additionally, the ‘DR Score’ is improved by 1.2%.

TABLE IV lists the detailed results of all components of the ‘DR
Score’. To demonstrate the superiority of TritonRoute, we compare the
data reported by Innovus after using CUGR with Dr. CU 2.0 and CUGR
with TritonRoute. The results reveal that CUGR with TritonRoute yields
better wire length, #via, and DRVs, compared to CUGR with Dr. CU
2.0. As a result, we select TritonRoute as our detailed router. The
results indicate a reduction of 4.7% in the number of vias and a
reduction of 8.7% in the number of design rule violations, while other
evaluation indicators remain almost the same. This demonstrates that
V-GR can find a routing scheme with fewer vias and less overflow
while maintaining almost the same wire length.



TABLE III: Routing Performance Improvement over CUGR.

Benchmarks GR Wire Length GR #Via GR Overflow GR CPU(s) DR Score
CUGR V-GR CUGR V-GR CUGR V-GR CUGR V-GR CUGR V-GR

18test5 26997000 27029600 855742 761579 0 0 33.6 25.8 15609059 15557607
18test5m 27915200 27343000 802643 759084 3201 3221 32.0 29.0 15902609 15580356
18test8 64380000 64235200 2174530 1895530 0 0 105.5 95.4 37831617 37076170
18test8m 64697100 63195000 1955940 1855570 5587 5500 122.0 91.0 36973756 36268485
18test10 66778500 66720800 2308290 2019910 0 0 123.2 90.6 39640768 39218365
18test10m 72840100 69695800 2200010 1979430 1575 645 218.0 109.0 41514624 41342376
19test7 118701000 118377000 3124640 3041740 0 0 243.2 236.4 78239626 77623552
19test7m 106977000 106508000 3070990 3034040 4332.5 3989.5 221.0 195.0 72627528 71846934
19test8 181912000 181836000 5748110 5213620 0 0 208.4 198.7 120660152 119610521
19test8m 177674000 179229000 5599140 5263920 7061 6551 388.0 405.0 118730552 116784975
19test9 274113000 273237000 9598230 8617980 75 0 335.5 284.8 185445043 184104089
19test9m 267622000 271278000 9342640 8853840 3652 3782 455.0 418.0 183776050 180753328
Avg. 120883908 120723700 3898408 3608020 2123 1974 207.1 181.5 78912615 77980563
Norm. 100.13% 100% 108.05% 100% 107.58% 100% 114.08% 100% 101.20% 100%

TABLE IV: Decomposed Detailed Routing Score Improvement over CUGR.

Benchmarks
Wire Length #Via Non-preferred Usage Design Rule Violations

CUGR + CUGR + V-GR + CUGR + CUGR + V-GR + CUGR + CUGR + V-GR + CUGR + CUGR + V-GR +
Dr. CU 2.0 TritonRoute TritonRoute Dr. CU 2.0 TritonRoute TritonRoute Dr. CU 2.0 TritonRoute TritonRoute Dr. CU 2.0 TritonRoute TritonRoute

18test5 13755664 13701011 13717353 1854248 1687442 1614934 159196 306749 225320 335018 0 0
18test5m 14001665 13891767 13702732 1843696 1699774 1643168 120374 311067 234455 280744 0 0
18test8 32980410 32778214 32526979 4827046 4399240 4040724 254658 654162 508467 140621 0 0
18test8m 32407308 32099091 31651745 4522450 4112254 4033852 326961 762411 582889 238783 0 0
18test10 34054967 33887670 33874618 4991064 4617196 4345714 885532 1135902 998033 662037 0 0
18test10m 35711640 35370581 35303348 4899802 4545166 4516894 1244888 1541692 1468608 1634185 57183 53525
19test7 61002413 60490812 60272448 16276308 15155620 14488772 1423304 2593194 2839479 9779552 0 0
19test7m 54858539 54237117 54147005 16386864 15275220 14518402 1604677 3115191 3181526 9933662 0 0
19test8 93471561 92736584 92963254 26290792 25323176 23799936 1290976 2600391 2847331 7466225 0 0
19test8m 91154538 90262544 89888979 25999844 25141952 23858036 899052 2983055 3037959 8345362 0 0
19test9 141254192 140047181 139666849 42973076 41053404 39620000 2181813 4169857 4817240 15091717 0 0
19test9m 138028089 136440857 135856004 43195156 41605100 39795704 2474472 5729092 5101619 15487862 1000 0
Avg. 61890082 61328619 61130942 16171695 15384628 14689678 1072158 2158563 2153577 2894823 2423.5 2229.5
Norm. 101.24% 100.32% 100% 110.09% 104.73% 100% 49.79% 100.23% 100% 129841.80% 108.70% 100%

VI. CONCLUSION

In this paper, we have presented a 3D global router V-GR that focuses
on reducing the number of vias and overflow, while optimizing wire
length. A modified via-aware routing cost that takes into account the
effect of wire density on the via was designed to optimize the number of
vias. Additionally, a novel multi-strategy rip-up & rerouting framework
was developed for V-GR to solve the congested net. This framework
uses our proposed 3D monotonic routing algorithm locally to reduce the
number of vias and overflow, and then uses proprietary 3D 3-via-stack
routing and RSMT-aware ESMR globally to rip up & reroute congested
nets while ensuring the lowest possible growth in wire length and
the number of vias. Evaluation on the ICCAD19 contest benchmarks
demonstrates that, V-GR achieves fewer vias and design rule violations
than CUGR while maintaining almost the same level of wire length.

REFERENCES

[1] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer assignment for
via minimization in global routing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 9, pp. 1643–1656,
2008.

[2] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang, “NTHU-Route 2.0: A fast and sta-
ble global router,” in Proceedings of IEEE/ACM International Conference
on Computer-Aided Design, 2008, pp. 338–343.

[3] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0: Multi-
threaded collision-aware global routing with bounded-length maze routing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 5, pp. 709–722, 2013.

[4] J. He, U. Agarwal, Y. Yang, R. Manohar, and K. Pingali, “SPRoute 2.0:
A detailed-routability-driven deterministic parallel global router with soft
capacity,” in Proceedings of IEEE/ACM Asia and South Pacific Design
Automation Conference, 2022, pp. 586–591.

[5] M. Pan and C. Chu, “FastRoute 2.0: A high-quality and efficient global
router,” in Proceedings of IEEE/ACM Asia and South Pacific Design
Automation Conference, 2007, pp. 250–255.

[6] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: Global router with efficient
via minimization,” in Proceedings of IEEE/ACM Asia and South Pacific
Design Automation Conference, 2009, pp. 576–581.

[7] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no.
1, pp. 70–83, 2007.

[8] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Scalable 3D global
routing using integer programming,” in Proceedings of ACM/IEEE Design
Automation Conference, 2009, pp. 320–325.

[9] Y. Xu and C. Chu, “MGR: Multi-level global router,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided Design, 2011,
pp. 250–255.

[10] J. Liu, C.-W. Pui, F. Wang, and E. F. Young, “CUGR: Detailed-routability-
driven 3D global routing with probabilistic resource model,” in Proceedings
of ACM/IEEE Design Automation Conference, 2020, pp. 1–6.

[11] P. Spindler and F. M. Johannes, “Fast and accurate routing demand
estimation for efficient routability-driven placement,” in Proceedings of
IEEE/ACM Design Automation and Test in Europe, 2007, pp. 1226-1231.

[12] S. Lin, J. Liu, and M. D. Wong, “GAMER: GPU accelerated maze routing,”
in Proceedings of IEEE/ACM International Conference on Computer-Aided
Design, 2021, pp. 1-8.

[13] S. Liu, P. Liao, R. Zhang, Z. Chen, W. Lv, Y. Lin, and B. Yu, “FastGR:
Global routing on CPU-GPU with heterogeneous task graph scheduler,” in
Proceedings of IEEE/ACM Design Automation and Test in Europe, 2022,
pp. 760–765.

[14] Shiju Lin and Martin D. F. Wong. “Superfast full-scale CPU-accelerated
global routing,” In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, 2022, pp, 1–8.

[15] J. A. Roy and I. L. Markov, “High-performance routing at the nanometer
scale”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 27, no. 6, pp. 1066-1077, 2008.

[16] S. Dolgov, A. Volkov, L. Wang, and B. Xu, “2019 CAD Contest: Lef/def
based global routing,” in Proceedings of IEEE/ACM International Confer-
ence on Computer-Aided Design, 2019, pp. 1–4.

[17] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Young, “Dr. Cu 2.0: A
scalable detailed routing framework with correct-by-construction design
rule satisfaction,” in Proceedings of IEEE/ACM International Conference
on Computer-Aided Design, 2019, pp. 1–7.

[18] A. B. Kahng, L. Wang and B. Xu, “TritonRoute: The open-source detailed
router”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 40, no. 3, pp. 547-559. 2021.

[19] “Cadence innovus implementation system.” https://www.cadence.com.


