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Abstract

Computational lithography provides algorithmic and mathematical support for
resolution enhancement in optical lithography, which is critical for semiconductor
manufacturing. The time-consuming lithography simulation and mask optimization
processes limit the practical application of inverse lithography technology (ILT),
a promising solution to the challenges of advanced-node lithography. Although
machine learning for ILT has shown promise for reducing the computational bur-
den, this field lacks a dataset that can train the models thoroughly and evaluate
the performance comprehensively. To boost the development of AI-driven com-
putational lithography, we present the LithoBench dataset, a collection of circuit
layout tiles for deep-learning-based lithography simulation and mask optimization.
LithoBench consists of more than 120k tiles that are cropped from real circuit
designs or synthesized according to topologies of widely adopted ILT testcases.
Ground truths are generated by a famous lithography model in academia and an
advanced ILT method. We provide a framework to design and evaluate deep neural
networks (DNNs) with the data. The framework is used to benchmark state-of-
the-art models on lithography simulation and mask optimization. LithoBench is
available at https://github.com/shelljane/lithobench.

1 Introduction

Semiconductor lithography transfers circuit patterns drawn on a mask onto a silicon wafer, which
is essential for the fabrication of integrated circuits (IC). It typically accounts for about 30% of the
cost of IC manufacturing. As transistor sizes continue to shrink, lithography tends to be the technical
limiting factor for further advances [1]. Diffraction or process effects may distort the patterns on the
wafer, leading to performance degradation and even failures. Given the importance, how to ensure
the correctness of semiconductor lithography becomes a critical issue in industry and academia.

Optical proximity correction (OPC) is a technique used to improve the accuracy and quality of
lithography patterns on semiconductor wafers. OPC evoles from rule-based methods [2] to model-
based approaches [3–5], improving the resilience to manufacturing variation. Inverse lithography
technology (ILT) [6–8] is a mathematically rigorous inverse approach that optimizes the mask to
achieve the desired results on the wafer. It has been explored and developed as the next generation of
OPC, promising a solution to challenges of advanced technology such as extreme ultraviolet (EUV).

However, there exist significant challenges that limit the broad application of ILT. A major reason is
that ILT typically consumes a significant amount of runtime, making it challenging to implement ILT
at a production-level scale. Moreover, the patterns generated by ILT algorithms may be too complex
to be produced efficiently. To alleviate the problems above, DNN-based ILT algorithms have been
proposed to reduce the runtime and complexity [9–17]. Compared with traditional methods, the
improvement of DNN-based ILT algorithms has two aspects. Firstly, unlike traditional methods that
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Figure 1: Overview of (a) traditional ILT and (b) DNN-based ILT.

require multiple iterations to optimize the mask, DNN-based methods can generate a mask in one
forward pass. A few iterations of finetuning can further improve the quality of the mask. Secondly,
by incorporating loss functions for complexity reduction, deep learning methods can remarkably
improve the printability of ILT results [13, 14]. Deep learning shows great potential in advancing ILT.

Integrated circuits are represented by multi-layer layouts for manufacturing. A mask contains the
patterns of one layout layer, optimized by ILT algorithms to produce desired printed patterns on
silicon wafers. To achieve affordable runtimes, ILT algorithms typically generate the entire mask
by optimizing fixed-size tiles cropped from the layout layer [18]. Fig. 1a presents a representative
workflow of traditional ILT algorithms, which optimizes the mask iteratively. At each iteration, the
lithography simulation model can output the printed image after the lithography processes. After that,
the loss function evaluates the printed image in terms of error (L2 loss), process variation band (PVB),
complexity (cpx.), etc. Given a loss function, the mask can be optimized by gradient descent [7] and
other methods [19, 20]. Fig. 1b shows the DNN-based ILT flow. The input is the target image T ,
which contains the target shapes that should be printed. The DNN ILT model outputs the optimized
maskM∗ in one forward pass, which is significantly faster than traditional ILT.

In recent years, researchers have proposed various DNN-based ILT methods [9–17], which can
significantly boost the speed and performance of ILT with excellent initialization, refinement, and
GPU acceleration. However, since the ILT methods are evaluated in different scenarios with different
training data, it is difficult to compare them comprehensively and challenging to apply them in
production. Specifically, circuit layouts typically consist of multiple layers of patterns. The shape,
size, and density of the patterns vary from layer to layer. An ILT method may have only been
evaluated on metal-layer [14] or via-layer [12] testcases. Nevertheless, a via layer typically contains
square shapes, while a metal layer can include diverse rectilinear polygons. It is questionable to
assert that one of the methods above is better because they are not evaluated in the same scenarios. In
addition, some models are trained on synthetic data [9], while others focus on real-world designs [21].
Therefore, a representative and comprehensive dataset should cover metal and via layers, as well
as synthetic and real-world designs. It is valuable to construct a common dataset that can train and
evaluate DNN ILT models in various scenarios.

To evaluate ILT methods, multiple metrics should be considered. For example, L2 loss measures
the difference between the printed patterns and the target shapes. PVB estimates the robustness of
the mask against process variations. Shot count shows the complexity of the mask, which affects
the manufacturing time and cost. Runtime is also an important factor. To choose an appropriate
algorithm, users usually need to make a trade-off between the metrics. As a result, there is a need for
a platform that can effectively benchmark various ILT methods using comprehensive metrics.

DNN can be employed in ILT for lithography simulation or mask optimization. In simple terms,
the output of ILT is an optimized mask M∗, which can get similar results as the target patterns
T after the lithography processes G(M∗). Existing works [22, 23] approximate the lithography
processesG(M∗) with DNN-based lithography simulation models, which can not only provide faster
evaluation of the mask quality but also be used in mask refinement. DNN-based mask optimization
models [9,11,12,16] are designed to directly obtain the optimized mask, formulated byM∗ = F (T ).

To meet the above requirements, we present LithoBench, a collection of circuit layout tiles to train
DNN models for lithography simulation and mask optimization. Its benchmarking platform can
provide an extensive evaluation of the models. Our contributions are summarized as follows.
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• We assemble a dataset for DNN-based lithography simulation and mask optimization, which
not only contains synthetic and real-world layout tiles but also covers metal and via layers.
It is the first large-scale dataset for computational lithography built from real-world designs.

• We implement a platform to evaluate the DNN models for lithography simulation and
mask optimization. Users can design and select appropriate models with our platform by
benchmarking them in terms of quality, robustness, complexity, runtime, etc.

• We train and evaluate state-of-the-art (SOTA) DNN models for lithography simulation and
mask optimization on LithoBench, providing a comprehensive assessment of them.

2 Related Work

This section provides the fundamentals of ILT. We begin by discussing the commonly used lithography
simulation method. Next, we describe typical ILT methods that solve mask optimization via numerical
optimization. Then we review the latest advancements in DNN models for lithography simulation
and mask optimization. Finally, LithoBench is compared to existing datasets about lithography.

2.1 Lithography Simulation

The lithography simulation targets to approximate the real lithography process in chip manufacturing
and provides an accurate estimation of the manufactured designs on silicon wafers. Lithography
simulation consists of the optical projection and photoresist models. In optical projection, incident
light passes through the mask, transmitting the spatial information of the mask patterns M to the
optical projection system. This results in the transformation of the input light intensity distribution
into an aerial intensity distribution on the wafer plane. The intensity distribution is commonly
represented by an aerial image I . The process can be modeled by Hopkins’ diffraction theory [24]:

I =H (M) =

K∑
k=1

µk|hk ⊗M |2, (1)

where hk is the kth optical kernel function and µk is the corresponding weight. The notation ⊗
stands for convolution operation. | · |2 gets the squared modulus of each element.

After optical projection, a photoresist model transfers the aerial image I to the printed image Z,
which is also called resist image. To enable gradient descent in ILT algorithms, researchers commonly
design the photoresist model as:

Z(x, y) = σZ (I(x, y)) =
1

1 + e(−α(I(x,y)−Ith))
, (2)

where Ith is the intensity threshold, α is a constant number that controls the steepness of the function,
and (x, y) represents a coordinate on the aerial or resist image. Lithography simulation transforms
the maskM to the resist image Z with the optical projection and photoresist models.

2.2 Mask Optimization via ILT

The application of ILT [25–32] in industrial productions began in 2005 [33–38]. It tries to solve the
mask pattern such that after the lithography process, the remaining pattern on the silicon wafer is as
close as the original design. Thus, ILT can be viewed as the inverse process of lithography simulation.
In recent years, the ICCAD-13 benchmark [39] has facilitated extensive research on ILT in academia,
such as MOSAIC [7], MultiLevel [40], GPU-LevelSet [8, 19], etc.

An ILT algorithm usually optimizes a parameter matrix P that can be transformed to the mask image
M with the following function:

M(x, y) = σM (P (x, y)) =
1

1 + e(−β(P (x,y)−γ)) , (3)

where β is the constant steepness factor and γ is a constant offset. With this function, the values in
M can be limited in [0, 1], while the values in P have no limitation. Finally, the transformation from
the parameter matrix P to the resist image Z can be formulated as:

Z = σZ (H (σM (P ))) . (4)
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In mask manufacturing, the printed patterns on the wafer may differ drastically under varying process
conditions (e.g. depth of focus, intensity of incident light). ILT algorithms typically consider three
process corners, maximum, nominal, and minimum. Specifically, three series of optical kernels are
employed to form the optical projection modelsHmax,Hnom, andHmin. The corresponding resist
images can be denoted by Zmax, Znom, and Zmin.

L2 loss measures the difference between the nominal resist image and the target image, defined as:
L2(Znom,T ) = ‖Znom − T ‖22. (5)

To enhance the robustness against varying process conditions, ILT algorithms are commonly required
to reduce the process variation band (PVB) defined as:

PVB(Zmax,Zmin) = ‖Zmax −Zmin‖22. (6)
ILT loss functions are usually based on L2(Znom,T ), PVB(Zmax,Zmin), and additional compo-
nents like complexity losses. Given the loss function, the parameter matrix P can be optimized by
gradient descent. The final parameter matrix P ∗ can be binarized to obtain the optimized maskM∗

by checking whether each element satisfies σM (P ∗(x, y)) > 0.5.

2.3 DNN-based Methods

For lithography simulation, conditional generative adversarial network (CGAN) [41, 42] is utilized
in LithoGAN [22], DAMO [12], and TEMPO [43]. Fourier Neural Operator (FNO) [44] inspires
DOINN [23]. These works suggest that lithography simulation via DNN models is a rapidly devel-
oping field. To distinguish the lithography model based on Hopkins’ diffraction theory from the
DNN-based models, we refer to the theory-based one as the reference lithography simulation model.

In mask optimization, DNN-based methods also achieve tremendous success. For instance, GAN-
OPC [9] trains a CGAN guided by reference optimized masks and lithography simulation for
mask optimization. Its training scheme inspires subsequent research, such as Neural-ILT [11] and
DAMO [12]. CFNO [16] presents a powerful model inspired by Vision Transformer [45] and FNO.

2.4 Lithography Datasets

ICCAD-13 [39] is a famous benchmark for mask optimization consisting of 10 2µm× 2µm metal-
layer clips. However, it is targeting numerical optimization solutions only and the 10 instances are
too small to fit AI solutions. GAN-OPC [9] releases around 4k synthetic tiles for metal-layer mask
optimization. However, its size is small for a thorough training and the quality of the optimized masks
falls behind SOTA results. Furthermore, it does not provide real-world designs and via-layer tiles,
which limits its applications. Another limitation of existing datasets is that they do not support DNN-
based lithography simulation, which is also a critical step in computational lithography. To overcome
these weaknesses, we propose LithoBench, the first comprehensive dataset that simultaneously
supports lithography simulation and mask optimization. Unlike previous datasets, LithoBench
includes abundant and diverse data that covers synthetic and real-world layout tiles, as well as metal
and via layers. The ground truths are generated by SOTA method, providing the high-quality data.

ICCAD-12 [46] is a dataset for lithography hotspot detection [47] (HSD), which aims to find the
locations on the mask that may lead to defects on the printed patterns. HSD only indicates the presence
of defects in certain regions, but provides little information for mask optimization. LithoBench focuses
on lithography simulation, which is more important than HSD, providing detailed information about
the printed patterns. Besides, AI approaches for HSD have been deeply studied in literature and are
mature in production flows. Therefore, HSD-related benchmarks are not the scope of this paper.

3 Dataset

LithoBench consists of 133,496 tiles that forms four subsets: MetalSet, ViaSet, StdMetal, and
StdContact. MetalSet and ViaSet are large subsets primarily used for training, compatible with
existing research. StdMetal and StdContact are small subsets for evaluating the generalization ability
of the models. In each subset, we prepare the target images, optimized masks, aerial images, and
printed images. In lithography simulation tasks, the input of the DNN model is an optimized mask,
and the outputs include an aerial image and a printed image. In mask optimization tasks, the input
and output are a target image and the optimized mask, respectively.

4



Table 1: Summary of LithoBench
Task Lithography Simulation Mask Optimization

Subsets MetalSet ViaSet StdMetal StdContact MetalSet ViaSet StdMetal StdContact
Training Tiles 14,824 104,733 0 163 14,824 104,733 0 163
Testing Tiles 1,648 11,642 271 165 10 10 271 165

(a) (b) (c) (d) (e)

Figure 2: Samples from (a) ICCAD-13 [39], (b) MetalSet, (c) ViaSet, (d) StdMetal, (e) StdContact.

3.1 Data Collection

3.1.1 MetalSet

ICCAD-13 benchmark [39] is a famous benchmark for metal-layer mask optimization, used in various
SOTA ILT methods [7–9,11,13–15,19]. It contains 10 tiles in GLP format [39] that come from 32nm
industrial layouts. We design MetalSet to enable the training of DNN-based model that can achieve
high performance on ICCAD-13 benchmark. We synthesize 16,472 tiles using the layout generation
method in [48]. Each tile is randomly generated following the design rules of ICCAD-13 benchmark.
The rules refer to the limitations on shape widths, distances, and areas, determined by the technology
node. The original ICCAD-13 benchmark is used to evaluate DNN-based mask optimization models
that are trained on MetalSet. This setting is compatible with existing methods [9, 11, 13, 14]. Fig. 2a
and Fig. 2b show examples of ICCAD-13 benchmark and MetalSet.

3.1.2 ViaSet

For via-layer ILT, we generate the layouts at the 45nm technology node with the IC design tool,
OpenROAD [49, 50]. We select the gcd and aes circuits from the OpenROAD project and get their
layouts in GDSII format, the de facto industry standard for electronic design automation. The Python
package python-gdsii [51] is used to extract the shapes on the first via layers of the circuits and
save them in the GLP format. We crop the layouts into 2048×2048nm2 tiles with a stride of 512nm.
Following existing ILT methods, we only include the shapes within the central region, which has a
size of 1280× 1280nm2. Finally, we get 116,415 clips of the layout. Following the MetalSet, we
select 10 tiles with different complexity for testing.

3.1.3 StdMetal and StdContact

StdMetal and StdContact subsets include the layout tiles of the Nangate 45nm standard cells [52].
Nangate 45nm is an open IC library that is widely used in academia. A standard cell is a group of
transistors and interconnect structures that provide a boolean logic function (e.g., AND, OR, XOR,
XNOR, inverters) or a storage function (flip-flop or latch). Since standard cells are typically the basic
building blocks of digital IC, the ILT of standard cells is important for manufacturing. We crop the
layouts of the standard cells in the same way as ViaSet.

The StdMetal subset consists of the tiles on the first metal layer. Since the standard cells do not use
via layers, we use the contact layer to build the StdContact subset, which also contains square shapes
like the via layer. The 271 tiles in StdMetal are used to evaluate the generalization ability of models
trained on MetalSet. Fig. 2d shows an example from StdMetal. On StdContact, we test the models
trained on ViaSet with 165 tiles. We allow the finetuning on another 163 tiles because the density of
shapes in StdContact is obviously higher than the density in ViaSet. Fig. 2c and Fig. 2e show the
examples from ViaSet and StdContact, which can illustrate the difference in density.
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3.2 Data Preparation

Target Images We parse the data in the GLP format and put the shapes in the central region of a
2048× 2048 image. Each pixel in the image corresponds to a 1× 1nm2 area of the circuit layout.

Optimized Masks We employ an ILT method inspired by [14, 40] to get the ground truths. The
lithography simulation model is given by the ICCAD-13 benchmark, which is for the 32nm technol-
ogy node. Since the resolution required by 45nm is lower than 32nm, it is also applicable for 45nm
designs. In the ILT forward pass, we apply average pooling, (3), (1), and (2) to the parameters P :

Z = σZ (H (σM (AvgPool (P )))) . (7)

Considering three process corners Hmax, Hnom, and Hmin, we can obtain three resist images
Zmax, Znom, and Zmin. The loss function is defined as:

Lf (Znom,Zmax,Zmax,T ) = ‖Zmax − T ‖22 + ‖Zmax −Zmin‖22 + Lcurv(Znom), (8)

where ‖Zmax − T ‖22 and ‖Zmax −Zmin‖22 are for the minimization of L2 and PVB, respectively.
Lcurv(Znom) is the curvature loss that can improve the smoothness of the mask [14]. In the
backpropagation, we update the parameters P via gradient descent. Inspired by multi-level ILT [40],
we optimize the mask at resolutions 256× 256, 512× 512, and 1024× 1024 for 200, 100, and 100
iterations, respectively. Finally, we get a 2048× 2048 mask by interpolating the result.

Aerial and Printed Images An aerial image I is generated by applying (1) to the optimized mask
M∗ with the nominal kernel. A printed image Z is obtained by binarizing I with Ith.

3.3 Tasks

3.3.1 Lithography Simulation

Given an optimized mask, the lithography simulation model outputs the corresponding aerial and
printed image. For MetalSet and ViaSet, we use 90% of the data as the training set and the rest as the
test set. The models trained on MetalSet can be tested on StdMetal without finetuning. The models
trained on ViaSet are tested on StdContact after the finetuning on a few data.

Mean squared error (MSE) is adopted to measure the performance of lithography simulation. Further-
more, intersection over union (IOU) and pixel accuracy (PA) [23] are utilized to evaluate the quality
of the predicted printed image. The IOU metric can be defined as:

IOU(Z,T ) =
Z1 ∩ T 1

Z1 ∪ T 1
, (9)

where Z1 and T 1 are the regions in printed patterns and target shapes, respectively. PA is defined as:

PA(Z,T ) =
Z1 ∩ T 1

T 1
. (10)

Note that we interpolate the output images to 2048× 2048 before computing any metric.

3.3.2 Mask Optimization

For mask optimization, the model predicts a well-optimized mask according to the target image.
The training splits used for mask optimization are the same as for the lithography simulation task.
However, the test data of MetalSet and ViaSet are different. We use the 10 testcases in the ICCAD-13
benchmark to test the model on MetalSet. For ViaSet, we select 10 representative tiles as the testcases.
StdMetal and StdContact provide hundreds of challenging samples for testing.

Mask optimization models aim to produce high-quality ILT results, not just mimic the reference
optimized masks. We evaluate these metrics [7, 11] after binarizing the masks and printed images:

1. L2 loss, as defined in (5), is a metric that measures the difference between the nominal resist
image and the target image. Fig. 3a visualizes the L2 loss.

2. PVB, as defined in (6), evaluates the robustness of the mask against varying process condi-
tions. Fig. 3b visualizes the PVB between the maximum and minimum process corners.
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(a) (b) (c) (d)
EPE Violation (Inner)

Resist Image (Nominal)

Target Shape L2 LossResist Image (Maximum)
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Shape on the Mask

Figure 3: Illustration of the metrics. (a) L2 measures the difference between the printed and target
images. (b) PVB quantifies the maximum discrepancy between process corners. (c) EPE estimates
the distortion of the printed image. (d) #Shots counts the rectangles needed to construct the mask.

Table 2: Comparison on Lithography Simulation
LithoGAN [22] DAMO [12] DOINN [23] CFNO [16]

Subtask MSEA MSEP IOU PA MSEA MSEP IOU PA MSEA MSEP IOU PA MSEA MSEP IOU PA
1 9.8·10−4 1.7·10−2 0.38 0.43 8.4·10−6 7.5·10−4 0.97 0.98 8.5·10−6 6.6·10−4 0.97 0.98 1.9·10−5 1.5·10−3 0.94 0.97
2 2.6·10−4 1.4·10−3 0.47 0.53 3.0·10−6 1.5·10−4 0.94 0.96 1.9·10−6 1.0·10−4 0.96 0.98 3.8·10−6 2.1·10−4 0.92 0.96
3 1.4·10−3 2.6·10−2 0.30 0.34 2.5·10−5 1.5·10−3 0.95 0.97 1.8·10−5 1.2·10−3 0.96 0.98 2.6·10−5 2.3·10−3 0.93 0.96
4 2.7·10−3 1.2·10−2 0.01 0.01 4.6·10−5 1.6·10−3 0.87 0.93 2.4·10−5 1.3·10−3 0.90 0.94 2.1·10−5 2.2·10−3 0.83 0.90

Average 1.3·10−3 1.4·10−2 0.29 0.33 2.1·10−5 1.0·10−3 0.93 0.96 1.3·10−5 8.2·10−4 0.95 0.97 1.7·10−5 1.5·10−3 0.91 0.95
Runtime 0.013 s / image 0.030 s / image 0.017 s / image 0.035 s / image

(a) (b) (c) (d) (e)

Figure 4: Lithography simulation. (a)Ground truth,(b)LithoGAN,(c)DAMO,(d)DOINN,(e)CFNO.

3. As shown in Fig. 3c, edge placement error (EPE) estimates the distortion of the resist image.
We sample probe points equidistantly on horizontal and vertical edges of the target patterns.
If the distance from the target pattern to the printed pattern is larger than the EPE constraint,
it produces an EPE violation. The number of EPE violations is the EPE score of the mask.

4. Shot count (#Shots) is the number of rectangular shots for replicating the shapes on the
mask. It can evaluate the complexity of an optimized mask. Fig. 3d shows an example,
where a shape is fitted by rectangular shots. In LithoBench, we compute the shot count
using adaptive rectangular decomposition [53] with adaptive-boxes [54] (MIT license).

Table 1 summarizes the statistics of LithoBench.

4 Experiments

4.1 Benchmarked Models

4.1.1 Lithography Simulation Models

Multiple SOTA models are implemented using PyTorch [55] and OpenILT [56] on RTX3090 GPU. For
lithography simulation, we implement LithoGAN [22], DAMO [12], DOINN [23], and CFNO [16].
The last layer of each model outputs two channels as the aerial and printed images. These models
minimize the MSE between their outputs and the ground truths.

LithoGAN A CGAN is employed to fit the reference lithography simulation model. The generator
of the CGAN is a fully convolutional network (FCN) [57] and the discriminator is a convolutional
neural network (CNN). Images are downsampled to 256 × 256 and input to the model. Note that
different models may vary in image resolution to make trade-offs between accuracy and runtime.
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Table 3: Comparison on Mask Optimization
GAN-OPC [9] Neural-ILT [11] DAMO [12] CFNO [16]

Subtask L2 PVB EPE Shots L2 PVB EPE Shots L2 PVB EPE Shots L2 PVB EPE Shots
1 43414 41290 8.7 574 36670 42666 7.3 476 32579 41173 5.4 523 47814 46131 12.5 302
2 14767 6686 8.3 166 12723 8537 6.2 263 5081 9962 0.0 176 8949 9890 0.1 184
3 25929 23715 4.6 457 20045 23548 2.4 373 16120 23796 0.2 418 26809 26814 4.2 232
4 81378 4931 73.2 276 25422 41537 3.2 265 50445 35673 26.7 458 70740 17950 55.1 396

Average 41372 19156 23.7 368 23715 29072 4.8 344 26056 27651 8.0 394 38578 25196 18.0 279
Runtime 0.010 s / image 0.025 s / image 0.028 s / image 0.040 s / image

(a) (b) (c) (d) (e)

Figure 5: Mask optimization. (a)Ground truth,(b)GAN-OPC,(c)Neural-ILT,(d)DAMO,(e)CFNO.

DAMO It improves the CGAN for lithography simulation with the backbone based on UNet++ [58]
and the multiscale discriminator inspired by pix2pixHD [59]. The resolution of DAMO is 1024×1024,
which is significantly higher than LithoGAN.

DOINN Inspired by Fourier Neural Operator (FNO) [60], DOINN utilizes a novel reduced FNO
architecture to fit the lithography simulation model. Its resolution is 1024× 1024.

CFNO Combining the principles of Vision Transformer (ViT) [45] and FNO, the CFNO module is
designed for efficient global layout embedding and resolving stitching issues caused by long-range
dependency. The resolution for CFNO is also 1024× 1024.

4.1.2 Mask Optimization Models

For mask optimization, we implement GAN-OPC [9], Neural-ILT [11], DAMO [12], and CFNO [16].

GAN-OPC CGAN also inspires the design of GAN-OPC. The training of GAN-OPC consists of
two stages. In the first stage called ILT-guided pretraining, we train the generator to minimize the
MSE between its outputs and the optimized masks. The second stage is based on the training process
of GAN. During the training of the generator, we use the L2 loss formulated by (5) as an additional
objective, where the printed image Znom is obtained by the reference lithography simulation model.
GAN-OPC uses a resolution of 256× 256.

Neural-ILT A UNet [61] is utilized in Neural-ILT to predict the optimized mask. Neural-ILT also has
a pretraining stage like GAN-OPC. In the second stage, it uses L2(Znom,T ) + PVB(Zmax,Zmin)
as the objective function. The resolution of Neural-ILT is 512× 512.

DAMO and CFNO use the same architectures as in lithography simulation.

4.1.3 Subtasks

For lithography simulation and mask optimization, we benchmark the models with the following
subtask: (1) training on MetalSet, testing on MetalSet; (2) training on ViaSet, testing on ViaSet; (3)
training on MetalSet, testing on StdMetal; (4) training on ViaSet, testing on StdContact. The last two
are more challenging since high generalization ability is required in these subtasks.

4.2 Results on Lithograph Simulation

Table 2 presents the performance of the tested models on all subtasks. MSEA and MSEP are the
MSE losses of the aerial and printed images. Fig. 4 shows the outputs images of the models. DOINN
achieves the best performance with a competitive runtime. DAMO and CFNO have comparable per-
formance, which is beyond the reach of LithoGAN. As shown in Fig. 4b, even a coarse generation of
the target shapes is too difficult for LithoGAN. This can be explained by two factors. First, LithoGAN
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uses a lower resolution than other methods, which makes it harder for LithoGAN to approximate the
shapes in a higher resolution. Second, the convolution layers in LithoGAN progressively shrink the
feature maps until they reach a size of 512× 1× 1 at the intermediate layer. Since the printed image
resembles the input mask, it is difficult to decode the complex shapes from such low-resolution feature
maps. Thus, high-resolution features and outputs are essential for accurate lithography simulation.

4.3 Results on Mask Optimization

Table 3 compares the mask optimization models on all subtasks. Fig. 5 shows the output masks of the
models. While GAN-OPC has the best PVB among these methods, it sacrifices L2 and EPE. It fails
to learn the complicated curves that improve the L2 loss due to its low resolution. With a moderate
resolution, Neural-ILT achieves moderate performance on the first three tasks. But it generalizes well
to StdContact, enabling it to achieve the best average L2 and EPE. DAMO has the best performance
on the first three tasks, while CFNO achieves lower mask complexity due to the small shot counts. In
mask optimization, the model designer may consider the trade-off between resolution, generalization,
and complexity. It is challenging to design a model that is optimal across all metrics.

5 Conclusion

In this paper, we present LithoBench, a dataset for DNN-based lithography simulation and mask
optimization with an evaluation platform. LithoBench includes 133,496 layout tiles that involve
the metal and via layers of circuit layouts. It can not only support the typical setup where a model
is trained and evaluated on similar tiles, but also evaluate the model’s generalization ability to
unseen data. Given the data, state-of-the-art DNN models for lithography simulation and mask
optimization are trained and evaluated on LithoBench to show their advantages and weaknesses. We
hope LithoBench can contribute to the further development of computational lithography.
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