

LithoBench: Benchmarking Al Computational Lithography for Semiconductor Manufacturing Su Zheng¹, Haoyu Yang², Binwu Zhu¹, Bei Yu¹, Martin D.F. Wong¹

Introduction

Semiconductor lithography

 Fail to get target patterns due to the distortion brought by lithography \rightarrow Fix it by distoring the mask!

Mask optimization: OPC vs. ILT

• ILT \rightarrow iterative optimization

- LithoBench Tasks Lithography simulation
 - Mask optimization

DNN ILT

Target Image Z_T

Su Zheng, CUHK

szheng22@cse.cuhk.edu.hk

Chinese University of Hong Kong 2 nVIDIA

Tasks

Dataset

ILT Refinement $\boldsymbol{R}(\boldsymbol{M}_{init}, \boldsymbol{T})$

Optimized Mask M

• DNN-based ILT \rightarrow end-to-end, faster

• Mask \rightarrow printed image (DNN ILT)

• Target image \rightarrow optimized mask (DNN Litho)

Optimized Mask M^*

Printed Image Z

Targets of the subsets

Subset	Target
MetalSet	for metal layers, compatible with ICCAD-1
ViaSet	for via layers, compatible with relate
StdMetal	generalization test of the model trained
StdContact	generalization test of the model trained

Data collection

Subset	Target	Tiles
MetalSet	generated following the design rules of ICCAD-13	16,472
ViaSet	cropped from the layouts generated by OpenROAD	116,415
StdMetal	cropped from the metal layer of 45nm circuit cells	271
StdContact	cropped from the contact layer of 45nm circuit cells	328

Examples

 Lithography simulation metrics $(Z_1 = \{Z = 1\})$

 Mask optimization metrics (a) *L2*; (b) *PVB*; (c) *EPE*; (d) *#Shots*

https://shelljane.github.io

Results

Lithography simulation models

Model	Architecture	Resolution
LithoGAN	CGAN with FCN generator and CNN discriminator	256×256
DAMO	CGAN with UNet++ generator and CNN discriminator	1024×1024
DOINN	Reduced Fourier neural operator architecture	1024×1024
CFNO	Vision transformer + Fourier neural operator	1024×1024

Mask optimization models

Model	Architecture	Resolution
GAN-OPC	CGAN with- the novel ILT-guided pretraining	256×256
Neural-ILT	UNet generator with complexity reduction loss	512×512
DAMO	CGAN with UNet++ generator and CNN discriminator	1024×1024
CFNO	Vision transformer + Fourier neural operator	1024×1024

Comparison on lithography simulation

		LithoG	AN		DAMO					DOINI	N	CFNO				
Subtask	MSE_A	MSE_P	IOU	PA	MSE_A	MSE_P	IOU	PA	MSE_A	MSE_P	IOU	PA	MSE_A	MSE_P	IOU	PA
1	$9.8 \cdot 10^{-4}$	$1.7 \cdot 10^{-2}$	0.38	0.43	$8.4 \cdot 10^{-6}$	$7.5 \cdot 10^{-4}$	0.97	0.98	$8.5 \cdot 10^{-6}$	$6.6 \cdot 10^{-4}$	¹ 0.97	0.98	$1.9 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	0.94	0.97
2	$2.6 \cdot 10^{-4}$	$1.4 \cdot 10^{-3}$	0.47	0.53	$3.0{\cdot}10^{-6}$	$1.5 \cdot 10^{-4}$	0.94	0.96	$1.9 \cdot 10^{-6}$	$1.0 \cdot 10^{-4}$	¹ 0.96	0.98	$3.8 \cdot 10^{-6}$	$2.1 \cdot 10^{-4}$	0.92	0.96
3	$1.4 \cdot 10^{-3}$	$2.6 \cdot 10^{-2}$	0.30	0.34	$2.5{\cdot}10^{-5}$	$1.5 \cdot 10^{-3}$	0.95	0.97	$1.8 \cdot 10^{-5}$	$1.2 \cdot 10^{-3}$	³ 0.96	0.98	$2.6 \cdot 10^{-5}$	$2.3 \cdot 10^{-3}$	0.93	0.96
4	$2.7 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$	0.01	0.01	$4.6 \cdot 10^{-5}$	$1.6 \cdot 10^{-3}$	0.87	0.93	$2.4 \cdot 10^{-5}$	$1.3 \cdot 10^{-3}$	³ 0.90	0.94	$2.1 \cdot 10^{-5}$	$2.2 \cdot 10^{-3}$	0.83	0.90
Average	$1.3 \cdot 10^{-3}$	$1.4 \cdot 10^{-2}$	0.29	0.33	$2.1 \cdot 10^{-5}$	$1.0.10^{-3}$	0.93	0.96	$1.3 \cdot 10^{-5}$	$8.2 \cdot 10^{-4}$	⁴ 0.95	0.97	$1.7 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	0.91	0.95
Runtime	0.013 s / image			0.030 s / image			0.0	017 s / ir	nage	0.035 s / image						

Comparison on mask optimization

		GAN-(OPC		Neural-ILT					DAMC		CFNO				
Subtask	L_2	PVB	EPE	Shots	L_2	PVB	EPE	Shots	L_2	PVB	EPE	Shots	L_2	PVB	EPE	Shots
1	43414	41290	8.7	574	36670	42666	7.3	476	32579	41173	5.4	523	47814	46131	12.5	302
2	14767	6686	8.3	166	12723	8537	6.2	263	5081	9962	0.0	176	8949	9890	0.1	184
3	25929	23715	4.6	457	20045	23548	2.4	373	16120	23796	0.2	418	26809	26814	4.2	232
4	81378	4931	73.2	276	25422	41537	3.2	265	50445	35673	26.7	458	70740	17950	55.1	396
Average	41372	19156	23.7	368	23715	29072	4.8	344	26056	27651	8.0	394	38578	25196	18.0	279
Runtime	e 0.010 s / image				0.025 s / image				0.028 s / image				0.040 s / image			

13 benchmark ed works on MetalSet d on ViaSet

(1)

(2)

NeurIPS 2023