
ATFormer: A Learned Performance Modelwith Transfer
Learning Across Devices for Deep Learning Tensor Programs

Yang Bai, Wenqian Zhao, Shuo Yin, ZixiaoWang, Bei Yu
Department of Computer Science and Engineering

The Chinese University of Hong Kong, Hong Kong SAR

Motivation

Pre-training a decent cost model offline requires a comprehensive dataset.
Traditional learning makes the search very time-consuming.
Existing tree-based models are insufficient for performance evaluation.
Transferable knowledge is difficult to acquire across different platforms.

Problem Formulation

We describe a DNN model as a computation graph and then define some im-
portant terminologies.
G is partitioned into a set of subgraphs S based on the graph-level optimizer.
Each search task is extracted from an independent subgraph Si on a specific
hardware platform H. Thus, we define search task Q as follows:

QH(S|G) =
{

Q1
(S1|G), Q2

(S2|G), . . . , Qn
(Sn|G)

}
, (1)

where n is the number of subgraphs in G. Note that each subgraph Si contains
a computation-intensive operator σ and σ ∈ Si. Therefore, we use Qi

(Si|G)
to represent the i−th search task in G. Each subgraph Si has its own search
space, which is determined by the input and output shapes, data precisions,
memory layout, and the hardware platform. The search space is usually large
enough to cover almost all kinds of tensor candidates.
A tensor program, denoted by p, represents an implementation of the subgraph
using low-level primitives that are dependent on the hardware platform. Each
tensor program can be considered as a candidate in the search space. We
define the hierarchical search space φ1,2, which decouples high-level structures
φ1 from low-level details φ2, allowing for the efficient exploration of potential
tensor candidates during the tuning process.
Here, we can transform a tuning problem into an optimization problem that
explores the potential tensor programs in a hierarchical search space.
Given code generation function ð, high-level structure generation parameters
φ1, low-level detail sampling parameters φ2, computation-intensive operator σ
and operator setting k (e.g., kernel size), our goal is to use φ1,2 to build a
hierarchical search space and generate tensor program p to achieve the optimal
prediction score y∗ on a specific hardware platform H.

φ∗
1,2 = arg max

φ
y,

y = fH(ð(φ1, φ2|σ, k)).
(2)

The cost model f predicts score y of the tensor program p. The accuracy of
the cost model f is crucial in finding ideal optimization configuration.

Input

Conv [a]

Matmul [e]

Computation
Graph

High-level
structure

Low-level
detail

Best
Candidate

Conv [c]

Conv [b]
Conv [b]

D
L

fr
am

ew
or

k
fr

on
te

nd
s

AT
Fo

rm
er

Output

Cost Model

Offline
DataSet

Search Space

Auto-Tuning

Full Tensor ProgramsHardware

C
od

e
ge

nr
at

io
n

ba
ck

en
ds

Search
Algorithm

Online
DataSet

Figure 1. The overview of a search-based compilation framework with computation graph,
cost model, search space, online and offline dataset.

Hierarchical Features

Coarse-grained operator embedding features: 10 dimension.
Fine-grained statement features: 164 dimension.

Placeholder: A, B
for i.0 in range(None):

for j.0 in range(None):

for k.0 in range(None):
for k.1 in range(None):

Computation Statement 1= …

High-level Structure:

 Conv2DO
utput

Feature VectorComputation Statement 2 = … …

…

Innerm
ost

statem
ent

features

O
perator

em
bedding

features

164
10

174

Figure 2. Hierarchical features of Conv2D with a full tensor program representation in the
search space.

Model Architecture

Kernel embedding layer: extract a compact feature representation.
Computation layer: captures essential information from the innermost
non-loop computation statements.
Regression layer: make the final prediction.

Feature

Score

N
orm

alization

Em
bedding

Self-A
ttention

N
orm

alizaiton

M
LP

Multi-head : 4
dimension : 512

A
ttention
Block

A
ttention
Block

M
LP

Computation Layer Regression

 Traditional Learning
 (Online Dataset)

ATForm
er

(Cost M
odel)

Figure 3. The performance model’s architecture includes two attention blocks that extract
coarse and fine-grained features of the tensor program, as well as a lightweight MLP layer for
directly predicting the score.

Transfer Learning

Source domain: collected from T4 dataset with offline.
Target domain: collected from 3090/2080 Ti with online.
Cost model: XGBoost, LSTM, ATFormer.

Source Domain

Transferable
Feature

XGBoost

LSTM

ATFormer

Source TargetTransfer Learning

Tesla T4 GPU

RTX 2080Ti GPU

Target Domain 2

Target Domain 1

RTX 3090 GPU

Figure 4. Transfer learning among different platforms.

Self-attention Mechanism

All innermost non-loop statements in a full tensor program.
Attention to capture the relationship.
Provide accuracy and speedup the compilation time.

…

…

…

… V1

V3
V2

V4

K

Q

V

Score

Correlation

Computation Statement 1= …

Computation Statement 2 = …

Computation Statement 4

Computation Statement 3 =…

for：

for：
for：

for：

Figure 5. Self-attention between statement features.

Experimental Results

cost model XGBoost LightGBM LSTM TabNet MHA ATFormer-1L ATFormer ATFormer-M
(ms/s) latency time latency time latency time latency time latency time latency time latency time latency time

ResNet-18-2080Ti 1.47 573 1.58 770 1.29 604 1.52 748 1.32 687 1.25 706 1.04 787 1.23 762

RT
X

20
80

Ti
Tr

an
sfe

r

TenSet-50 0.86 535 0.98 527 1.02 614 1.13 583 1.01 595 1.00 602 0.97 600 1.00 611
TenSet-100 0.96 533 0.98 526 1.07 615 0.82 596 0.87 602 1.00 602 0.85 594 0.84 611
TenSet-200 0.99 536 0.86 525 1.07 611 0.88 582 0.83 602 0.82 612 0.82 604 0.82 632
TenSet-300 0.89 538 0.85 526 1.02 622 0.83 583 0.85 600 0.81 609 0.89 612 0.87 607
TenSet-500 0.96 530 0.81 529 1.03 622 0.82 574 0.83 593 0.87 598 0.84 612 0.79 615

ResNet-18-3090 1.07 589 1.11 676 1.24 762 1.64 741 1.11 658 0.97 661 1.02 677 3.01 665

RT
X

30
90

Tr
an

sfe
r

TenSet-50 0.70 537 0.74 524 0.88 593 0.75 581 0.75 610 0.77 605 0.78 599 0.79 604
TenSet-100 0.71 540 0.73 526 0.83 599 0.67 620 0.65 607 0.68 601 0.66 606 0.69 614
TenSet-200 0.78 534 0.68 526 0.87 582 0.70 589 0.65 612 0.73 599 0.64 596 0.66 611
TenSet-300 0.70 536 0.68 531 0.83 616 0.66 585 0.64 617 0.67 595 0.71 607 0.66 613
TenSet-500 0.72 535 0.67 540 0.85 618 0.69 587 0.67 591 0.68 581 0.67 607 0.63 609

Table 1. Transferable adaptation evaluation between different GPU platforms on ResNet-18.

cost model XGBoost LSTM MHA ATFormer-1L ATFormer Speed up
performance (ms / s) latency time latency time latency time latency time latency time latency time

BERTbase
Traditional Learning 24.51 3028 32.89 3246 19.13 2890 18.77 2996 17.56 2874 1.39× 4.97×Transfer Learning 23.82 654 33.35 880 19.98 602 19.51 648 18.72 578

BERTlarge
Traditional Learning 51.63 5016 59.81 5540 53.21 5218 54.32 5312 46.54 5232 1.11× 5.10×Transfer Learning 52.49 1098 60.33 1302 55.88 1084 56.58 1192 47.76 1026

GPT-2large
Traditional Learning 489.12 6240 502.22 6531 467.22 6311 452.56 6380 445.52 6268 1.10× 5.69×Transfer Learning 491.24 1392 503.52 1594 468.29 1375 454.18 1272 447.31 1102

GPT-3350M
Traditional Learning 513.61 7789 542.23 8582 479.42 8082 468.59 7982 442.02 7891 1.16× 6.08×Transfer Learning 514.42 1857 543.59 2302 480.12 1890 470.52 1920 443.62 1296

Table 2. The performance of large-scale Transformer models on TenSet-500 with transfer
learning.

cost model XGBoost LSTM MHA ATFormer-1L ATFormer ATFormer-M
performance (ms / s) latency time latency time latency time latency time latency time latency time

RTX 2080Ti Traditional Learning 1.26 1026 1.02 1487 1.03 1172 1.20 1269 1.02 1382 1.71 1124
Transfer Learning 1.23 281 1.05 348 0.99 261 1.15 264 0.99 271 0.93 266

RTX 3090 Traditional Learning 0.96 1004 1.03 1235 0.79 1125 0.87 1141 0.74 2054 0.94 2018
Transfer Learning 0.98 287 1.02 270 0.77 261 0.83 269 0.76 267 0.65 264

Table 3. Pre-trained models on TenSet-500 via transfer learning with converged latency on
GPU platforms.

Methods ResNet-18 MobileNet-V2 Bert-Tiny
(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

mask? X X X X X X
pre-trained? X X X X X X
RMSE Loss? X X X
Rank Loss? X X X X X X X X X X X X X X X
AutoTVM? X X X

total latency (ms) 1.42 1.04 1.23 0.81 0.83 1.92 0.53 0.51 0.76 0.39 0.40 1.29 4.18 3.41 3.97 2.32 2.46 5.07
search time (s) 781 787 762 620 611 3274 962 1000 958 617 604 2996 1127 1141 1150 818 816 3826

Table 4. Total latency and tuning time of different methods, using ResNet-18, MobileNet-V2
and Bert-Tiny networks for end-to-end evaluation. The relative gains obtain for batch size =
1 with 300 measurement trials.

architecture n_head hidden_dim latency (ms) search time (s)

MHA

2 512 3.71 652
4 256 1.58 647
4 512 1.24 641
4 1024 1.29 652
6 768 1.48 658
8 512 1.19 658

ATFormer-1L 4 512 1.25 706
ATFormer 4 512 1.04 777

ATFormer-3L 4 512 1.23 788

Table 5. Different architecture design about ATFormer.

Methods ResNet-18
(a) (b) (c) (d) (e) (f)

Hierarchical features? X X X
XGBoost? X X
LSTM? X X

ATFormer? X X
w/o Transfer total lantency (ms) 1.47 1.63 1.29 1.58 1.04 1.18

w/o Transfer search time (s) 573 618 604 648 787 796
w/ Transfer total latency (ms) 0.96 0.98 1.03 1.12 0.84 0.91

w/ Transfer search time (s) 530 599 622 689 612 632

Table 6. Hierarchical features and performance model architecture improvements for
end-to-end evaluation.

cost model XGBoost LSTM MHA ATFormer-1L ATFormer
performance (ms / s) latency time latency time latency time latency time latency time

ResNet-18 Traditional Learning 5.28 634s 5.91 702 5.17 611 5.32 602 4.75 628
Transfer Learning 5.21 314 5.88 432 5.16 326 5.19 384 4.74 254

ResNet-50 Traditional Learning 16.42 621 18.23 632 13.51 608 12.51 584 11.62 602
Transfer Learning 20.01 342 21.99 461 18.11 338 17.91 362 17.02 318

VGG-16 Traditional Learning 29.52 845 31.54 967 28.55 799 28.71 796 25.49 812
Transfer Learning 29.41 352 31.47 378 28.46 299 28.69 278 25.46 216

BERT-Tiny Traditional Learning 13.88 862 15.22 1138 13.55 986 14.41 942 11.55 998
Transfer Learning 13.76 339 15.47 438 13.91 345 14.39 377 11.58 320

Table 7. Pre-trained models with the converged latency on the Tensor Cores.

Conclusions

A novel and effective design for optimizing tensor programs.
Self-attention blocks are utilized to explore global dependencies.
Further analysis and performance improvement on Tensor Cores.
Transfer learning from GPUs to CPUs.

Empirical Methods in Natural Language Processing (EMNLP), Singapore, 2023.

