
Heterogeneous Acceleration for Design Rule Checking

Zhuolun He, Bei Yu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

Nov. 01, 2023



1 Introduction

2 Efficient DRC

3 Parallel Sweepline for DRC

4 Heterogeneous DRC

Outline

2/19



37,888 GPUs (8,335,360 cores) + 9,472 CPUs(606,208 cores) ⇒ one ExaFLOPS (1018)

CPU-GPU Paradigm is Promising

3/19



• Placement

• Global Placement: DreamPlace [DAC’19], X-Place [DAC’22]
• Detailed Placement: ABCDPlace [TCAD’20]

• Routing

• pattern routing: FastGR [TCAD’22]
• maze routing: GAMER [TCAD’22]
• Steiner tree construction [ICCAD’22]

• Static Timing Analysis [ICCAD’20] [DAC’21]

• gate-level logic simulation [DAC’22], circuit simulation [DAC’21], logic
optimization [DAC’22], capacitance extraction [DATE’13]

• · · ·

GPU-ccelerated EDA

4/19



• verifies a deck of layout constraints

• consists of complex rules nowadays

• geometric, inter-layer, conditional rules...

• is ultra time-consuming in the design flow

1Figure from ASAP7 design rule manual

This Talk: Design Rule Checking1

5/19



Set-based

Edge-based

Example: if type1 and type 3 are
‘outside’, type2 is ‘inside’, it represents
width check

Algebraic Design Rule Checking

6/19



Binning

Corner Stitching [TCAD’84]

Layout Data Structures

7/19



• Various parallelism

• region-based, hierarchy-based, edge-based, · · ·
• task parallelism, data + task

• Various platforms

• SIMD, multiprocessors, GPU, specialized hardware, · · ·

Multiprocessor GPU Hardware Distributed

Data-
Region-

[VLSID’94]
[DAC’11]

Hierarchy- [ICPP’84] [CS’92]

Edge- [DAC’88]
[ICCAD’22]

[DAC’23]
[DAC’84]

[VLSID’20]

Task- [TR’86]

Task- and Data- [JPDC’96]

Parallel DRC

8/19



We feel that a new (open-source) design rule checking engine is necessary!

This work proposes OpenDRC, which
• aims for extremely high efficiency

• supports hierarchical designs

• provides GPU acceleration

• is available at https://github.com/opendrc/opendrc

This Work: OpenDRC

9/19

https://github.com/opendrc/opendrc


Sequential Mode

Parallel ModeRules from API Adaptive partition

Layout in BVH

OpenDRC Overall Flow

10/19



(We only consider horizontal edges.)

Problem (Distance Check)
Given a set H of horizontal segments in R2, report the
segment pairs from H2 whose horizontal projection is
nonempty, and vertical distance is smaller than δ.
Formally, we want to report:

{([l1, r1]× y1, [l2, r2]× y2) ∈ H2}
s.t. [l1, r1] ∩ [l2, r2] ̸= ∅, |y1 − y2| < δ

Problem Formulation

11/19



a[] = (4, 5, 3, 6, 2, 5, 1, 1, 0)

Suppose we have 3 threads.

1 Batching: each thread computes sums of 3 consecutive elements.

s = (?, ?, 12, ?, ?, 13, ?, ?, 2)

2 Sweeping: sweep the partial sums

s = (?, ?, 12, ?, ?, 25, ?, ?, 27)

3 Refining: compute other prefix sums

s = (4, 9, 12, 18, 20, 25, 26, 27, 27)

Parallel prefix sums

12/19



• Key idea: the prefix structure contains a set S of segments that are below current
segment within δ in y-direction

• Remains to check if each pair of segments overlap in the x-direction

a

b c

d

e

f

g

h

i

T1

T2

T3

T4

T5

T6

T7

T8

T1 = [a, a]

T2 = [a, c]

T3 = [b, d]

T4 = [d, e]

T5 = [e, f ]

T6 = [f, g]

T7 = [g, h]

T8 = [h, i]

report (a, b)

report (b, d)

report (g, h)

report (h, i)

Segments sorted by y-coordinates Prefix Violation

Vertical Sweeping

13/19



General strategies:
• Concurrent GPU computation and CPU computation.

• Concurrent GPU computation between streams.

• Overlap data transfer and computation.

• Minimize data transfer overhead.

• Avoid GPU invocation for small data batch.

Heterogeneous Acceleration

14/19



Background: In OpenDRC, layout is adaptively partitioned into rows.
• S1: GPU computation of the previous row and CPU preprocessing of the next row

can be executed concurrently.

• S2: GPU computation for horizontal edges and vertical edges can be executed
concurrently by different streams.

• S3: Data movement for one batch of data and GPU sorting of another can be
overlapped.

S3

S2

S1

CPU
Data transfer
GPU

Techniques in OpenDRC

15/19



Background: In OpenDRC, layout is adaptively partitioned into rows.
• S1: GPU computation of the previous row and CPU preprocessing of the next row

can be executed concurrently.

• S2: GPU computation for horizontal edges and vertical edges can be executed
concurrently by different streams.

• S3: Data movement for one batch of data and GPU sorting of another can be
overlapped.

• S4: Differentiate horizontal and vertical edges.

• S5: No GPU computation will be invoked if a row has only a limited number of
objects.

Techniques in OpenDRC

16/19



Design Size Rows CPU GPU GPU\S1 GPU\S2 GPU\S3 GPU\S4 GPU\S5 GPU\all

aes 294052 277 2128 189 187 193 213 192 186 202
ethmac 1007152 507 14318 436 441 455 430 520 440 534

ibex 303004 277 2404 187 194 197 194 202 193 212
jpeg 1182541 537 19692 455 465 480 458 526 503 575
sha3 301382 277 2298 180 178 192 177 185 191 217

Average 19.22 1.00 1.01 1.05 1.03 1.09 1.04 1.18

• Removing each strategy: 1% to 9% speed-down

• Still 16.3× faster than CPU when removing all five

Result

17/19



• Heterogeneous acceleration is promising

• Review efforts for efficient DRC

• Algebraic
• Layout data structures
• parallel DRC

• Heterogeneous acceleration for DRC

Summary

18/19



THANK YOU!


	Introduction
	Efficient DRC
	Parallel Sweepline for DRC
	Heterogeneous DRC

