
IT-DSE: Invariant Risk Minimized Transfer
Microarchitecture Design Space Exploration

Ziyang Yu1, Chen Bai1, Shoubo Hu2, Ran Chen2, Taohai He3, Mingxuan Yuan2, Bei Yu1, Martin Wong1
1The Chinese University of Hong Kong 2Huawei Noah’s Ark Lab 3HiSilicon

Abstract—The microarchitecture design of processors faces
growing complexity due to expanding design space and time-
intensive verification processes. Utilizing historical design task
data can improve the search process, but managing distribution
discrepancies between different source tasks is essential for
enhancing the search method’s generalization ability. In light
of this, we introduce IT-DSE, a microarchitecture searching
framework with the surrogate model pre-trained to absorb
knowledge from previous design tasks. The Feature Tokenizer-
Transformer (FT-Transformer) serves as a backbone, facilitating
feature extraction from source tasks even with varied design
spaces. Concurrently, the invariant risk minimization (IRM)
paradigm bolsters generalization ability under data distribu-
tion discrepancies. Further, IT-DSE exploits a combination of
multi-objective Bayesian optimization and a model ensemble to
discover Pareto-optimal designs Experimental results indicate
that IT-DSE effectively harnesses the knowledge of existing
microarchitecture designs and uncovers designs that outperform
previous methods in terms of power, performance, and area
(PPA).

I. INTRODUCTION

The microprocessor design cycle requires high work-
force input. It involves performance, power, and area (PPA)
co-optimization with microarchitecture design and physical
implementation. Microarchitecture determines the detailed
structures of a microprocessor. Finding out a microarchitec-
ture to achieve a sweet trade-off for PPA as early as possible
in the design cycle can reduce non-recurring engineering
costs and meet the stringent product delivery deadline.

Nevertheless, escalating computational demands and de-
creasing feature sizes have largely amplified the complexity
of the microarchitecture design task. In the industrial context,
the prevalent approach relies on computer architects to man-
ually configure design parameters, which requires both suffi-
cient domain knowledge and a considerable amount of human
labor. Besides, rapidly growing design spaces further pose
challenges due to their enormity (e.g., with potential CPU
designs reaching O(1040)), complexity from inter-feature in-
teractions, and the presence of mixed-type parameters leading
to abrupt PPA changes. To alleviate these issues, researchers
have employed machine learning-based process simulation
models to hasten exploration and reduce search overhead [1]–
[5], though their effectiveness is contingent upon the quality
of training data and model granularity.

Practical optimization often targets specific microarchitec-
tures [6], [7]. However, getting desired evaluation metric

This work is supported by The Research Grants Council of Hong Kong
SAR (No. CUHK14210723).

reports for one microarchitecture configuration through the
very-large-scale integration (VLSI) flow is time-consuming,
making diverse configurations challenging to acquire. An
approach is proposed to address this by leveraging historical
configurations for new tasks using cross-domain mixup and
Artificial Neural Network (ANN) feature extraction [8]. This
method, however, ignores intricate feature interactions, lacks
interpretability, and presumes identical design spaces for
source and target tasks, significantly limiting its applicability.
We assert the necessity of integrating historical microarchitec-
ture domain knowledge into modeling for facilitating efficient
Design Space Exploration (DSE). Our principal insight arises
from a commonality among mainstream microarchitectures:
although the configuration distributions in different tasks vary,
the characteristics of certain design features have similar or
even identical effects on PPA values in different generations
of a microarchitecture design. In other words, some design
features maintain the same influence mechanism on PPA
values for different microarchitectures.

The reasons behind the phenomenon lie in two folds. First,
different generations of microprocessors are developed based
on a common baseline microarchitecture. Minor architecture
design improvements are applied across consecutive microar-
chitecture generations. As a result, the design space has
not usually undergone significant changes between adjacent
generations. For example, a single Skylake microarchitecture
is scaled to support the server and client applications by Intel
without modifying the underlying microarchitecture struc-
tures considerably [9]. AMD EPYC and Ryzen also follow
a similar philosophy based on Zen microarchitecture [10].
Second, some general relations exist for design features due to
the similar microarchitecture design paradigm. The microar-
chitecture design paradigm refers to the overall architecture
design framework to drive the lifetime of an instruction
from fetch to commit (i.e., fetch, decode, rename, dispatch,
issue, execution, write back, memory access, and commit).
Although some speculative optimization techniques are differ-
ent, e.g., branch prediction [11], memory dependence predic-
tion [12], prefetch mechanism [13], etc., the general relations
are applicable. Consider an out-of-order microarchitecture.
The relations between the issue width and performance values
follow a well-known Instruction Window (IW) characteristic
[14], [15]. The IW characteristic unfolds the existence of
a power law relationship among the performance and the
issue width and benchmarks. Therefore, the general relations
provide opportunities for transferring knowledge learned from

previous microarchitecture generations to a new generation.
These insights motivate us to extract that relationship that

is approximately invariant among different historical source
design tasks, even equipped with different design spaces.
In this paper, we propose IT-DSE to boost the microarchi-
tecture transferring design space exploration. Given source
design tasks in either the same or different design space,
to efficiently extract expressive features, we adopt Feature
Tokenizer-Transformer (FT-Transformer) [16] as feature ex-
traction backbone and design a scheme to transfer knowledge
from the pre-trained model to a target task with a different
design space following [17]. With out-of-distribution (OOD)
explored configuration datasets, we pre-train the surrogate
model using data from multiple source tasks. By combin-
ing the invariant risk minimization (IRM) paradigm with
Bayesian inference [18], the surrogate model could learn
task-invariant features that are stable even in the case of
distributional shifts, improving the generalization ability to
unseen target design space exploration task. The design space
is explored via multi-objective Bayesian optimization flow
[19]. Model ensemble strategy [20] is utilized to improve the
uncertainty estimation, leading to finding optimal designs.
This method can be applied to massive microarchitecture
design spaces, enabling it to find—in the same amount of
time—solutions that are superior to those identified by other
search techniques. To the best of our knowledge, this is
the first design space exploration method that could transfer
domain knowledge from different source tasks, even if the
design space of source tasks can be different from the target
task.

Our major contributions are summarized as follows.
• We utilize the FT-Transformer as the feature extraction

backbone. This model is capable of processing variable-
length input parameters, allowing for its pretraining on
multiple source tasks with diverse design spaces.

• We introduce a prediction model that follows the
Bayesian invariant risk minimization paradigm to refine
the learning objective, enhancing the surrogate model’s
generalizability.

• We employ a multi-objective Bayesian optimization with
a pre-trained model ensemble as a surrogate model.
This approach characterizes the microarchitecture design
space and selects the Pareto-optimal set.

• Our framework is verified within complex industry
microarchitecture design spaces. Experimental results
exhibit excellent transfer performance across diverse
design tasks.

II. PRELIMINARIES

A. Typical Microprocessor Components

For the design of a microprocessor, there are serval
key components. Fig. 1 exhibits a typical microarchitecture
pipeline. In this paper, we mainly focus on searching for the
optimal values relates to some of those typical components.

In the front end of the pipeline, the Instruction Fetch
Unit (IFU) employs the L1 Instruction Cache (L1 I-Cache)

Instruction Fetch Unit

Front end

Instruction Decode Unit

Out-Of-Order

Back end

Floating-Point
Unit

Integer
Execution Unit Load/Store Unit

Physical
Register File

L2 Cache

L1 D-Cache

L1
I-Cache

Fig. 1 Visualization of typical microarchitecture pipeline.

to expedite instruction fetches. Decoded by the instruction
decode unit, these instructions are poised for Out-of-Order
(OoO) execution to alleviate data dependency constraints.
Following this, in the back end of the pipeline, arithmetic
computations are executed: the Integer Execution Unit (IEU)
for integer and bitwise operations and the Floating-Point Unit
(FPU) for floating-point functions, including trigonometric
and logarithmic tasks. The Load/Store Unit (LSU) orches-
trates data movements between the function unit and L1
D-Cache, leveraging the L1 Data Cache (L1 D-Cache) for
swift access to regularly used data. To further streamline
data retrieval, the L2 Cache (L2C), a secondary and larger
cache, is employed, though at the expense of increased power
usage and chip space. Collectively, these units engender ef-
ficient instruction execution and microprocessor performance
enhancement.

B. Invariant Risk Minimization

Invariant risk minimization (IRM) [21] paradigm allows for
the automatic extraction of invariant features among different
but related tasks. Let X and Y be the space of X and Y ,
respectively. Within IRM framework, the prediction function
f ′ : X → Y consists of a feature extractor ϕu(·) and a
regressor hw(·) parameterized by u and w, respectively. The
central idea is to learn a feature representation by ϕu(·) that
facilitates the development of a regressor hw(·) optimal for
all training tasks concurrently. To achieve this, ϕu(·) is opti-
mized to effectively filter out spurious features, retaining only
those that enhance the regressor’s generalization capability
across various tasks. This can be expressed as follows:

min
u,w

S∑
s=1

Rs(u,w),

s.t. w ∈ argmin
ws

Rs(u,ws),

(1)

where Rs(u,w) = EXs,Y s [L(f ′(Xs), Y s)] is the risk un-
der s-th source task. L(·) is an appropriate loss function.
Equation (1) presents a bi-level optimization challenge, with
each constraint necessitating an inner optimization, thereby

2

Multi-objective Bayesian Optimization

VLSI flow evaluation

P P A
Config

Select sample

Pareto-optimal sets

Power

Pe
rf
or
m
an
ce

Ar
ea

(b)

Surrogate model
update

Design space 2

Power

Pe
rf
or
m
an
ce

Ar
eaVLSI flow

PowerPe
rf
or
m
an
ce

Ar
eaVLSI flow

Source task 1

Source task 2 IRM
Pre-train …

Surrogate model

FT-
Transformer

Design space 1

…
…

<latexit sha1_base64="TwPeyiFBJmMe8LTcPYAxuaj+SFA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cK1hbaUDabSbt0dxN2N0Ip/QtePCji1T/kzX9j0uagrQ8GHu/NMDMvSAQ31nW/ndLK6tr6RnmzsrW9s7tX3T94NHGqGbZYLGLdCahBwRW2LLcCO4lGKgOB7WB0m/vtJ9SGx+rBjhP0JR0oHnFGbS6Ffa/Sr9bcujsDWSZeQWpQoNmvfvXCmKUSlWWCGtP13MT6E6otZwKnlV5qMKFsRAfYzaiiEo0/md06JSeZEpIo1lkpS2bq74kJlcaMZZB1SmqHZtHLxf+8bmqja3/CVZJaVGy+KEoFsTHJHych18isGGeEMs2zWwkbUk2ZzeLJQ/AWX14mj2d177J+cX9ea9wUcZThCI7hFDy4ggbcQRNawGAIz/AKb450Xpx352PeWnKKmUP4A+fzByV8jao=</latexit>

d1

<latexit sha1_base64="rjtsRBTr8eh9FpZ3O7Lbc9L/TCI=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiTF17LoxmUF+4A2lMlk0g6dmYSZiVBCf8GNC0Xc+kPu/BsnbRbaeuDC4Zx7ufeeIOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8CaciZp2zDDaS9RFIuA024wucv97hNVmsXy0UwT6gs8kixiBJtcCoeNyrBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+wMoxwOqsMUk0TTCZ4RPuWSiyo9rP5rTN0ZpUQRbGyJQ2aq78nMiy0norAdgpsxnrZy8X/vH5qohs/YzJJDZVksShKOTIxyh9HIVOUGD61BBPF7K2IjLHCxNh48hC85ZdXSadR967qlw8XteZtEUcZTuAUzsGDa2jCPbSgDQTG8Ayv8OYI58V5dz4WrSWnmDmGP3A+fwAnAY2r</latexit>

d2

<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>{

<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>{
Target task
Design space 3

…

<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>{<latexit sha1_base64="nkfyLnjO9OR99sznyWmxpQlXOUs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cK1hbaUDabTbt0dxN2J0Ip/QtePCji1T/kzX9j0uagrQ8GHu/NMDMvSKSw6LrfTmlldW19o7xZ2dre2d2r7h882jg1jLdYLGPTCajlUmjeQoGSdxLDqQokbwej29xvP3FjRawfcJxwX9GBFpFgFHMp7GOlX625dXcGsky8gtSgQLNf/eqFMUsV18gktbbruQn6E2pQMMmnlV5qeULZiA54N6OaKm79yezWKTnJlJBEsclKI5mpvycmVFk7VkHWqSgO7aKXi/953RSja38idJIi12y+KEolwZjkj5NQGM5QjjNCmRHZrYQNqaEMs3jyELzFl5fJ41ndu6xf3J/XGjdFHGU4gmM4BQ+uoAF30IQWMBjCM7zCm6OcF+fd+Zi3lpxi5hD+wPn8AYtLje0=</latexit>

dt

(a)

Fig. 2 Workflow of our proposed IT-DSE. (a) In the yellow block, source tasks 1 and 2, featuring search dimensions d1 and
d2 respectively, are employed to pre-train the surrogate model via IRM. (b) In blue block, the pre-trained surrogate model
is then utilized for Pareto-optimal set selection on the target task (with search dimension dt), using multi-objective Bayesian
optimization.

increasing problem-solving complexity. A simplified approx-
imation, known as IRMv1, was proposed in [21]:

min
u,w

S∑
s=1

Rs(u,w) + λ||∇wR
s(u,w)||2, (2)

where the risk Rs(u,w) from s-th source task is the negative
log likelihood of data: Rs(u,w) = − ln p(Ts|w,u) =
−∑ns

i=1 ln p(y
s
i |w, ϕ(xs

i)). So the objective is to learn the
optimal parameters w and u to maximize the likelihood of
source task samples.

C. Problem Formulation

In this work, we focus on improving the performance of
microarchitecture design space exploration in target tasks
with the help of transferring information from source tasks.

Definition 1 (Source Task). The source tasks are previously
explored microarchitecture designs tasks. The s-th source task
is composed of the explored sample dataset Ds containing ns

parameter vectors Xs = [xs
1, . . . ,x

s
ns
]⊤ ∈ Rns×ds and the

evaluated PPA vectors Y s = [ys
1, . . . ,y

s
ns
] ∈ Rns×3. The

design space contains ds searching dimensions.

Definition 2 (Target Task). The target task is the new
microarchitecture design space exploration task with only
the set of legal parameter configuration vectors Xt =
[xt

1, . . . ,x
t
nt
]⊤ ∈ Rnt×dt available. For the t-th target design

space, the searching dimension is dt.

Definition 3 (Pareto Optimality). For a multi-objective mini-
mization problem with M objectives, a solution x1 is deemed
to dominate solution x2 if, for all m belonging to the set
{1, ...,M}, the inequality of objective vectors fm(x1) ⩽
fm(x2) holds true, and there exists at least one k within
the same set such that fk(x1) < fk(x2); this relationship
is symbolized by x1 ⪰ x2. The collection of solutions
that remain non-dominated by others constitutes the Pareto-
optimal set, thereby establishing Pareto optimality within the
design space. This assemblage of Pareto-optimal solutions,
which represents the optimal balance of competing objectives,
is referred to as the Pareto front.

Given the defined two kinds of design tasks and the con-
cept of Pareto optimality, we can formulate our transferring
microprocessor design space exploration problem.

Problem 1 (Microarchitecture Transferring Design Space
Exploration). Given S source tasks with explored datasets
{D1, D2, . . . , DS} and the target sample Dt, the objective
is to utilize the information from historical source tasks and
improve the efficiency of finding a series of microprocessor
design configurations X in the target task that forms the
Pareto optimality among the associated subset of Y ⊂ Y,
so that X = {x|x ⪰ x′,∀x′ ∈ Xt}, Y = {f(x)|X ∈ Xt}.

III. INVARIANT RISK MINIMIZATION-BASED DESIGN
SPACE EXPLORATION FRAMEWORK

A. Overview

The workflow of our design space exploration framework
IT-DSE, which could incorporate knowledge from multiple
heterogeneous source tasks, is illustrated in Fig. 2. Each
source task consists of configurations of its own design space
and their corresponding PPA values. To accommodate varying
design spaces, the FT-Transformer ensemble is adopted as
surrogate model for robust feature extraction and uncertainty
estimation, thereby enhancing prediction reliability. To warm-
start a new task by knowledge fusion, the invariant risk
minimization paradigm is employed for surrogate model pre-
training to improve its generalization ability on the target task
with different data distribution and design space. This pre-
trained surrogate model is then transferred to the target task
for design space exploration, using a multi-objective Bayesian
optimization approach. The output of IT-DSE comprises the
explored microarchitectures from the iterative optimization
process, with Pareto optimality determined from this set.

B. Customized Surrogate Model with Transformer

It is straightforward to improve the DSE efficiency by
surrogate model pre-training. However, in real-world industry
settings, the number of search dimensions in the target task
often varies in comparison to the source task design space,
which makes surrogate models trained on source tasks not
directly applicable. To address this issue and facilitate the

3

A

B

D

Categorical
Input

Numerical
Input

-0.1

1.2

0.7

Categorical
Embeddings

Numerical
Embeddings

Linear

Linear

Linear

Concatenate
and CLS token

Transformer

Feature
Embeddings

Linear PPA

(a)

Feed Forward

Layer Norm

+

Multi-head Self-Attention

Layer Norm

+

Transformer Layer

(b)

Fig. 3 (a) FT-Transformer architecture. Firstly, Feature Tokenizer transforms input parameters into embeddings. The embedding
is then processed by the Transformer module. (b) One Transformer layer.

extraction of features from the source task while guiding
the search for optimal samples in the target task, we pro-
pose a customized surrogate model. Inspired by recent FT-
Transformer advancements [16], [17], our model uses it as a
feature extractor, jointly pre-training on multiple source tasks
to enhance exploration process efficiency.

FT-Transformer Architecture: Feature Tokenizer (FT)-
Transformer is the attention-based model with adaption for
the tabular domain. It consists of a Feature-Tokenizer layer
and multiple Transformer layers, followed by a prediction
layer, as can be seen from Fig. 3.

The Feature Tokenizer layer accepts input parameter vec-
tor x containing both numerical parameters and categorical
parameters. For i-th numerical parameter xnum

i , we compute
the feature embedding tnumi ∈ Rd via element-wise multi-
plication with corresponding m-th embedding weight vector
wm ∈ Rd, followed by adding bias term, bnumi :

tnumi = xnum
i ·wnum

i + bnumi . (3)

In the above equation, d represents the parameter embed-
ding dimension. For the j-th categorical parameter xcat

j , we
query it from lookup table wcat

j , and added with a bias term
bcatj as follows:

tcatj = e⊤j w
cat
j + bcatj , (4)

where e⊤j is the one-hot vector with only j-th element
is 1 while all others are 0. The transformed embedding
T ∈ R(1+dn+dc)×d for the vector x is the stack of all the
transformed element prepended with the output [CLS] token
[22], which serves as the aggregate representation of the input
vector for the purpose of feature extraction:

T = stack([CLS], tnum1 , . . . tnumdn
, tcat1 , . . . , tcatdc

). (5)

Given a batch of transformed embeddings from the same or
different source tasks, our goal is to identify the relationships
and dependencies between embeddings, regardless of their
distance within the sequence. Considering that, we apply the
stacked Transformer layers on the transformed embedding
T to extract the features, utilizing its self-attention mech-
anism to simultaneously analyze all input features, thereby
capturing local and global dependencies. This process fosters

versatile feature extraction, making it suitable for tasks from
various source tasks. Additionally, layer normalization and
skip-connection techniques within the Transformer mitigate
the vanishing gradient problem common in deep extractors,
facilitating efficient training.

FT-Transformer Pre-training on multiple source tasks: To
preprocess data from multiple source tasks for pre-training the
FT-Transformer model, we adopt adaptive power transforma-
tion over linear transformation to better handle heteroscedas-
ticity within each objective. Box-Cox transformation [23]
is applied when the i-th objective values are consistently
negative or positive, while Yeo-Johnson’s transformation [24]
is used for mixed positive and negative i-th objective values,
accommodating diverse value ranges.

Upon normalizing the source task datasets, a multi-source
FT-Transformer is initialized. Within the Feature-tokenizer
layer, the embedding table represents the comprehensive
union of features extracted from all source tasks under
consideration. As a simple example, for source task 1 with
only parameter vector x1 = [x1, x2] and source task 2
with x2 = [x2, x3, x4], the embedding weight is W =
[w1,w2,w3,w4]

⊤ ∈ R4×d, together with embedding bias
B = [b1, b2, b3, b4]

⊤ ∈ R4×d. The transformed embeddings
T 1 and T 2 for x1 and x2 are T 1 = stack([CLS], t1, t2) and
T 2 = stack([CLS], t2, t3, t4), respectively. The calculation
for each element depends on the feature datatype, as shown
in Equations (3) and (4).

For each PPA metric, we pre-train the FT-Transformer
with linear output layer to optimize a pre-designed objective
function, which will be discussed in the next section. Once
the pre-training is finished, the model can be transferred
to a downstream target optimization task. To accomplish
this, the Transformer layers, the linear output layer, and
the [CLS] embedding within the Feature Tokenizer layer
are utilized to initialize the target FT-Transformer model.
For target task parameters that are already present in the
source tasks, the corresponding source embedding vectors
are copied to the target Feature Tokenizer layer, ensuring
a seamless integration of prior knowledge. For previously
unseen target task parameters, a mix-up initialization strategy
is implemented. The embeddings are chosen as the convex

4

combination of two randomly selected source embedding
vectors, utilizing uniformly distributed weights.

The model is subsequently fine-tuned with the data from
the source task by employing the negative log-likelihood loss
at the outset of each Bayesian Optimization iteration. The
fine-tuned FT-Transformer model serves as a surrogate model,
aiding in the recommendation of samples.

C. Bayesian Invariant Risk Minimized Feature Extraction

Due to the limits of computational cost and strict time
budget, the number of explored configurations in each source
task will not be large in real industry. Therefore, a common
practice is to merge historical data from multiple source tasks
to incorporate valuable knowledge into the surrogate model.
However, using this simple merging strategy and learning a
predictor that minimizes the training error across the pooled
data, which is called empirical risk minimization (ERM)
principle [25], will lead to unstable task-specific features
extraction. To this end, this section describes how to learn
from data of multiple previous tasks the invariant relationship
between microarchitecture parameters and PPA objectives by
surrogate model pre-training, to further improve the efficiency
of DSE tasks.

Bayesian Inference Extension: The IRM paradigm is pro-
posed to learn from multiple tasks the invariant feature to
improve models’ generalization ability. However, directly
applying IRM on our FT-Transformer model would encounter
an overfitting issue [18]. As discussed in [26], [27], Bayesian
inference is a widely recognized technique for mitigating
overfitting, it can achieve optimal sample complexity rates in
cases of model misspecification, highlighting its efficacy in
addressing uncertainty and enhancing generalization. Consid-
ering that, we adopt the extended variant of IRMv1 proposed
in [18] by incorporating the Bayesian principle.

Given the explored dataset from s-th source task Ds =
{Xs, Y s} = {xs

i ,y
s
i }ns

i=1, we use Ts to represent the data
from s-th source task transformed by the feature extrac-
tor: Ts = {ϕu(x

s
i),y

s
i }ns

i=1. The collection of transformed
datasets of all S source tasks is represented as Tc = ∪S

s=1T
s.

If the feature extractor focuses more on task-specific fea-
tures, the distribution of transformed data Ts and the posterior
of predictor given the feature representation p(ws|Ts) will
vary across tasks s. This alteration causes the ws parameter-
based regressor to rely on the particular s-th source task,
compromising unseen target task generalization. Enhanced
generalization requires efficient learning of task-invariant
features, leading to close posterior p(ws|Ts) among different
source tasks. This should finally lead to the approximate
equivalence between the posterior from each source task
to the desired shared posterior: p(ws|Ts) ≈ p(w|Tc). The
regressor characterized by parameter w will not depend
on a certain source task. We use gu(w) ≈ p(w|Tc) and
gsu(w

s) ≈ p(ws|Ts) to represent the approximate posterior
distribution for regressor given the transformed dataset Tc

and Ts. The objective of our task-invariant feature extractor
can be expressed as:

max
u

∑
s

Egu(w)
[ln p(Ts|w,u)] + λ

(
Egu(w)

[ln p(Ts|w,u)]

− Egs
u(ws)[ln p(T

s|ws,u)]
)
. (6)

The expectation terms in Equation (6) are the expected log
likelihood of gsu(w

s) and gu(w):

Egs
u(ws)[ln p(T

s|ws,u)] =

∫
ln p(Ts|ws,u)gsu(w

s)dws,

Egu(w)[ln p(T
s
I |w,u)] =

∫
ln p(Ts

I |w,u)gu(w)dw.

We can observe that the first term in Equation (6) max-
imizes the expected log-likelihood of the shared posterior
gu(w) by optimizing over feature extractor parameter u, en-
couraging u to retain information for data distribution fitting.
The second term in Equation (6) is a penalty regularized with
weight coefficient λ. It requires transformed data distribution
to be stable among different tasks with feature extractor
ϕu(·), thus necessitates learning task-invariant features. The
standard IRM formulation in Equation (2) utilizes a single
point estimation of regressor parameter w, which may lead
to instability in situations with insufficient explored data from
source tasks. In contrast, the feature extractor using Bayesian
inference of IRM is derived by directly incorporating poste-
rior distributions, offering a more robust approach that is less
susceptible to overfitting while still capturing the underlying
relationships within the data.

Adaptive Solution: The actual posterior p(w|Tc) and
p(ws|Ts) are hard to estimate in large models. To mitigate
the issue, we use variational inference to approximate the
posterior distributions by maximizing the evidence lower
bound (ELBO). By doing so, we can express the objective
function to optimal estimation of gsu(w

s) and gu(w) from a
set of distribution G:

gsu(w
s) = argmax

g′∈G

Eg′ [ln p(Ts|w,u)− DKL(g
′||p0(w))],

(7)

gu(w) = argmax
g′

S∑
s=1

Eg′∈G[ln p(T
s|w,u)− DKL(g

′||p0(w))],

(8)

where we assume the prior of regressor parameters p0(w) are
the same for each individual source task and the collection of
source tasks. The first terms in the equation serve to maximize
the expected log-likelihood of the posterior distributions,
while the second term use Kullback-Leibler (KL) divergence
DKL(g

′||p0(w)) to minimize the statistical distance between
estimated posterior g′ and prior p0(w). Adopting mean-field
approximation which is a standard practice in variational
inference [28], we select the factorized Gaussian distributions
as a set of candidate distributions: G = {N(µ,Σ) : µ =
[w1, . . . ,wnw

]⊤,Σ = diag(σ1, . . . ,σnw
)}, where nw is the

5

dimensions of regressor parameter w. The prior is set to a
zero-mean Gaussian distribution: p0(w) = N(0, σI).

However, it is still computationally demanding to maxi-
mize ELBO in Equation (8) on all source tasks. Considering
that during the training process, gsu(w

s) approaches gu(w)
when more task-invariant features are extracted by ϕu(·).
This makes it plausible to adopt the adaption solution with
model-agnostic meta-learning in [29] to efficiently estimate
gsu(w

s), as can be expressed:

gsu(w
e) = N(µ−∇µEgu(w) ln p(T

s|w,u),Σ), (9)

where we assume gu(w) = N(µ,Σ) in the above equation
we use one step of gradient descent of µ on the transformed
data to represent the mean of the Gaussian distribution for
s-th source task.

To estimate the penalty term in Equation (6), we use
Monte Carlo samples from posterior gu(w) and gsu(w

s).
Considering that the expectation term between gu(w) and
gsu(w

s) is close, we can use the reparameterization trick [30]
with same noise variable ϵ:

w = µ+ ϵΣ, ws = µs + ϵΣs. (10)

Given the above discussion, we can express the full algo-
rithm in Algorithm 1.

Algorithm 1 Feature extraction with Bayesian IRM
Require: Feature extractor ϕu, regressor hw, collection of data

from S source task {Ds}Ss=1

Ensure: the learned task-invariant feature extractor ϕu, regressor
hw.

1: Initialization: prior ϕ0 ← N(0, σI).
2: repeat
3: for s in 1, . . . , S do
4: Sample a batch of data (Xs

batch, Y
s
batch) from Ds;

5: Transform data Ts
batch ← (ϕu(X

s
batch), Y

s
batch);

6: end for
7: Update gu(w); ▷ Equation (8)
8: for s in 1, . . . , S do
9: Update gsu(w); ▷ Equation (9)

10: end for
11: Sample gu(w) and gsu(w); ▷ Equation (10)
12: Update u to maximize objective; ▷ Equation (6)
13: until Training finished.
14: Return ϕu, hw;

D. Target Task Design Space Exploration in Feature Space

The features extracted from FT-Transformer convert raw
parameters into a more expressive and manageable latent
feature space. To efficiently searching optimal points from
latent space, we adopt the Bayesian Optimization (BO)
algorithm to conduct efficient sampling, aiming to suggest
potential candidates for evaluation. BO algorithms hinge on
a surrogate model, which statistically approximates the opti-
mization target using past data, and an acquisition function.
This function adjusts the balance between exploring untested
design spaces and exploiting known beneficial regions.

Deep Ensemble as Surrogate Model: Substantial variability
issues inherent in single-model PPA value prediction can
influence decision-making and predictive ability, particularly
with task-specificity. To counter this, we employ a customized
deep model ensemble [20] as our surrogate, aggregating
predictions from multiple models for enhanced robustness
and uncertainty estimation.

In this paper, we ensemble multiple pre-trained FT-
Transformers directly as our surrogate model. Given n eval-
uated samples Dt = {Xt, f ′(Xt)} from target task, where
Xt = {(xt

1)
⊤, (xt

2)
⊤, . . . , (xt

n)
⊤}⊤ ∈ Rn×dt and f ′(Xt) =

{(f ′(xt
1))

⊤, f ′((xt
2))

⊤, . . . , f((xt
n))

⊤}⊤ ∈ Rn×3, when a
new point xt

∗ is given, the posterior distribution p(yt
∗|xt

∗)
is approximated as a Gaussian distributions:

p(yt
∗|xt

∗) = N
(
µyt

∗|f ′(Xt),σ
2
yt
∗|f ′(Xt)

)
, (11)

which is a uniformly-weighted mixture of M ensemble
models. To improve the uncertainty estimation, each FT-
Transformer model output both the predicted mean µθm(xt

∗)
and the inherent noise term σ2

θm
(xt

∗). With the ensemble
models, we can express the posterior mean and variance:

µyt
∗|f ′(Xt) =

1

M

M∑
m=1

µθm(xt
∗), (12)

σ2
yt
∗|f ′(Xt) =

1

M

M∑
m=1

(µyt
∗|f ′(Xt) − µθm(xt

∗))
2

+
1

M

M∑
m=1

σ2
θm(xt

∗).

(13)

In Equation (13) the first term called epistemic uncertainty
estimates the uncertainty that arises from the limit num-
ber of observed samples, while the second term, aleatoric
uncertainty, is associated with the inherent noise in the
observed sample. By combing these two terms improve the
uncertainty estimation and allows for a more informed and
robust decision-making process.

Pareto EHVI Acquisition Function: Expected Hypervolume
Improvement (EHVI) [31] acquisition function is widely used
to sample Pareto-optimal set for negatively correlated objec-
tives. The hypervolume corresponds to the M-dimensional
Lebesgue measure λM of the space dominated by an approx-
imate Pareto frontier P(y) and constrained from below by a
reference point yref ∈ RM . This can be expressed as:

HVyref
(P(y)) = λM (∪y∈P(y)[y,yref]), (14)

where [y,yref] is the hyperrectangle bounded by y and
reference point yref . The hypervolume improvement (HVI)
for a new given point y∗ given previous Pareto set P(y) can
be expressed:

HV I(y∗|P(y),yref) = Vyref
(P(y ∪ y∗))− Vyref

(P(y)).
(15)

6

The EHVI computes the expectation of HVI over the posterior
distribution P (f ′(x∗)|D). In practice, EHVI is approximated
using Monte Carlo integration with K sampling times:

EHV I(x̂) = EP (f ′(x̂∗)|D) (HV I(f ′(x̂)|P(y),yref))

≈ 1

nk

K∑
k=1

HV I(f̃ ′
k(x̂)|P(y),yref).

(16)

In above equation, f̃ ′
k is the k-th function evaluation from

distribution p(f ′(x|D)). To further reduce the computational
overhead for estimation of EHVI in the whole design dataset,
in each BO iteration, we first select non-dominated potential
candidates X̂ with the mean of predicted function, then we
traverse each potential candidate and select the candidate x∗
with largest EHVI. In this way, we efficiently suggest new
points with potentially desired PPA values.

IV. EXPERIMENTAL RESULTS

We conduct experiments to evaluate the transfer perfor-
mance of proposed design space exploration method.

The experiments are performed on an in-house 64-bit
high-performance commercial microprocessor1. We generate
different microarchitecture configurations from a design space
specification sheet provided by experienced architects. We
leverage the VLSI flow to evaluate the PPA values of each
microarchitecture configuration. A single VLSI flow costs
from days to weeks to evaluate each design. For each microar-
chitecture configuration, we generate the register-transfer-
level (RTL) design from Chisel [32]. We use commercial
electronic design automation (EDA) tools to perform logic
synthesis, place, and routing with an industrial technology
node. The performance and power values are obtained from
the benchmark simulation after the physical implementation.
And the area value is also reported from the physical im-
plementation tool. Due to the commercial confidentiality of
microarchitecture, we normalize the original PPA values.

A. Transfer Design Space Exploration Experiment Setup

Design Tasks: Considering the substantial computational
resources required for online validation of each sampled
microarchitectural design, we generate offline datasets to
facilitate the design process for both source tasks and target
tasks. To prove the efficiency of our transferring design space
exploration method, we collect four design task datasets. Task
A, task B, and Task C share the same design space which is
extremely complex. TABLE I lists the number of parameters
for each datatype in each interested microarchitecture com-
ponent, together with the number of combinations. As can be
seen from the table, there exist 55 parameters with more than
3 × 1040 combinations, including ordinal, exponential (with
base 2) and categorical parameters. For task D, we can only
tune 53 parameters out of 55 parameters listed in TABLE I.
The tasks’ data distribution varies significantly, as can be seen
from the tSNE visualization Fig. 4(a). Task A, task B, task

1The details are omitted due to confidentiality.

TABLE I Statistics of our microarchitecture design space
Module # Linear #Pow # Categorical # Combinations

IFU 8 4 0 ∼ 4× 108

OoO 11 0 0 ∼ 5× 109

IEX 12 0 3 ∼ 1× 109

FSU 5 0 0 ∼ 2× 103

LSU 6 3 0 ∼ 1× 107

L2C 1 2 0 ∼ 8× 102

Overall 43 9 3 ∼ 3× 1040

C, and Task D contain 1237, 377, 1835 and 3453 evaluated
samples, respectively.

Evaluation Metrics: We adopt two commonly used eval-
uation metrics: Hypervolume (HV) as introduced in Equa-
tion (14) and average distance to reference set (ADRS) to
offer effective evaluations of the quality of the approximated
Pareto front generated. ADRS evaluates the closeness of a
learned Pareto-optimal set P to the ground truth Pareto-
optimal set P∗:

ADRS(P∗,P) =
1

|P∗|
∑
α∈P∗

min
β∈P

l2(α,β), (17)

where l2 is the l2-norm.

Model Configurations: In the settings of IT-DSE, the feature
tokenizer generates 128-dimension embedding, followed by
3 transformer layers. The number of attention heads is
8. The feed-forward multilayer perception (MLP) in each
transformer layer has 512 dimensions. The learning rate for
the Transformer layer and embedding layer is 1e − 5. The
ensemble number is 3.

Considering the large design space, every method is ini-
tialized with 56 microarchitectures sampled randomly. Then,
Bayesian optimization progressively suggests one sample per
round, yielding 150 samples overall. All experiments are
repeated 10 times along with the baseline, and the corre-
sponding average results are reported.

B. Transferring performance within same design space

In the first experiment we evaluate the performance of
design space exploration using transfer power from the same
design space. For task A, B and C, we iteratively use two
tasks as source task and left one as target task. For each
source task we use 200 samples to conduct model pre-train
and warm start the multi-objective Bayesian optimization to
select Pareto-optimal sets. There exists few previous work fo-
cusing on utilizing transferring to conduct microarchitecture
design space exploration. ANN-TL [8] builds ANN-based
microarchitecture power model with data mixup strategy. Em-
pirical risk minimization (ERM) [25] uses single multilayer
perceptron (MLP) pre-trained with the merge of source tasks
with NLL loss, For those methods, we implement them as
our surrogate models and output not only predict PPA values
but also the noise as aleatoric uncertainty. Deep ensemble
(Deep Ens) [20] utilizes ensemble of multilayer perceptrons
(MLPs) to give better uncertainty estimation, while IRMv1

7

10

Source task 1
Source task 2
Source task 3
Target task

Task A
Task B
Task C

X

Y

Task D

(a) Data distribution for 4 tasks

N
or

m
al

iz
ed

 A
re

a

Normalized Performance Normalized Power

N
or

m
al

iz
ed

 A
re

a

(b) Pareto-optimal sets using source task data from same design space. Left:
performance versus area; right: power versus area.

TABLE II Comparison of transfer performance in same
design space

A, B → C A, C → B B, C → A
Methodologies ADRS HV ADRS HV ADRS HV
Ground Truth 0.0 0.0984 0.0 0.0684 0.0 0.0809
ANN-TL [8] 0.069 0.0891 0.045 0.0643 0.031 0.0749

Deep-Ens [20] 0.072 0.0840 0.066 0.0599 0.055 0.0727
ERM [25] 0.080 0.0877 0.064 0.0629 0.043 0.0742

IRMv1 [21] 0.025 0.0938 0.023 0.0667 0.027 0.0766
Ours 0.021 0.0944 0.017 0.0679 0.020 0.0796

[21] use MLP ensemble pre-trained with IRMv1 objective
Equation (2) with source tasks.

As we can see from TABLE II, our method achieves
the best transfer performance. For three cases, our method
outperforms ANN-TL with 228.6%, 164.7% and 55.0%
drop in ADRS, together with 5.61%, 5.30% and 5.90%
improvement in Hypervolume, respectively. Compared with
Deep ensemble, our method could reduce ADRS by 242.9%,
288.2% and 175.0% with 11.02%, 11.78% and 8.67% more
Hypervolume in three cases, respectively. Compared with
ERM, IT-DSE achieves 280.9%, 276.5% and 115.0% better
ADRS with 7.10%, 7.36% and 6.78% better Hypervolume.
Besides, our method is better than IRMv1 with 19.1%, 35.3%
and 35.0% less ADRS and 0.64%, 1.77% and 3.77% more
Hypervolume for three transfer tasks. The Pareto-optimal sets
for the case (A,B → C) selected by baselines and our
method can be seen in Fig. 4(b). These results demonstrate
the superiority of our methods in finding better Pareto-optimal
sets within limited time budget.

C. Transferring performance within different design space

In the second experiment, to investigate the transfer perfor-
mance between different design spaces, we use task D with
only 53-dimensional design space to be one of the source task
(A,D → C) and the target task (A,C → D), respectively. To
the best of our best knowledge, all previous methods cannot
spread knowledge across different design spaces. Considering
this, we conduct an ablation study on each part of our
methods, all compared methods use FT-Transformer as the
backbone. The detailed results are listed in TABLE III. For
the ’w/. IRMv1’ configuration, we substitute the Bayesian
IRM principle with the original IRMv1 paradigm, using an

TABLE III Comparison of transfer performance in different
design spaces

A, D → C A, C → D
Methodologies ADRS HV ADRS HV
Ground Truth 0.0 0.0984 0.0 0.7792
w/o. Pre-train 0.0533 0.0857 0.0853 0.7465
w/o. Ensemble 0.0275 0.0892 0.0722 0.7531

w/o. IRM 0.0293 0.0910 0.0701 0.7569
w/. IRMv1 0.0232 0.0914 0.0687 0.7602

Ours 0.0217 0.0924 0.0641 0.7624

FT-Transformer ensemble. Compared to this setup, the full IT-
DSE shows a 6.9% and 7.2% reduction in ADRS and a 1.1%
and 0.3% increment in Hypervolume for the two cases. In the
’w/o. IRM’ configuration, which involves only pre-training
the FT-Transformer ensemble on source tasks without IRM
regularization, our method demonstrates 35.0% and 9.4%
improvements in ADRS with 1.5% and 0.7% increase in
Hypervolume for the listed cases. ‘w/o. Ensemble’, which
uses a single FT-Transformer pre-trained with the Bayesian
IRM objective, is outperformed by our complete method,
which exhibits 26.7% and 12.6% reductions in ADRS with
3.6% and 1.2% increments in Hypervolume. Basically, ‘w/o.
Pre-train’ just initializes the FT-Transformer ensemble with-
out pre-training on source tasks. Our IT-DSE pre-trained on
source tasks thus could gain significantly 145.6% and 33.1%
less ADRS with 7.8% and 2.1% more Hypervolume.

V. CONCLUSION

We focus on the transfer multi-objective design space
exploration problem for modern industry microarchitecture.
In this paper, we propose IT-DSE, an automatic framework
to improve transfer design space exploration performance.
To the best of our knowledge, this is the first work that
facilitates learning from prior design tasks across varied de-
sign spaces. Experimental results, drawn from complex, real-
world microarchitecture test cases, demonstrate the practical
superiority of our methods compared with other methods. We
anticipate leveraging this transfer capacity to propel modern
microarchitecture development.

ACKNOWLEDGMENT

We thank Wenlong Lv and Zhitang Chen for extremely
helpful discussions and providing the implementation of [17].

8

REFERENCES

[1] Y.-I. Kim and C.-M. Kyung, “Automatic translation of behavioral
testbench for fully accelerated simulation,” in IEEE/ACM International
Conference on Computer Aided Design, 2004. ICCAD-2004. IEEE,
2004, pp. 218–221.

[2] B. C. Lee and D. M. Brooks, “Illustrative design space studies with
microarchitectural regression models,” in 2007 IEEE 13th International
Symposium on High Performance Computer Architecture. IEEE, 2007,
pp. 340–351.

[3] J. Feldmann, K. Kraft, L. Steiner, N. Wehn, and M. Jung, “Fast
and accurate dram simulation: Can we further accelerate it?” in 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2020, pp. 364–369.

[4] S. Beamer and D. Donofrio, “Efficiently exploiting low activity factors
to accelerate rtl simulation,” in 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC). IEEE, 2020, pp. 1–6.

[5] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “Boom-
explorer: Risc-v boom microarchitecture design space exploration
framework,” in 2021 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD). IEEE, 2021, pp. 1–9.

[6] S. Salamin, M. Rapp, A. Pathania, A. Maity, J. Henkel, T. Mitra, and
H. Amrouch, “Power-efficient heterogeneous many-core design with
ncfet technology,” IEEE Transactions on Computers, vol. 70, no. 9,
pp. 1484–1497, 2020.

[7] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha et al.,
“Evolution of the samsung exynos cpu microarchitecture,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture (ISCA). IEEE, 2020, pp. 40–51.

[8] J. Zhai, Y. Cai, and B. Yu, “Microarchitecture power modeling via
artificial neural network and transfer learning,” in 2023 28th Asia and
South Pacific Design Automation Conference (ASP-DAC), 2023, pp.
1–6.

[9] “Intel Skylake,” https://en.wikichip.org/wiki/intel/microarchitectures/
skylake (server)#Overview 2.

[10] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony,
and S. White, “Pioneering Chiplet Technology and Design for the
AMD EPYC™ and Ryzen™ Processor Families: Industrial Product,” in
IEEE/ACM International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 57–70.

[11] A. Seznec and P. Michaud, “A Case for (Partially) TAgged GEometric
History Length Branch Prediction,” The Journal of Instruction-Level
Parallelism, vol. 8, p. 23, 2006.

[12] G. Chrysos and J. Emer, “Memory Dependence Prediction using
Store Sets,” in IEEE/ACM International Symposium on Computer
Architecture (ISCA). IEEE Computer Society, 1998, pp. 0142–0142.

[13] R. Bera, K. Kanellopoulos, S. Balachandran, D. Novo, A. Olgun,
M. Sadrosadat, and O. Mutlu, “Hermes: Accelerating Long-Latency
Load Requests via Perceptron-Based Off-Chip Load Prediction,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2022, pp. 1–18.

[14] T. S. Karkhanis and J. E. Smith, “A First-order Superscalar Processor
Model,” in IEEE/ACM International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2004, pp. 338–349.

[15] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanis-
tic performance model for superscalar out-of-order processors,” ACM
Transactions on Computer Systems (TOCS), vol. 27, no. 2, pp. 1–37,
2009.

[16] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting
deep learning models for tabular data,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 932–18 943, 2021.

[17] W. Lyu, S. Hu, J. Chuai, and Z. Chen, “Efficient bayesian optimization
with deep kernel learning and transformer pre-trained on multiple
heterogeneous datasets,” arXiv preprint arXiv:2308.04660, 2023.

[18] Y. Lin, H. Dong, H. Wang, and T. Zhang, “Bayesian invariant risk min-
imization,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 16 021–16 030.

[19] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[20] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

[21] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk
minimization,” arXiv preprint arXiv:1907.02893, 2019.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[23] G. E. Box and D. R. Cox, “An analysis of transformations,” Journal of
the Royal Statistical Society: Series B (Methodological), vol. 26, no. 2,
pp. 211–243, 1964.

[24] I.-K. Yeo and R. A. Johnson, “A new family of power transformations
to improve normality or symmetry,” Biometrika, vol. 87, no. 4, pp.
954–959, 2000.

[25] V. Vapnik, “Principles of risk minimization for learning theory, ad-
vances in neural information processing nips 4 (pp. 831±838),” 1992.

[26] J.-Y. Audibert, “Progressive mixture rules are deviation suboptimal,”
Advances in Neural Information Processing Systems, vol. 20, 2007.

[27] G. Lecué, “Suboptimality of penalized empirical risk minimization
in classification,” in Learning Theory: 20th Annual Conference on
Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007.
Proceedings 20. Springer, 2007.

[28] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational infer-
ence: A review for statisticians,” Journal of the American statistical
Association, vol. 112, no. 518, pp. 859–877, 2017.

[29] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[30] P. K. Diederik, M. Welling et al., “Auto-encoding variational bayes,”
in Proceedings of the International Conference on Learning Represen-
tations (ICLR), vol. 1, 2014.

[31] S. Daulton, M. Balandat, and E. Bakshy, “Differentiable expected
hypervolume improvement for parallel multi-objective bayesian opti-
mization,” Advances in Neural Information Processing Systems, vol. 33,
pp. 9851–9864, 2020.

[32] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing Hardware
in a Scala Embedded Language,” in ACM/IEEE Design Automation
Conference (DAC), 2012, pp. 1216–1225.

9

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)#Overview_2
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)#Overview_2

