

Lay-Net: Grafting Netlist Knowledge on Layout-Based Congestion Prediction

Su Zheng^{*1}, Lancheng Zou^{*2}, Peng Xu¹, Siting Liu¹, Bei Yu¹, Martin Wong¹

¹ The Chinese University of Hong Kong
 ² Wuhan University

Oct. 30, 2023

Outline

2 Algorithm

Introduction

- Placement is crucial but time-consuming
- Congestion modeling
 - Fully Convolutional Networks (FCN)¹
 - Graph Neural Networks (GNN)²
- Accurate congestion prediction enables better optimization!

¹Zhiyao Xie et al. (2018). "RouteNet: Routability Prediction for Mixed-size Designs Using Convolutional Neural Network". In: *Proc. ICCAD*, 80:1–80:8.

²Bowen Wang et al. (2022). "LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction". In: *Proc. DAC*, pp. 1297–1302.

Placement and Congestion Modeling

COMPUTERVILLOW COMPUTERVILLOW DESTAN

- Existing methods
 - Image-based: local perception without global view
 - Graph-based: insufficient modeling of physical information
- What do we need? Netlist + layout!
 - Multi-modality \rightarrow global view + sufficient information

Algorithm

Overview of the Proposed Method

- Netlist + layout \rightarrow congestion heatmap
 - \mathcal{G}_H : connection information from the netlist
 - X, Y: geometric information from the layout

$$L_H(\mathcal{G}_H, \boldsymbol{X}, \boldsymbol{Y}) = \frac{1}{NM} \|\boldsymbol{f}_H(\mathcal{G}_H, \boldsymbol{X}) - \boldsymbol{Y}\|_2^2.$$
(1)

How to Extract Layout Information?

- Layout Features
 - RUDY:

$$\mathbf{RUDY}_{e}(\mathbf{x}, \mathbf{y}) = (\frac{1}{x_{e}^{h} - x_{e}^{l}} + \frac{1}{y_{e}^{h} - y_{e}^{l}}), x \in [x_{e}^{l}, x_{e}^{h}], y \in [y_{e}^{l}, y_{e}^{h}].$$
(2)

• PinRUDY:

$$\mathbf{PinRUDY}_{p_e}(k,l) = \left(\frac{1}{x_e^h - x_e^l} + \frac{1}{y_e^h - y_e^l}\right), (x_{p_e}, y_{p_e}) \in b_{k,l}.$$
 (3)

• MacroRegion:

$$\mathbf{MacroRegion}(k,l) = \begin{cases} 1, & \text{if } b_{k,l} \text{ is in a macro cell,} \\ 0, & \text{otherwise.} \end{cases}$$
(4)

How to Extract Layout Information?

• The novel MacroMargin feature

How to Extract Layout Information?

- Network Architecture
 - Multi-scale feature extraction \rightarrow global view
 - Shifted-window self-attention \rightarrow local perception
 - Based on Swin Transformer \rightarrow good feature extractor

How to Extract Netlist Information?

• Graft the netlist knowledge on the layout-based features!

How to Extract Netlist Information?

- Heterogeneous Message Passing
 - Cell-to-cell Connections
 - Cell-to-net Connections
 - Net-to-net Connections

- Note that the "cell" here refers to a grid-cell on the layout
- A grid-cell can contain multiple cells from the netlist

Graft the Netlist Knowledge on the Layout

• Swin transformer block³ + heterogeneous message passing

³Ze Liu et al. (2021). "Swin transformer: Hierarchical vision transformer using shifted windows". In: *Proc. CVPR*, pp. 10012–10022.

Graft the Netlist Knowledge on the Layout

• Swin transformer block + heterogeneous message passing

Graft the Netlist Knowledge on the Layout

CONFURCION CONFURCION

- The Decoder: UPerNet⁴
 - Utilizing the multi-scale features

⁴Tete Xiao et al. (2018). "Unified perceptual parsing for scene understanding". In: *Proc. ECCV*, pp. 418–434.

16/24

• RouteNet⁵, GAN⁶, NAS⁷, Cross-Graph⁸, LHNN⁹, PGNN¹⁰, CircuitGNN¹¹

⁵Zhiyao Xie et al. (2018). "RouteNet: Routability Prediction for Mixed-size Designs Using Convolutional Neural Network". In: *Proc. ICCAD*, 80:1–80:8.

⁶Cunxi Yu and Zhiru Zhang (2019). "Painting on placement: Forecasting routing congestion using conditional generative adversarial nets". In: *Proc. DAC*.

⁷Chen-Chia Chang et al. (2021). "Automatic Routability Predictor Development Using Neural Architecture Search". In: *Proc. ICCAD*.

⁸Amur Ghose et al. (2021). "Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction". In: *Proc. ICCAD*.

⁹Bowen Wang et al. (2022). "LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction". In: *Proc. DAC*, pp. 1297–1302.

¹⁰Kyeonghyeon Baek et al. (2022). "Pin Accessibility and Routing Congestion Aware DRC Hotspot Prediction using Graph Neural Network and U-Net". In: *Proc. ICCAD*.

¹¹Zhihao Yang et al. (2022). "Versatile Multi-stage Graph Neural Network for Circuit Representation". In: *Proc. NeurIPS* 35, pp. 20313–20324.

Comparison Between Ours and Previous Methods

EXEMUNE ICC ANNUMERALITIONS COMPUTEINCE ON COMPUTEINCE ON

• Comparing the features of different methods

Characteristic	RUDY	Macro	No Routing	Global Info.	Cell-to-cell	Cell-to-net	Net-to-net	Multi-scale Graphs
RouteNet	 Image: A set of the set of the	\checkmark	X	×	×	X	X	×
GAN	\checkmark	\checkmark	\checkmark	×	×	X	X	×
NAS	\checkmark	\checkmark	\checkmark	×	×	X	X	×
Cross-Graph	X	×	\checkmark	×	\checkmark	X	X	×
LHNN	\checkmark	×	\checkmark	×	\checkmark	\checkmark	×	×
PGNN	\checkmark	×	\checkmark	×	\checkmark	X	X	×
CircuitGNN	\checkmark	×	\checkmark	×	\checkmark	\checkmark	×	×
Lay-Net	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table: Comparison Between Prediction Methods

Experiments

Experimental Setup

- Dataset: ISPD 2015, half for training, half for testing
- Structural similarity (SSIM) ↑:

$$SSIM(\overline{Y}, Y) = \frac{(2\mu_Y\mu_{\overline{Y}} + C_1)(2\sigma_{Y,\overline{Y}} + C_2)}{(\mu_Y^2 + \mu_{\overline{Y}}^2 + C_1)(\sigma_Y^2 + \sigma_{\overline{Y}}^2 + C_2)}.$$
(5)

• Normalized root mean square error (NRMS) \downarrow :

$$\operatorname{NRMS}(\overline{\boldsymbol{Y}}, \boldsymbol{Y}) = \frac{\|\overline{\boldsymbol{Y}} - \boldsymbol{Y}\|_2}{(Y_{\max} - Y_{\min})\sqrt{N_Y}},$$
(6)

• Score ↑:

$$\operatorname{Score}(\overline{Y}, Y) = \frac{\operatorname{SSIM}(\overline{Y}, Y)}{\operatorname{NRMS}(\overline{Y}, Y)}.$$

(7)

Comparison Between Ours and Previous Methods

Table: Comparison Between Lay-Net and Previous Methods on ISPD 2015 Benchmark

Benchmark	#Cells	#Nets	Part	RouteNet		GAN			LHNN			Lay-Net			
				SSIM	NRMS	Score	SSIM	NRMS	Score	SSIM	NRMS	Score	SSIM	NRMS	Score
des_perf_1	113k	113k	В	0.364	0.087	4.183	0.442	0.076	5.815	0.716	0.100	7.159	0.721	0.068	10.60
des_perf_a	109k	110k	А	0.499	0.072	6.930	0.542	0.081	6.691	0.789	0.079	9.987	0.778	0.061	12.75
des_perf_b	113k	113k	А	0.499	0.069	7.231	0.531	0.085	6.247	0.863	0.064	13.48	0.851	0.053	16.05
edit_dist_a	130k	131k	А	0.464	0.091	5.098	0.491	0.109	4.504	0.777	0.089	8.730	0.772	0.068	11.35
fft_1	35k	33k	А	0.432	0.087	4.965	0.482	0.102	4.725	0.753	0.079	9.531	0.755	0.060	12.58
fft_2	35k	33k	Α	0.465	0.083	5.602	0.494	0.100	4.939	0.775	0.085	9.117	0.771	0.063	12.23
fft_a	34k	32k	Α	0.470	0.105	4.476	0.489	0.114	4.289	0.651	0.113	5.761	0.826	0.094	8.787
fft_b	34k	32k	В	0.337	0.096	3.510	0.494	0.085	5.811	0.814	0.074	11.00	0.801	0.059	13.57
matrix_mult_1	160k	159k	В	0.325	0.091	3.571	0.383	0.088	4.352	0.526	0.112	4.696	0.530	0.092	5.760
matrix_mult_2	160k	159k	В	0.375	0.083	4.518	0.435	0.077	5.649	0.669	0.105	6.371	0.676	0.070	9.657
matrix_mult_a	154k	154k	В	0.391	0.089	4.393	0.451	0.085	5.305	0.599	0.092	6.510	0.603	0.088	6.852
matrix_mult_b	151k	152k	В	0.422	0.092	4.586	0.493	0.081	6.086	0.708	0.173	4.092	0.715	0.070	10.21
matrix_mult_c	151k	152k	В	0.366	0.090	4.066	0.443	0.081	5.469	0.660	0.112	5.892	0.664	0.079	8.405
pci_bridge32_a	30k	30k	В	0.301	0.102	2.950	0.356	0.095	3.747	0.675	0.115	5.869	0.530	0.092	5.760
pci_bridge32_b	29k	29k	Α	0.425	0.093	4.569	0.471	0.102	4.617	0.730	0.101	7.227	0.734	0.077	9.532
superblue11_a	954k	936k	В	0.445	0.074	6.013	0.521	0.070	7.442	0.675	0.115	5.869	0.740	0.066	11.21
superblue12	1.3m	1.3m	В	0.323	0.111	2.909	0.392	0.096	4.083	0.638	0.093	6.860	0.641	0.084	7.630
superblue14	634k	620k	Α	0.476	0.083	5.734	0.498	0.099	5.030	0.793	0.083	9.554	0.783	0.063	12.42
superblue16_a	698k	697k	Α	0.385	0.095	4.052	0.458	0.084	5.452	0.653	0.108	6.046	0.661	0.068	9.720
superblue19	522k	512k	А	0.454	0.116	3.913	0.488	0.105	4.647	0.800	0.078	10.25	0.783	0.064	12.23
Average	-	-	-	0.411	0.090	4.566	0.468	0.091	5.142	0.713	0.099	7.202	0.717	0.072	9.958
Ratio	-	-	-	0.57	1.25	0.46	0.65	1.26	0.52	0.99	1.38	0.72	1.00	1.00	1.00

Ablation Study

- ViT: vanilla vision transformer backbone
- Swin: Swin transformer backbone
- Swin+HGNN: heterogeneous fusion, without MacroMargin
- Swin+HGNN+MM: heterogeneous fusion, with MacroMargin

Training Curve & Examples

- Lay-Net converges faster than others
- Lay-Net does not misclassify like the previous method

- Lay-Net enables the multi-modal fusion of layout and netlist information
- Lay-Net achieves up to 38.9% improvement over existing methods
- The proposed MacroMargin feature is effective
- Layout-netlist information fusion works!

THANK YOU!