
AlphaSyn: Logic Synthesis Optimization with
Efficient Monte Carlo Tree Search

Zehua Pei1, Fangzhou Liu2, Zhuolun He1, Guojin Chen1, Haisheng Zheng2, Keren Zhu1, Bei Yu1
1Chinese University of Hong Kong 2Shanghai Artificial Intelligence Laboratory

Abstract—Recent years have seen rising research in logic syn-
thesis recipe generation to improve the Quality-of-Result (QoR).
However, existing approaches typically have low efficiency and
are stuck at local optima. In this work, we propose a logic
synthesis optimization framework, AlphaSyn, that incorporates
a domain-specific Monte Carlo tree search (MCTS) algorithm.
AlphaSyn enables exploration across the entire search space
while optimizing sampling points utilization. We further develop
a synthesis-specific upper confidence bound for trees (SynUCT)
algorithm for the selection phase and a well-designed learning
strategy to enhance the stability of the MCTS algorithm. The
AlphaSyn algorithm is fully parallelized for efficiency with
asynchronous MCTS exploration and significance-base resource
allocation. For standard-cell technology mapping on the ASAP
7nm library among other tasks, experimental results show that
AlphaSyn outperforms SOTA FlowTune with an average 8.74%
area reduction and 1.24× runtime speedup.

I. INTRODUCTION

Logic synthesis bridges the register-transfer level and the
optimized gate-level of circuit design through a sequence
of synthesis transformations applied iteratively for logic op-
timization. The sequence of transformations in logic syn-
thesis is typically obtained either from the heuristic scripts
offered by synthesis tools or constructed based on prior
knowledge. However, this current approach suffers from a
significant optimality gap due to the fact that different circuits
require different sequences of transformations [1]. There-
fore, the increasing demand for high quality-of-result (QoR)
has prompted the exploration of circuit-specific synthesis
sequences to improve the synthesis quality.

Research in circuit-specific synthesis sequences has been
rising in recent years. One common attempt is to utilize
machine learning techniques to classify or predict the final
QoR of synthesis sequences, which can help explore different
sequence options [1], [2]. However, these approaches require
a large dataset of pre-defined synthesis sequences for training
and evaluation and usually have limited accuracy.

Recently, researchers have shown increasing interest in
generating the sequence with specific optimization objectives.
Several reinforcement learning (RL)-based algorithms have
been proposed that treat sequence generation as a Markov
decision process (MDP). These algorithms generate synthesis
sequences in a step-by-step manner [3]–[7]. In addition, some
studies have explored using Bayesian optimization (BO) to
address this problem [8], [9]. We observe that both methods

This work is supported in part by Research Grants Council of Hong Kong
SAR (No. CUHK14210723) and Shanghai Artificial Intelligence Laboratory.

<latexit sha1_base64="auQk8gIXQvfBMSS7yxO6ZoW4TeQ=">AAAB8XicbVA9SwNBEN2LXzF+RS1tFoNgFe5E1MIiYGMZwXxgcoS9zVyyZG/v2J0Tw5F/YWOhiK3/xs5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41RwaPJaxbgfMgBQKGihQQjvRwKJAQisY3Uz91iNoI2J1j+ME/IgNlAgFZ2ilhy7CEyJmwaRXrrhVdwa6TLycVEiOeq/81e3HPI1AIZfMmI7nJuhnTKPgEialbmogYXzEBtCxVLEIjJ/NLp7QE6v0aRhrWwrpTP09kbHImHEU2M6I4dAselPxP6+TYnjlZ0IlKYLi80VhKinGdPo+7QsNHOXYEsa1sLdSPmSacbQhlWwI3uLLy6R5VvUuqud355XadR5HkRyRY3JKPHJJauSW1EmDcKLIM3klb45xXpx352PeWnDymUPyB87nDzeAkUQ=</latexit>

b

<latexit sha1_base64="auQk8gIXQvfBMSS7yxO6ZoW4TeQ=">AAAB8XicbVA9SwNBEN2LXzF+RS1tFoNgFe5E1MIiYGMZwXxgcoS9zVyyZG/v2J0Tw5F/YWOhiK3/xs5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41RwaPJaxbgfMgBQKGihQQjvRwKJAQisY3Uz91iNoI2J1j+ME/IgNlAgFZ2ilhy7CEyJmwaRXrrhVdwa6TLycVEiOeq/81e3HPI1AIZfMmI7nJuhnTKPgEialbmogYXzEBtCxVLEIjJ/NLp7QE6v0aRhrWwrpTP09kbHImHEU2M6I4dAselPxP6+TYnjlZ0IlKYLi80VhKinGdPo+7QsNHOXYEsa1sLdSPmSacbQhlWwI3uLLy6R5VvUuqud355XadR5HkRyRY3JKPHJJauSW1EmDcKLIM3klb45xXpx352PeWnDymUPyB87nDzeAkUQ=</latexit>

b
<latexit sha1_base64="gvXn9uQeoqfqcKVdjjuugPf+iYA=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1MIiYGMZwXzA5Qh7m02yZG/v2J1Tw5GfYWOhiK2/xs5/4ya5QhMfDDzem2FmXphIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6p4VIo3kCBkrcTzWkUSt4KRzdTv/XAtRGxusdxwoOIDpToC0bRSn4H+RMiZvpx0i1X3Ko7A1kmXk4qkKPeLX91ejFLI66QSWqM77kJBhnVKJjkk1InNTyhbEQH3LdU0YibIJudPCEnVumRfqxtKSQz9fdERiNjxlFoOyOKQ7PoTcX/PD/F/lWQCZWkyBWbL+qnkmBMpv+TntCcoRxbQpkW9lbChlRThjalkg3BW3x5mTTPqt5F9fzuvFK7zuMowhEcwyl4cAk1uIU6NIBBDM/wCm8OOi/Ou/Mxby04+cwh/IHz+QMtnpHV</latexit>rw

<latexit sha1_base64="gvXn9uQeoqfqcKVdjjuugPf+iYA=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1MIiYGMZwXzA5Qh7m02yZG/v2J1Tw5GfYWOhiK2/xs5/4ya5QhMfDDzem2FmXphIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6p4VIo3kCBkrcTzWkUSt4KRzdTv/XAtRGxusdxwoOIDpToC0bRSn4H+RMiZvpx0i1X3Ko7A1kmXk4qkKPeLX91ejFLI66QSWqM77kJBhnVKJjkk1InNTyhbEQH3LdU0YibIJudPCEnVumRfqxtKSQz9fdERiNjxlFoOyOKQ7PoTcX/PD/F/lWQCZWkyBWbL+qnkmBMpv+TntCcoRxbQpkW9lbChlRThjalkg3BW3x5mTTPqt5F9fzuvFK7zuMowhEcwyl4cAk1uIU6NIBBDM/wCm8OOi/Ou/Mxby04+cwh/IHz+QMtnpHV</latexit>rw

<latexit sha1_base64="auQk8gIXQvfBMSS7yxO6ZoW4TeQ=">AAAB8XicbVA9SwNBEN2LXzF+RS1tFoNgFe5E1MIiYGMZwXxgcoS9zVyyZG/v2J0Tw5F/YWOhiK3/xs5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41RwaPJaxbgfMgBQKGihQQjvRwKJAQisY3Uz91iNoI2J1j+ME/IgNlAgFZ2ilhy7CEyJmwaRXrrhVdwa6TLycVEiOeq/81e3HPI1AIZfMmI7nJuhnTKPgEialbmogYXzEBtCxVLEIjJ/NLp7QE6v0aRhrWwrpTP09kbHImHEU2M6I4dAselPxP6+TYnjlZ0IlKYLi80VhKinGdPo+7QsNHOXYEsa1sLdSPmSacbQhlWwI3uLLy6R5VvUuqud355XadR5HkRyRY3JKPHJJauSW1EmDcKLIM3klb45xXpx352PeWnDymUPyB87nDzeAkUQ=</latexit>

b

A

B C B D

Search Tree Search
Forward

A

B

C D

<latexit sha1_base64="auQk8gIXQvfBMSS7yxO6ZoW4TeQ=">AAAB8XicbVA9SwNBEN2LXzF+RS1tFoNgFe5E1MIiYGMZwXxgcoS9zVyyZG/v2J0Tw5F/YWOhiK3/xs5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41RwaPJaxbgfMgBQKGihQQjvRwKJAQisY3Uz91iNoI2J1j+ME/IgNlAgFZ2ilhy7CEyJmwaRXrrhVdwa6TLycVEiOeq/81e3HPI1AIZfMmI7nJuhnTKPgEialbmogYXzEBtCxVLEIjJ/NLp7QE6v0aRhrWwrpTP09kbHImHEU2M6I4dAselPxP6+TYnjlZ0IlKYLi80VhKinGdPo+7QsNHOXYEsa1sLdSPmSacbQhlWwI3uLLy6R5VvUuqud355XadR5HkRyRY3JKPHJJauSW1EmDcKLIM3klb45xXpx352PeWnDymUPyB87nDzeAkUQ=</latexit>

b
<latexit sha1_base64="gvXn9uQeoqfqcKVdjjuugPf+iYA=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1MIiYGMZwXzA5Qh7m02yZG/v2J1Tw5GfYWOhiK2/xs5/4ya5QhMfDDzem2FmXphIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6p4VIo3kCBkrcTzWkUSt4KRzdTv/XAtRGxusdxwoOIDpToC0bRSn4H+RMiZvpx0i1X3Ko7A1kmXk4qkKPeLX91ejFLI66QSWqM77kJBhnVKJjkk1InNTyhbEQH3LdU0YibIJudPCEnVumRfqxtKSQz9fdERiNjxlFoOyOKQ7PoTcX/PD/F/lWQCZWkyBWbL+qnkmBMpv+TntCcoRxbQpkW9lbChlRThjalkg3BW3x5mTTPqt5F9fzuvFK7zuMowhEcwyl4cAk1uIU6NIBBDM/wCm8OOi/Ou/Mxby04+cwh/IHz+QMtnpHV</latexit>rw

Selection
Backtracking

<latexit sha1_base64="3WrAXKkJ5LGqMeEqsF5frRokEhM=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lEVDwVvHisYD+gDWWznbZLN5uwOymW0H/ixYMiXv0n3vw3btsctPXBwOO9GWbmhYkUBj3v2ymsrW9sbhW3Szu7e/sH7uFRw8Sp5lDnsYx1K2QGpFBQR4ESWokGFoUSmuHobuY3x6CNiNUjThIIIjZQoi84Qyt1XbeD8ISIWcgkUxymXbfsVbw56Crxc1ImOWpd96vTi3kagUIumTFt30swyJhGwSVMS53UQML4iA2gbaliEZggm18+pWdW6dF+rG0ppHP190TGImMmUWg7I4ZDs+zNxP+8dor9myATKkkRFF8s6qeSYkxnMdCe0MBRTixhXAt7K+VDphlHG1bJhuAvv7xKGhcV/6py+XBZrt7mcRTJCTkl58Qn16RK7kmN1AknY/JMXsmbkzkvzrvzsWgtOPnMMfkD5/MHTDaUEw==</latexit>

balance
<latexit sha1_base64="VHBgpbJVCCFbuX9N20tDbpzYLpY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgqSRSVDwVvHisYD+gDWWznbRLN5uwO6mW0H/ixYMiXv0n3vw3btsctPXBwOO9GWbmBYngGl332yqsrW9sbhW3Szu7e/sH9uFRU8epYtBgsYhVO6AaBJfQQI4C2okCGgUCWsHodua3xqA0j+UDThLwIzqQPOSMopF6tt1FeELETMGj4gjTnl12K+4czirxclImOeo9+6vbj1kagUQmqNYdz03Qz6hCzgRMS91UQ0LZiA6gY6ikEWg/m18+dc6M0nfCWJmS6MzV3xMZjbSeRIHpjCgO9bI3E//zOimG137GZZIiSLZYFKbCwdiZxeD0uQKGYmIIZeZxzhw2pIoyNGGVTAje8surpHlR8S4r1ftquXaTx1EkJ+SUnBOPXJEauSN10iCMjMkzeSVvVma9WO/Wx6K1YOUzx+QPrM8fqDyUTw==</latexit>

rewrite

Suboptimal path

Positive path

<latexit sha1_base64="gvXn9uQeoqfqcKVdjjuugPf+iYA=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1MIiYGMZwXzA5Qh7m02yZG/v2J1Tw5GfYWOhiK2/xs5/4ya5QhMfDDzem2FmXphIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6p4VIo3kCBkrcTzWkUSt4KRzdTv/XAtRGxusdxwoOIDpToC0bRSn4H+RMiZvpx0i1X3Ko7A1kmXk4qkKPeLX91ejFLI66QSWqM77kJBhnVKJjkk1InNTyhbEQH3LdU0YibIJudPCEnVumRfqxtKSQz9fdERiNjxlFoOyOKQ7PoTcX/PD/F/lWQCZWkyBWbL+qnkmBMpv+TntCcoRxbQpkW9lbChlRThjalkg3BW3x5mTTPqt5F9fzuvFK7zuMowhEcwyl4cAk1uIU6NIBBDM/wCm8OOi/Ou/Mxby04+cwh/IHz+QMtnpHV</latexit>rw

Fig. 1 Illustrations of our proposed search tree and previous
one-way forward search in logic synthesis optimization.

are inefficient in exploring the solution space. Both the exist-
ing RL-based and BO-based methods perform in a “forward”
process (illustrated in the right part of Fig. 1), where a
sequence is first generated as a trajectory and then evalu-
ated as a whole. They lack enough exploration, especially
on the earlier transformation, which is critical to overall
performance [6]. On the other hand, some research attempts
to tackle the efficiency issue by restricting the search space
with heuristics [6], [10]. Such an approach improves search
efficiency and quality by allocating more exploration efforts
within the reduced solution space. However, this approach
overlooks the long-term effects of transformation selection
and may result in non-ideal convergence to a local optimum.

Exploring the logic optimization sequences for a circuit
can be fundamentally regarded as constructing a search
tree. Each stage of the sequence is equated to a node within
this tree. At such a node, positive feedback could encourage
us to proceed further. However, in a suboptimal decision,
the opportunity to revisit and revise the decision is equally
important. This balancing act between pushing forward and
going back is often a matter of managing resources and
time, known as the exploration-exploitation trade-off. The
dilemma here lies in deciding whether to keep moving
forward in search of further outcomes or to retrace steps to
choose a different path (as illustrated in the left part of Fig. 1).
The search strategy on the search tree ultimately determines
the efficiency of logic synthesis sequence generation.

In this paper, we propose to use Monte Carlo tree
search (MCTS) to aid sequence generation in logic op-
timization. We design a framework, AlphaSyn, for logic
sequence generation, by customizing MCTS with the domain-
knowledge in logic synthesis. It leverages MCTS to balance

the exploration-exploitation trade-off and hence maximizes
the search efficiency of the logic optimization sequence. The
contributions of this paper are summarized as follows:

• We introduce MCTS to logic synthesis sequence gener-
ation and develop a framework, AlphaSyn, for efficient
exploration of logic transformation.

• We incorporate domain knowledge in logic synthesis and
propose a customized MCTS algorithm. A synthesis-
specific upper confidence bound for trees (SynUCT)
algorithm is designed for the selection phase, balancig
both the exploration-exploitation and immediate-long
term trade-off. Simultaneously, a corresponding back-
propagation algorithm is designed for backtracking and
updating the statistics.

• We propose techniques to accelerate AlphaSyn further.
Resources for sequence stage exploration are allocated
by a significance-based allocator, which allows Al-
phaSyn to prioritize and concentrate on more crucial
steps. An asynchronous parallel algorithm is proposed
to expedite the exploration of MCTS within AlphaSyn.

• For standard-cell technology mapping on the ASAP 7nm
library among other tasks, experimental results demon-
strate that AlphaSyn surpasses SOTA FlowTune with
an average 8.74% reduction in area, while exhibiting
a 1.24× acceleration in runtime.

II. BACKGROUND

A. Logic Optimization and Technology Mapping

Logic synthesis converts register-transfer level (RTL) cir-
cuit descriptions into gate-level netlists, optimizing design
objectives like area, delay, and power. Logic optimization
commonly employs a directed acyclic graph (DAG) represen-
tation, which captures the circuit logic as a logical network.
And-inverter-graph (AIG) [11] is a commonly used Boolean-
complete representation for logic network, where each node
represents a 2-input AND gate and each directed edge can be
marked as a NOT gate (inverter). The logic network plays
a central role in logic optimization and technology mapping
processes. Logic optimization involves transforming the AIG
based on various objectives, such as minimizing the number
of nodes or logic levels. In technology mapping, the logic-
optimized AIG is obtained by logic minimization, and the
logic network is then expressed using a set of pre-designed
and pre-characterized gates from a technology library [12].
The processing of logic optimization is independent of the
target implementation technology. However, the logic op-
timization outcomes have a direct impact on the goals of
technology mapping, altering the area and delay of the
resulting netlists.

ABC [13] is a synthesis and verification framework
with multiple synthesis transformations that target vari-
ous logic optimizations on AIG and enable technology
mapping. These well-designed transformations, including
rewrite (rw), rewrite -z (rwz), balance (b), refactor

-z (rfz), refactor (rf), and resub -K 6 (rsk6), are built

with various algorithms and target different objectives. We
evaluate AlphaSyn on both logic optimization and technology
mapping on the well-adopted ABC system.

B. Synthesis Sequence and Search Space Exploration

Circuit logic optimization typically employs a synthesis
sequence, which involves iteratively applying synthesis trans-
formations to the logic network. The effect of a transfor-
mation on a particular logic network is in general hard to
predict. Consequently, evaluating a synthesis sequence often
requires applying the transformations to the actual circuit,
which can be time-consuming. When generating a circuit-
specific synthesis sequence, a typical approach is to decide
the appropriate synthesis transformation to apply at each
step [3], [4]. Given n synthesis transformations to select and
a total sequence length of L, we have the theoretical search
space of the synthesis sequence: nL, which is exponentially
growing w.r.t the length L. The SOTA synthesis sequence
generation algorithm, FlowTune, limits the theoretical search
space to a multi-set permutation problem by enforcing all
the transformations to be applied a fixed number of times to
reduce search space and improve exploration efficiency [1],
[6]. For example, m-repetition sequences are the sequences
where each transformation is applied m times.

III. MOTIVATION

We conduct motivational analysis and observe the fol-
lowing properties of the logic synthesis sequences. These
observations inspire us to design the AlphaSyn algorithm.

Earlier transformation matters. As detailed discussed in
FlowTune [6], the earlier transformations work effectively
during the optimization of the logic network and dominate
the synthesis sequence’s performance. In the unrestricted
sequence, it is more crucial to employ this insight to make full
use of the resources due to the exponentially growing search
space. In fact, for MCTS in AlphaSyn, we emphasize the
“accumulated statistics” of the search tree, which is closely
related to this observation.

Long-term effect of the transformation selection. We take
the logic optimization task as an example, whose objective
is to reduce the number of and_node in the AIG. A
greedy strategy is to select the transformation that reduces
nodes the most at each step, which is driven by immediate-
return. Meanwhile, a counterpart algorithm is designed by
modifying the greedy algorithm through forcing the balance

(b) on the second index, which is not designed to reduce
the node number. We build two sequences with these two
algorithms and apply them to the design bfly from the
VTR 8.0 benchmark [14]. The transformed and_nodes
(#TNodes) that represents the and_node number reduced
by the corresponding AIG transformations are calculated.
And the final AIG and_node numbers (#Final) after ap-
plying these sequences are represented. As in TABLE I,
the balance (b) in modified greedy sequence reduced much
fewer nodes (130) than the refactor -z (rfz) (671) in

2

TABLE I Results for greedy and modified greedy algorithms
with design bfly from VTR 8.0 benchmark [14]. “#Tnodes”
denotes the number of the AIG and_node number Trans-
formed by the corresponding AIG transformation. “#Final”
denotes the final AIG and_node number.

Greedy rw rfz rwz rf rsk6 rwz #Final
#TNodes 2083 671 319 250 172 91 25324

Modified Greedy rw b rf rsk6 rwz rf #Final
#TNodes 2083 130 963 265 174 140 25155

Selection Expand &
Evaluation Backpropagation

BackTracking

Resource Allocator Async. Parallelization

Synthesis Tools Neural Network

Selection
BackTracking

Decision Making
<latexit sha1_base64="0elw6W6VrXQnnm4BNVUuS3VDifs=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpypBCDhWcOFYJPqQ0qhyXKe16jiRvQGq0E/hwgGEuPIl3PgbnDYHaJnVSqOZXXk9QSK4Bsf5tkorq2vrG+XNytb2zu6eXd1v6zhVlLVoLGLVDYhmgkvWAg6CdRPFSBQI1gnG17nfuWdK81jewSRhfkSGkoecEjBS3672gD1CEGZeD+flT/t2zak7M+Bl4hakhgo0+/ZXbxDTNGISqCBae66TgJ8RBZwKNq30Us0SQsdkyDxDJYmY9rPZ6VN8bJQBDmNlWgKeqb83MhJpPYkCMxkRGOlFLxf/87wUwks/4zJJgUk6fyhMBYYY5zngAVeMgpgYQqji5lZMR0QRCiatignBXfzyMmmf1t3z+tntWa1xVcRRRofoCJ0gF12gBrpBTdRCFD2gZ/SK3qwn68V6tz7moyWr2DlAf2B9/gBbCpNr</latexit>

[]

Fig. 2 The overview of AlphaSyn.

the greedy sequence. However, for the final and_node
number, the modified greedy algorithm can even achieve
better performance. Such phenomenon can be due to the fact
that balance (b) is useful for restructuring logic, allowing
more node reduction possibilities, which is considered to be
the long-term effect. Therefore, taking both immediate and
long-term effects into account is necessary to select each
synthesis transformation and optimize the synthesis sequence.

Based on the above analysis, we develop our domain-
knowledge driven MCTS algorithm.

IV. FRAMEWORK

In this section, we describe our framework AlphaSyn from
an overview to the details of domain-specific MCTS, learning
strategies for MCTS, and acceleration techniques.

A. Framework Overview

AlphaSyn incorporates a domain-specific MCTS to build
the search tree for synthesis sequence generation. The frame-
work overview is illustrated in Fig. 2. Within the MCTS, there
are mainly three phases: Selection, Expansion & Evaluation,
and Backpropagation. The Selection phase performs forward
selection on the search tree, while the backpropagation phase
performs backward statistics update. Between them, the Ex-
pansion & Evaluation phase expands new nodes and evaluates
the selection results by interacting with the synthesis tools,
with or without the neural network assistance. This process
is iteratively implemented by backtracking to the root node
and re-selecting based on previous statistics.

In the rest of this section, we presents the details of the
AlphaSyn framework in enabling the efficient and effective
logic synthesis sequence exploration.

• Customized MCTS for Logic Synthesis Optimiza-
tion. Previous MCTS algorithms implemented on board

games are designed based on the acquisition of reward
after the entire sequence [15], [16]. However, this is
inefficient for logic synthesis optimization, where the
reward can be obtained immediately by interacting with
the synthesis tools. We develop the customized algo-
rithm SynUCT, which can take the immediate-long term
effect into consideration combined with the exploration-
exploitation trade-off. (Section IV-B)

• Stable Learning Strategies. Despite AlphaSyn can
already achieve SOTA performance, the results can still
have a bit of variation due to the exploratory search
in MCTS. Therefore, several learning strategies are
proposed to enhance the stability of MCTS with a neural
network (PQnet), where the past observations are learned
to assist present sampling. (Section IV-C)

• Acceleration for MCTS. Although AlphaSyn has the
ability to efficiently balance the exploration-exploitation
trade-off, it needs resources to execute the search al-
gorithm and interact with the synthesis tools. We de-
sign a resource allocator and an asynchronous parallel
algorithm to accelerate the MCTS, which can further
reduce the runtime and maintain the performance. (Sec-
tion IV-D)

B. Domain-Specific MCTS

AlphaSyn uses a customized MCTS algorithm to explore
the logic synthesis sequence generation, which is widely used
in RL. Given an AIG G0 of a circuit design, assume that we
need to generate a sequence of length L with synthesis trans-
formations Ti, i = 1, 2, 3, . . . , L. By conducting the synthesis
transformation Ti, new AIG Gi is iteratively constructed from
the previous one Gi−1, Gi = Ti(Gi−1), until the final AIG
GL is obtained. To generate the synthesis transformation Ti,
a search tree is built when regarding the AIG Gi−1 as the
root node represents the initial state s0i−1, s0i−1 = Gi−1.

The search tree is progressively assembled during the
search, with each node incorporated as the search algorithm
continues. With more searches executed, the tree expands
and increases in size and depth. The details of each phase
in MCTS are described as follows.

Selection. The selection phase is illustrated in Fig. 3. Each
none-leaf node in the search tree contains edges (s, a) for all
the actions a in the action space A, where these actions are
the synthesis transformations to be selected. An edge between
a parent node and a child node represents an AIG transfor-
mation. From the root node state s0 (omitting subscript for
convenience), we continuously select child nodes until a leaf
node sT is reached at time-step T. At each time-step t < T, an
action (at) is selected according to the child nodes statistics,
which is based on our synthesis-specific upper confidence
bound for trees (SynUCT) algorithm. Our proposed SynUCT
algorithm is a variant of the PUCT algorithm [17], where we
consider both the immediate and long-term effects. Let st,a

be defined as the child node with a new AIG state obtained by

3

<latexit sha1_base64="Dj2IKX3vNrD9+FWUvHT2WP4pFtw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaWDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTSvXl0e+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1buont+dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AED942i</latexit>

s0
<latexit sha1_base64="ykJ6jwC+kZjitSu2ppeSE7ScGyo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaWDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTSvXn0euWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1buont+dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEFe42j</latexit>

s1

<latexit sha1_base64="vqyRInPFwL8oozdOpjHlYcuseZU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBlcwOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmZ+64lrI2L1gOOE+xEdKBEKRtFK9+ax0iuW3LI7B1klXkZKkKHeK351+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6likbc+JP5qVNyZpU+CWNtSyGZq78nJjQyZhwFtjOiODTL3kz8z+ukGF75E6GSFLlii0VhKgnGZPY36QvNGcqxJZRpYW8lbEg1ZWjTKdgQvOWXV0mzUvYuytW7aql2ncWRhxM4hXPw4BJqcAt1aACDATzDK7w50nlx3p2PRWvOyWaO4Q+czx8G/42k</latexit>

s2

<latexit sha1_base64="imjyQ+Xj+5KYmfVf1NHZ+qzbcJg=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHASmaHASbMzm5mek3Ihk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+cS1EZF6wHHM/ZAOlOgLRtFK9+bxvFssuWV3BrJMvIyUIEOtW/zq9CKWhFwhk9SYtufG6KdUo2CSTwqdxPCYshEd8Laliobc+Ons1Ak5sUqP9CNtSyGZqb8nUhoaMw4D2xlSHJpFbyr+57UT7F/5qVBxglyx+aJ+IglGZPo36QnNGcqxJZRpYW8lbEg1ZWjTKdgQvMWXl0njrOxdlCt3lVL1OosjD0dwDKfgwSVU4RZqUAcGA3iGV3hzpPPivDsf89ack80cwh84nz8Ig42l</latexit>

s3 Suboptimal path

Search tree state

Leaf node

<latexit sha1_base64="s8/qbN7E6idaeuA1LPI1k9/guPk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4ZONAA==</latexit>s

SynUCT

Fig. 3 The selection phase in MCTS. From the root s0 of the
search tree, transformations are selected iteratively based on
SynUCT.

applying the transformation a on the AIG state st. Specially,
st+1 = st,a

t

. The proposed SynUCT is defined as follows:

at = argmax
a∈A

(Qt,a +Rt,a + U t,a). (1)

The action at that achieves the max (Q+R+U) value will be
selected. Qt,a represents the long-term return that the AIG
state s applies the transformation a, which is calculated as
in (6). Rt,a represents the immediate reward that the AIG
state s applies the transformation a, which is stored as in (3).
U t,a is a balance mechanism controlling the exploitation-
exploration trade-off, which is computed as follows:

U t,a = cpuct · P t,a ·
√
N t

N t,a + 1
. (2)

The cpuct is a constant determining the level of exploration.
N t and N t,a represent the number of times the current (par-
ent) node st and the child st,a have been visited, respectively.
P t,a is the prior probability assigned when leaf nodes are
evaluated. Particularly, we add Dirichlet noise to the prior
probabilities in child nodes of the root node s0 following
the classical strategy [16]: (1 − ϵ)P 0,a + ϵη, where ϵ is
a constant value and η ∼ Dir(α) with parameter α. By
incorporating U t,a, SynUCT prefers the actions with low
visit count, together with the impact of immediate and long-
term returns. The structure of SynUCT results in a powerful
form of iterated exploration on both immediate-long-term and
exploitation-exploration trade-offs.

Expansion & Evaluation. When the selection stops at the
leaf node sT , the new AIG is generated and the reward
RT is calculated after interacting with the synthesis tools to
obtain the objective value. The objective value at time step
t is denoted as Ot. For example, in the task of and_node
minimization, Ot represents the and_node number for AIG
state st. Then RT is defined as follows:

RT = sgn(OT−1 −OT) ·
√
|OT−1 −OT|

baseline
. (3)

The square root
√
· is applied as a normalization of the

objective values on different sequence steps. The baseline
is also a normalization, computed as the mean reduction on
the objective by applying a heuristic script on the initial AIG
G0. In case the heuristic script cannot give a reduction on the
objective, baseline is set as 1/1000 of the initial objective for

G0. A sign function sgn is set in case that the new objective
OT is larger than OT−1.

AlphaSyn can optimize synthesis with multi-objectives,
which is important to explore the Pareto-optimal for trade-
off synthesis objectives, such as area and delay. AlphaSyn
addresses this through the integration of linear combinations
for trade-off objectives:

RT = (1− β) ·RT
1 + β ·RT

2 , (4)

where the reward stored in the search tree (RT) is calculated
by combing the rewards of trade-off objectives, RT

1 and RT
2 .

A parameter, β, is employed to balance these objectives.
If the leaf node is not a terminal node, edges repre-

senting actions a in A are added. The prior probabilities
pT,a and long-term return estimation QT

es is then assigned.
For network-assisted cases, a dual-head neural network is
employed to produce them. For a network-free alternative,
the prior probabilities are set as the uniform distribution, and
QT

es is set as 0. Finally, the new leaf nodes are initialized
with initial statistics as {NT,a = 0, QT,a = 0, PT,a = pT,a}.
Backpropagation. Once RT has been calculated, the
algorithm starts to backtrack and update the informa-
tion of all nodes visited during the selection phase, i.e.,
s0, s1, s2, . . . , sT . Information is recursively updated with the
order from the leaf node sT to the root node s0. First, the
node visit count is updated:

N t ←− N t + 1. (5)

Then, the long-term return Q is updated for t < T:

Qt ←− λ ·max
a∈A

(Qt,a +Rt,a), (6)

where λ is a constant discount, controlling the balance of
the immediate-long-term trade-off. Qt,a is represented by the
estimated Qt,a

es for the nodes that have just been expanded.
This algorithm chooses the max value of the child nodes’
(Q + R). Hence, the long-term value Q of a node is com-
puted by aggregating the discounted rewards and discounted
estimated long-term returns of its successors. On the other
hand, the estimated Qes can be relatively inaccurate for the
deeper nodes as they are less frequently visited. The discount
factor λ serves as a utility to reduce the impact of those nodes
and stabilize the search process.

The design of the long-term return Q is based on our
motivational analysis shown in Section III. The accumulated
Q prioritizes the exploration in the shallow levels, which
corresponds to the early transformations in a sequence. On
the other hand, our MCTS and long-term return estimation
mechanism also encourage deeper exploitation in promising
directions with high potential. The prior probabilities and
long-term return estimation provide guidance on the search
direction in awareness of the historical experience.

Decision Making. The decision making phase is demon-
strated in Fig. 4. After a predetermined number of searches,
the statistics of the child nodes of the root node s0 are

4

<latexit sha1_base64="GMqn5jT0mH9ZaFkiyQcq/f66CrE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRgx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bbn9soVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVb2L6vn9eaV2ncdRhCM4hlPw4BJqcAd1aACDATzDK7w5wnlx3p2PeWvByWcO4Q+czx/CZY13</latexit>

G0
<latexit sha1_base64="Y2AJOPFykYN+pCeNE2ldqiDByLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRgx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bbn9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVb2L6vn9eaV2ncdRhCM4hlPw4BJqcAd1aACDATzDK7w5wnlx3p2PeWvByWcO4Q+czx/D6Y14</latexit>

G1
<latexit sha1_base64="bPY15z40Glgb00Unoi2aacY0l9k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB6DHvQY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn5rSeujYjVI44T7kd0oEQoGEUrPdz2Kr1iyS27c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzolZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuGVPxEqSZErtlgUppJgTGZ/k77QnKEcW0KZFvZWwoZUU4Y2nYINwVt+eZU0K2Xvoly9r5Zq11kceTiBUzgHDy6hBndQhwYwGMAzvMKbI50X5935WLTmnGzmGP7A+fwBxW2NeQ==</latexit>

G2

<latexit sha1_base64="0elw6W6VrXQnnm4BNVUuS3VDifs=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpypBCDhWcOFYJPqQ0qhyXKe16jiRvQGq0E/hwgGEuPIl3PgbnDYHaJnVSqOZXXk9QSK4Bsf5tkorq2vrG+XNytb2zu6eXd1v6zhVlLVoLGLVDYhmgkvWAg6CdRPFSBQI1gnG17nfuWdK81jewSRhfkSGkoecEjBS3672gD1CEGZeD+flT/t2zak7M+Bl4hakhgo0+/ZXbxDTNGISqCBae66TgJ8RBZwKNq30Us0SQsdkyDxDJYmY9rPZ6VN8bJQBDmNlWgKeqb83MhJpPYkCMxkRGOlFLxf/87wUwks/4zJJgUk6fyhMBYYY5zngAVeMgpgYQqji5lZMR0QRCiatignBXfzyMmmf1t3z+tntWa1xVcRRRofoCJ0gF12gBrpBTdRCFD2gZ/SK3qwn68V6tz7moyWr2DlAf2B9/gBbCpNr</latexit>

[]
<latexit sha1_base64="0elw6W6VrXQnnm4BNVUuS3VDifs=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpypBCDhWcOFYJPqQ0qhyXKe16jiRvQGq0E/hwgGEuPIl3PgbnDYHaJnVSqOZXXk9QSK4Bsf5tkorq2vrG+XNytb2zu6eXd1v6zhVlLVoLGLVDYhmgkvWAg6CdRPFSBQI1gnG17nfuWdK81jewSRhfkSGkoecEjBS3672gD1CEGZeD+flT/t2zak7M+Bl4hakhgo0+/ZXbxDTNGISqCBae66TgJ8RBZwKNq30Us0SQsdkyDxDJYmY9rPZ6VN8bJQBDmNlWgKeqb83MhJpPYkCMxkRGOlFLxf/87wUwks/4zJJgUk6fyhMBYYY5zngAVeMgpgYQqji5lZMR0QRCiatignBXfzyMmmf1t3z+tntWa1xVcRRRofoCJ0gF12gBrpBTdRCFD2gZ/SK3qwn68V6tz7moyWr2DlAf2B9/gBbCpNr</latexit>

[]

<latexit sha1_base64="YwuniXOVBuGh2hpgiN7Ug9U606U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB6DXjxGzAuSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/fbT6g0j2XDTBL0IzqUPOSMGis9NvqVfrHklt0FyDrxMlKCDPV+8as3iFkaoTRMUK27npsYf0qV4UzgrNBLNSaUjekQu5ZKGqH2p4tTZ+TCKgMSxsqWNGSh/p6Y0kjrSRTYzoiakV715uJ/Xjc14Y0/5TJJDUq2XBSmgpiYzP8mA66QGTGxhDLF7a2EjaiizNh0CjYEb/XlddKqlL2rcvWhWqrdZnHk4QzO4RI8uIYa3EMdmsBgCM/wCm+OcF6cd+dj2ZpzsplT+APn8wfZO42G</latexit>

T2<latexit sha1_base64="0elw6W6VrXQnnm4BNVUuS3VDifs=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpypBCDhWcOFYJPqQ0qhyXKe16jiRvQGq0E/hwgGEuPIl3PgbnDYHaJnVSqOZXXk9QSK4Bsf5tkorq2vrG+XNytb2zu6eXd1v6zhVlLVoLGLVDYhmgkvWAg6CdRPFSBQI1gnG17nfuWdK81jewSRhfkSGkoecEjBS3672gD1CEGZeD+flT/t2zak7M+Bl4hakhgo0+/ZXbxDTNGISqCBae66TgJ8RBZwKNq30Us0SQsdkyDxDJYmY9rPZ6VN8bJQBDmNlWgKeqb83MhJpPYkCMxkRGOlFLxf/87wUwks/4zJJgUk6fyhMBYYY5zngAVeMgpgYQqji5lZMR0QRCiatignBXfzyMmmf1t3z+tntWa1xVcRRRofoCJ0gF12gBrpBTdRCFD2gZ/SK3qwn68V6tz7moyWr2DlAf2B9/gBbCpNr</latexit>

[]

<latexit sha1_base64="fGzojAlck5eGlX9zdL468y9XeUE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK/YI2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7g2IlYNnCTcj+hQiVAwilZ6bPS9frniVt05yCrxclKBHPV++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVR9a6qlw+XldptHkcRTuAUzsGDa6jBPdShCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwDXt42F</latexit>

T1

<latexit sha1_base64="qjuj3YXjenoazBXU7Nrc9GTuTb4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeKF48VTFtoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuLaiEQ94DjlQUwHSkSCUbSSbx7dntsrV9yqOwdZJV5OKpCj0St/dfsJy2KukElqTMdzUwwmVKNgkk9L3czwlLIRHfCOpYrG3AST+bFTcmaVPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBhdBxOh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynZELzll1dJ86LqXVZr97VK/SaPowgncArn4MEV1OEOGuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHKKiORA==</latexit>

s0
0

<latexit sha1_base64="Xs7sZLXEEY9SFXrbheiD/GeObMg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeKF48VTFtoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuLaiEQ94DjlQUwHSkSCUbSSbx7dntcrV9yqOwdZJV5OKpCj0St/dfsJy2KukElqTMdzUwwmVKNgkk9L3czwlLIRHfCOpYrG3AST+bFTcmaVPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBhdBxOh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynZELzll1dJ86LqXVZr97VK/SaPowgncArn4MEV1OEOGuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHKiyORQ==</latexit>

s0
1

<latexit sha1_base64="+5DSbjKdUALwp223NuVicTNC5PM=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHixWMF0xbaWDbbTbt0swm7E6GU/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfztr6xubWdmGnuLu3f3BYOjpumiTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR7cxvPXFtRKIecJzyIKYDJSLBKFrJN49ur9orld2KOwdZJV5OypCj0St9dfsJy2KukElqTMdzUwwmVKNgkk+L3czwlLIRHfCOpYrG3AST+bFTcm6VPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBhdBxOh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynaELzll1dJs1rxLiu1+1q5fpPHUYBTOIML8OAK6nAHDfCBgYBneIU3RzkvzrvzsWhdc/KZE/gD5/MHK7CORg==</latexit>

s0
2

<latexit sha1_base64="x8R5ybvr8uT0hkh9oCUIzo0MPuE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqUI9BLx4j5gXJEmYnvcmQ2dllZlYIIZ/gxYMiXv0ib/6Nk2QPmljQUFR1090VJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/mtJ1Sax7Juxgn6ER1IHnJGjZUe673LXrHklt05yCrxMlKCDLVe8avbj1kaoTRMUK07npsYf0KV4UzgtNBNNSaUjegAO5ZKGqH2J/NTp+TMKn0SxsqWNGSu/p6Y0EjrcRTYzoiaoV72ZuJ/Xic14Y0/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYEb/nlVdK8KHtX5cpDpVS9zeLIwwmcwjl4cA1VuIcaNIDBAJ7hFd4c4bw4787HojXnZDPH8AfO5w/av42H</latexit>

T3

<latexit sha1_base64="0elw6W6VrXQnnm4BNVUuS3VDifs=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpypBCDhWcOFYJPqQ0qhyXKe16jiRvQGq0E/hwgGEuPIl3PgbnDYHaJnVSqOZXXk9QSK4Bsf5tkorq2vrG+XNytb2zu6eXd1v6zhVlLVoLGLVDYhmgkvWAg6CdRPFSBQI1gnG17nfuWdK81jewSRhfkSGkoecEjBS3672gD1CEGZeD+flT/t2zak7M+Bl4hakhgo0+/ZXbxDTNGISqCBae66TgJ8RBZwKNq30Us0SQsdkyDxDJYmY9rPZ6VN8bJQBDmNlWgKeqb83MhJpPYkCMxkRGOlFLxf/87wUwks/4zJJgUk6fyhMBYYY5zngAVeMgpgYQqji5lZMR0QRCiatignBXfzyMmmf1t3z+tntWa1xVcRRRofoCJ0gF12gBrpBTdRCFD2gZ/SK3qwn68V6tz7moyWr2DlAf2B9/gBbCpNr</latexit>

[]

<latexit sha1_base64="PuEQf2gIh7Dny7yK8ReAIZCJskw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BD3pMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvctypV4pVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A57jjNQ=</latexit>

G
<latexit sha1_base64="xOra1flrqf7FD7e/7ECUaWQ39nw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4TyAuSJcxOepMxs7PLzKwQQr7AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/fbT6g0j2XDTBL0IzqUPOSMGivVG/1iyS27C5B14mWkBBlq/eJXbxCzNEJpmKBadz03Mf6UKsOZwFmhl2pMKBvTIXYtlTRC7U8Xh87IhVUGJIyVLWnIQv09MaWR1pMosJ0RNSO96s3F/7xuasJbf8plkhqUbLkoTAUxMZl/TQZcITNiYgllittbCRtRRZmx2RRsCN7qy+ukdVX2rsuVeqVUvcviyMMZnMMleHADVXiAGjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPspeM4Q==</latexit>

T
AIG
Transformation

Subtree

Distribution

<latexit sha1_base64="0zJYeC3ktHSI+3Bmprm5XrcnxV4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPFi8eK9gPaWDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTSvXl0e+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1buont+dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDqo2h</latexit>

s0 Tree root state

Fig. 4 Decision making in AlphaSyn. After repeatedly con-
ducting the search algorithm, the decision-making process is
done with the accumulated statistics from the search tree.

summarized. Unlike previous classical MCTS works [15],
[16], AlphaSyn does not utilize the visit counts distribution
of the child nodes. Instead, we directly select the action
with the max (Q + R) as the generation result of synthesis
transformation Ti:

Ti = argmax
a∈A

(Q0,a +R0,a). (7)

The reason is that, in the situation of logic synthesis, the bet-
ter or worse of the synthesis transformation can be explicitly
represented by the combination of immediate and long-term
returns. Therefore there is no need to employ the indirect
representation from visit counts.

Upon determining the final synthesis transformation, the
search tree can be reused for subsequent generations by
designating the child node corresponding to the determined
Ti as the new root node. The sub-tree beneath this child node
is preserved, along with all associated statistics, while the rest
of the tree is discarded.

C. Learning Strategies for MCTS

We propose neural network-based learning strategies to
enhance the stability of AlphaSyn and learn from past genera-
tions. Our approach includes introducing customized methods
for network data collection self-syn, refining network archi-
tecture, and implementing relevant techniques to improve the
network’s execution efficiency.

Self-Syn. We refer to self-syn as a process to conduct multiple
rounds of synthesis sequence generation to collect training
data. Self-syn is implemented differently from optimization-
driven synthesis. We aim for a more exploratory approach to
collect data for richer and more comprehensive samples. First,
self-syn updates the long-term return Q by taking the mean
of the child nodes’ return (Q+ R) rather than choosing the
maximum value. Second, for the decision making part, self-
syn picks an action proportional to the exponential of return
(Q+R) instead of the max one:

π0,a =
(Q0,a +R0,a)1/κ∑
b∈A(Q

0,b +R0,b)1/κ
, (8)

where κ is a temperature parameter. Increasing κ can flatten
the distribution for more even exploration. For self-syn, we
schedule κ in a gradually decreasing manner: κi = κinit · (1−
i−1
L−1) +

i−1
L−1 , where κinit is the initial temperature.

Network I/O and Training. During the selection phase of
MCTS, a GNN-based dual-head neural network, PQnet (fθ),
is employed to assist the exploration when encountering leaf
nodes sT . The input to PQnet includes the following: The
search tree state sTi (an AIG), its last transformation (aT−1

i

in sTi = s
(T−1),aT−1

i
i ;), and the corresponding position index

((T − 1) + i for aT−1
i). After processing, PQnet outputs the

prior probability distribution pT and the estimated long-term
return QT

es:

(pT, QT
es) = fθ(s

T
i , aT−1

i , (T − 1) + i). (9)

As a general example, for the initial state s0i , the inputs are
given as Gi, Ti, and i, respectively. For the initial design AIG
G0, we assign 0 as the last action and the position index. The
two index scalars are embedded in high-dimensional space.

PQnet is trained and refined in the RL process. Training is
based on supervision from root node statistics on the search
tree, summarized for each single transformation generation.
For each constructed search tree in self-syn, the distribution
π0 in (8) and the long-term return value Q0 of the root node
are collected. The first objective is to minimize the error of
policy prediction between the distributions p0 and π0. The
second objective is to minimize the error of value prediction
between Q0

es and Q0. The overall loss is:

Ltotal = LCE(p
0,π0) + LMSE(Q

0
es, Q

0), (10)

where LCE denotes the cross-entropy loss and LMSE denotes
the mean-squared error. AlphaSyn continually trains PQnet
by collecting training samples with the latest checkpoint,
updated with every fixed number of self-syn steps.

Network Architecture. We design the PQnet based on
SAGEConv [18] and the self-attention pooling SAGPool [19].
As demonstrated in Fig. 5(a), the features of AIG are ex-
tracted by self-attention blocks and residual blocks, whose
structures are shown in Fig. 5(b) and Fig. 5(c). The output
is generated by the P-head and Q-head, which have the
same structure, consisting of a residual block, a convolutional
layer, and a multi-layer linear perceptron (MLP). The output
dimension of the MLP is the number of actions for the
probability output (p) and 1 for the return output (Qes).

Data Reuse. As PQnet keeps updating, the statistics summa-
rized on each search tree root may also change, leading to
conflicting labels and biased data. To address the issue, we
propose a tree-merging technique. Specifically, we maintain a
set of main trees from the beginning, which stores all the data
during training. When collected, new samples are merged into
the corresponding main tree with the same source state. With
tree-merging, AlphaSyn can get rid of the influence of biased
data.

Stop Index. The more transformations are applied, the
smaller the difference between AIGs. It is not a good choice
to use them all as training data. Therefore, we stop run-
ning PQnet during sequence generation when there are no
conspicuous changes on AIGs, which is controlled by an

5

A

B C B D N
od

e
Em

be
dd

in
g

Se
lf-

at
te

nt
io

n
B

lo
ck

Se
lf-

at
te

nt
io

n
B

lo
ck

<latexit sha1_base64="7R+YWTUa/PMnSOHbc5DfCVwalLQ=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk567EdspBKemkG54lf9BdA6CXJSgRzNQfmrP1QkFVRawrExvcBPbJhhbRnhdFbqp4YmmEzwiPYclVhQE2aLg2fowilDFCvtSlq0UH9PZFgYMxWR6xTYjs2qNxf/83qpjW/CjMkktVSS5aI45cgqNP8eDZmmxPKpI5ho5m5FZIw1JtZlVHIhBKsvr5N2rRpcVev39UqjlsdRhDM4h0sI4BoacAdNaAEBAc/wCm+e9l68d+9j2Vrw8plT+APv8wcVHJCO</latexit>M

Fu
lly

-c
on

ne
ct

ed
 L

ay
er

G
ra

ph

Em
be

dd
in

g
Po

si
tio

n
Em

be
dd

in
g

Tr
an

sf
or

m
at

io
n

Em
be

dd
in

g

Reshape

C
on

vo
lu

tio
na

l L
ay

er

<latexit sha1_base64="7R+YWTUa/PMnSOHbc5DfCVwalLQ=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk567EdspBKemkG54lf9BdA6CXJSgRzNQfmrP1QkFVRawrExvcBPbJhhbRnhdFbqp4YmmEzwiPYclVhQE2aLg2fowilDFCvtSlq0UH9PZFgYMxWR6xTYjs2qNxf/83qpjW/CjMkktVSS5aI45cgqNP8eDZmmxPKpI5ho5m5FZIw1JtZlVHIhBKsvr5N2rRpcVev39UqjlsdRhDM4h0sI4BoacAdNaAEBAc/wCm+e9l68d+9j2Vrw8plT+APv8wcVHJCO</latexit>M

R
es

id
ua

l B
lo

ck

R
es

id
ua

l B
lo

ck

R
es

id
ua

l B
lo

ck

<latexit sha1_base64="7R+YWTUa/PMnSOHbc5DfCVwalLQ=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk567EdspBKemkG54lf9BdA6CXJSgRzNQfmrP1QkFVRawrExvcBPbJhhbRnhdFbqp4YmmEzwiPYclVhQE2aLg2fowilDFCvtSlq0UH9PZFgYMxWR6xTYjs2qNxf/83qpjW/CjMkktVSS5aI45cgqNP8eDZmmxPKpI5ho5m5FZIw1JtZlVHIhBKsvr5N2rRpcVev39UqjlsdRhDM4h0sI4BoacAdNaAEBAc/wCm+e9l68d+9j2Vrw8plT+APv8wcVHJCO</latexit>M

C
on

vo
lu

tio
na

l L
ay

er P-
he

ad
Q

-h
ea

d

<latexit sha1_base64="1j5MtzZXJkXWiPQRL2d3bO/YoP8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip3RxkqGeDcsWtuguQdeLlpAI5GoPyV38YszRCaZigWvc8NzF+RpXhTOCs1E81JpRN6Ah7lkoaofazxbUzcmGVIQljZUsaslB/T2Q00noaBbYzomasV725+J/XS01462dcJqlByZaLwlQQE5P562TIFTIjppZQpri9lbAxVZQZG1DJhuCtvrxO2ldV77paa9YqdTePowhncA6X4MEN1OEeGtACBo/wDK/w5sTOi/PufCxbC04+cwp/4Hz+ALZgjy0=</latexit>

Qes

<latexit sha1_base64="1nKtI8qbijPf6p7Xw7QYlUAFdBU=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8smQ2rNbfuzoFWiVeQGhRoDatfg1CSNKbCEI617ntuYvwMK8MIp7PKINU0wWSCR7RvqcAx1X42Tz1DZ1YJUSSVPcKgufp7I8OxzqPZyRibsV72cvE/r5+a6NrPmEhSQwVZPBSlHBmJ8gpQyBQlhk8twUQxmxWRMVaYGFtUxZbgLX95lXQu6t5lvXHXqDXdoo4ynMApnIMHV9CEW2hBGwgoeIZXeHOenBfn3flYjJacYucY/sD5/AFEqJL4</latexit>

p

AIG

(a)

Convolutional Layer

ReLU

Convolutional Layer

ReLU

<latexit sha1_base64="7R+YWTUa/PMnSOHbc5DfCVwalLQ=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk567EdspBKemkG54lf9BdA6CXJSgRzNQfmrP1QkFVRawrExvcBPbJhhbRnhdFbqp4YmmEzwiPYclVhQE2aLg2fowilDFCvtSlq0UH9PZFgYMxWR6xTYjs2qNxf/83qpjW/CjMkktVSS5aI45cgqNP8eDZmmxPKpI5ho5m5FZIw1JtZlVHIhBKsvr5N2rRpcVev39UqjlsdRhDM4h0sI4BoacAdNaAEBAc/wCm+e9l68d+9j2Vrw8plT+APv8wcVHJCO</latexit>M

(b)

SAGEConv

SAGPool

G_max pool G_add poolG_mean pool

<latexit sha1_base64="7R+YWTUa/PMnSOHbc5DfCVwalLQ=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk567EdspBKemkG54lf9BdA6CXJSgRzNQfmrP1QkFVRawrExvcBPbJhhbRnhdFbqp4YmmEzwiPYclVhQE2aLg2fowilDFCvtSlq0UH9PZFgYMxWR6xTYjs2qNxf/83qpjW/CjMkktVSS5aI45cgqNP8eDZmmxPKpI5ho5m5FZIw1JtZlVHIhBKsvr5N2rRpcVev39UqjlsdRhDM4h0sI4BoacAdNaAEBAc/wCm+e9l68d+9j2Vrw8plT+APv8wcVHJCO</latexit>M

(c)

Fig. 5 (a) The overview of PQnet; (b) Residual block; and (c) Self-attention block. Two self-attention blocks extract features
of AIG. “G max”, “G mean”, and “G add” denote the global max, global mean, and global add pooling, respectively.

integer hyperparameter stop index. Doing this strengthens
the significant part during sequence generation, and the
runtime can be largely saved. We believe this is a natural
tradeoff between performance and runtime cost.

D. Acceleration Techniques for AlphaSyn

AlphaSyn utilizes resource allocation and asynchronous
parallel mechanisms to accelerate the MCTS, effectively
reducing runtime while ensuring maintained performance.

Resource Allocator. As optimization converges, the im-
portance of synthesis transformation is also diminishing.
Simultaneously, MCTS is, in essence, a high-computational
process; a better allocation of resources can significantly
improve the efficiency of AlphaSyn. Therefore, a simple but
effective resource allocator is designed. The allocator works
in two parts. For the earlier generations, the search times are
gradually decreased as the index increase, which is controlled
by: ni

sche = ninit −D · (i − 1), where ni
sche is the number

of searches for generating Ti, ninit is an initial number, and
D is the decrement value. For the rest of the generation, we
determine a fixed number of searches for each step, i.e., nbase.
These two parts are separated by a split index Isplit. Typically,
we assign a much higher value for ninit than nbase.

Asynchronous Parallelization. To further improve the ex-
ploration efficiency, we design a novel asynchronous parallel
algorithm with multi-threads for the search process. The
interaction with synthesis tools in the search process is the
runtime bottleneck for AlphaSyn. We develop a conditional
path-blocking-releasing algorithm in conjunction with thread
locking to address this issue. For each node s in the search
tree, we define a special value B (initialized to 0) to represent
whether or not the node should be blocked. When a leaf node
sl is accessed during the selection process, its Bl is assigned
an extremely small negative value M . Additionally, the
ancestors of the leaf node, sl−1, sl−2, . . . , s1, are recursively
examined to determine if the number of their blocked child
nodes exceeds a threshold value Bthre. If the threshold is
exceeded, the ancestor’s B value is also assigned M . The
role of B is to incorporate it into SynUCT as Par-SynUCT:

atpar = argmax
a∈A

(Qt,a +Rt,a + U t,a +Bt,a). (11)

By doing this, the blocked nodes will never be selected by
Par-SynUCT due to the extremely small value of Bt,a. There-
fore, the leaf nodes are being accessed, and their ancestors
in one thread are all conditionally ignored by other threads.
Finally, at the end of the backpropagation phase, the leaf
node is released by assigning Bl back to 0; its ancestors
are also recursively released when the threshold condition is
unmatched.

V. EXPERIMENTS

We implement AlphaSyn with Python and the training of
neural network with Pytorch and Pytorch Geometric. We use
the open-source tool Yosys [20] to perform logic synthesis
in conjunction with ABC [13]. The prepossessing of AIG
for GNN is developed with the help of a python interface of
ABC [4]. The experiments are conducted on a machine with
128 core Intel® Xeon® Platinum 8358P CPU @ 2.60GHz
and an NVIDIA A100-SXM4-80GB (Ampere architecture,
SM80) graphics card with CUDA Driver 11.4.

Due to the high scalability of AlphaSyn, it can be compared
with previous works on different benchmarks and settings.
The experiments are organized according to the optimiza-
tion objectives. We use the heuristic script resyn2 for the
baseline acquirement in (3). The results are presented for
both network-free (“w/o nn”) and network-assisted (“w/ nn”)
versions. For network-assisted versions, the network is trained
for 10 hours to 24 hours, which depends on the circuit size.
We use “rt” to denote runtime of optimization. For AlphaSyn,
the runtime refers to the inference time of sequence genera-
tion, which includes the search time in MCTS. Bar notation
·̄ and hat notation ·̂ are used to denote average results and
best results, respectively.

A. Logic Optimization

For logic optimization, the objective is to minimize the
number of AIG and_node, which is denoted by “#N”. We
present the best (#̂N) and average (#̄N) results for AlphaSyn.

The performance of AlphaSyn is compared with the
SOTA, FlowTune [6], on the same selected VTR bench-
marks [14]. The action space is A = {balance, rewrite,
rewrite -z, refactor, refactor -z, resub -K 6}. We set

6

TABLE II Comparison with FlowTune [6] for logic optimiza-
tion.

Design
Flowtune [6] AlphaSyn w/o nn AlphaSyn w/ nn

#N rt (s) #̄N r̄t (s) #̂N #̄N r̄t (s)

bfly 22740 495.81 22619.9 223.60 22381 22582.7 537.39
dscg 22258 482.35 22225.2 210.20 22000 22155.9 557.09
fir 21807 488.67 21611.6 211.40 21544 21591.5 543.77
ode 13038 260.16 12935.9 112.98 12736 12768.7 472.55
or1200 10316 118.80 10266.9 74.16 10194 10195.2 420.02
syn2 23633 504.19 23547.1 242.00 23233 23535.7 587.01

Average 18965.3 391.66 18867.8 179.06 18689.5 18805.0 519.64
Ratio 1.000 1.000 0.995 0.457 0.985 0.992 1.327

TABLE III Comparison with MLCAD’20 [4] and IC-
CAD’21 [5] for logic optimization.

Design
[4] [5] AlphaSyn w/o nn AlphaSyn w/ nn

#N #N #̄N r̄t (s) #̂N #̄N r̄t (s)

C1355 386.2 386 386 19.24 386 386 360.93
C6288 1870 1870 1870 24.35 1870 1870 454.89
C5315 1337.4 1315 1291.2 20.87 1287 1289.4 450.44
dalu 1039.8 1085 1008.4 21.22 1007 1008.4 475.94
k2 1128.4 1137 1045.9 22.66 1035 1041.3 451.69
mainpla 3438.4 3461 3406.3 24.81 3386 3390.2 462.66
apex1 1921.6 1885 1892 22.89 1881 1883 453.62
bc0 819.4 831 803.2 23.14 795 798 464.43

Average 1492.7 1496.3 1462.9 22.40 1455.88 1458.3 446.83
Ratio 1.000 1.002 0.980 - 0.975 0.977 -

the “stages:iterations” (s:m) number as 2 : 30 with 2-
repetition for all the experiments with FlowTune, which is
reported to have good performance. Then the total sequence
length L becomes 24. Following FlowTune implementation,
a subsquence ifraig; dch -f is added at the end of each
stage. AlphaSyn adds this subsequence at sequence index 12
and 24. The results are represented in TABLE II. Compared
with FlowTune, AlphaSyn has 0.51%, 1.50% and 0.85%
performance gain on logic optimization for average “w/o nn”,
best “w/ nn”, and average “w/ nn”, respectively. Meanwhile,
nn-free AlphaSyn has a 2.19× runtime speedup, while the
nn-assisted version maintains a reasonable runtime (around
30% overhead). The results demonstrate the superior perfor-
mance and efficiency of AlphaSyn over previous approaches.
Besides, the neural network can indeed enhance the stability
of AlphaSyn.

We also compare our results with MLCAD’20 [4] and
ICCAD’21 [5] for logic optimization, directly drawing from
the same benchmarks and data presented in their original
papers. For ICCAD’21, the results in “ENV1” is compared.
The action space is A = {balance, rewrite, rewrite -z,
refactor, refactor -z}, and the sequence length L is 20.
The results are represented in TABLE III. AlphaSyn achieves
an average improvement of 1.99% for nn-free and 2.30%
for nn-assisted versions, compared with MLCAD’20. The
improvement is up to 2.46% with neural network assistance.

B. Standard-cell Technology Mapping

For standard-cell technology mapping, the objective is
to optimize the area after technology mapping from the

TABLE IV Comparison with FlowTune [6] for technology
mapping on Nangate 45nm library.

Design
Flowtune [6] AlphaSyn w/o nn AlphaSyn w/ nn

Area rt ¯Area r̄t ˆArea ¯Area r̄t
(µm2) (s) (µm2) (s) (µm2) (µm2) (s)

bfly 16881.8 969.95 16089.0 450.78 15493 15959.2 830.20
dscg 16393.2 913.20 16142.2 411.80 15743 16097.1 958.01
fir 16323.5 922.73 15876.9 431.70 15336 15724.4 896.26
ode 9302.5 479.77 9138.4 272.59 9101 9151.2 710.97
or1200 6731.4 228.24 6756.6 153.92 6689.6 6729.1 531.53
syn2 17246.4 880.14 16410.6 490.37 16051.5 16078.1 943.32

Average 13813.1 732.34 13402.3 368.53 13069.0 13289.9 811.72
Ratio 1.000 1.000 0.970 0.503 0.946 0.962 1.108

TABLE V Comparison with FlowTune [6] for technology
mapping on ASAP 7nm library.

Design
Flowtune [6] AlphaSyn w/o nn AlphaSyn w/ nn

Area rt ¯Area r̄t ˆArea ¯Area r̄t
(µm2) (s) (µm2) (s) (µm2) (µm2) (s)

bfly 16934.2 2111.12 15586.7 1396.17 14837.7 15059.7 1520.04
dscg 15722.3 1865.30 15537.2 1261.43 15031 15164 1329.71
fir 16109 1784.02 16225.8 1060.90 15301 15471 1294.33
ode 9193.4 979.36 8319.8 763.16 8123 8257.3 919.07
or1200 4107.6 442.80 4241.9 584.95 4191.3 4201.1 719.72
syn2 18501.4 1812.36 15728.9 1254.69 15217.3 15370.2 1480.61

Average 13428 1499.16 12606.7 1053.55 12116.9 12253.9 1210.58
Ratio 1.000 1.000 0.939 0.703 0.902 0.913 0.808

standard-cell library. “Area” denotes the circuit area after
mapping. We present the best (ˆArea) and average (¯Area)
results for AlphaSyn.

In comparison to FlowTune [6], our experiment follows
a similar setup as described in Section V-A. We conduct
experiments on two different standard-cell libraries: Nangate
45nm and ASAP 7nm. The area information is collected
using the map command in ABC. Experimental results are
illustrated in TABLE IV and TABLE V for Nangate 45nm
and ASAP 7nm, respectively. Regarding the Nangate 45nm
library, AlphaSyn achieves performance improvements of
2.97%, 5.39%, and 3.79% for average “w/o nn”, best “w/ nn”,
and average “w/ nn”. Meanwhile, the nn-free version of
AlphaSyn demonstrates a 1.99× faster runtime, while the nn-
assisted version maintains a comparable runtime (10% over-
head). AlphaSyn also shows performance improvement across
all benchmarks for the ASAP 7nm library, with the mean
“w/o nn” case improving by 6.12%, the best “w/ nn” case by
9.76%, and the mean “w/ nn” case by 8.74%. Additionally,
AlphaSyn exhibits runtime speedup of more than 1.24×.
These results indicate that AlphaSyn outperforms previous
SOTA methods in terms of performance and efficiency for
standard-cell technology mapping on different standard-cell
libraries.

C. FPGA Technology Mapping

For FPGA technology mapping, the objective is to min-
imize the total count of LUT-6. We denote LUT-6 count
as “LUTs” after mapping. The best and average results for
AlphaSyn are represented as ˆLUTs and ¯LUTs, respectively.

7

TABLE VI Comparison with FlowTune [6] for FPGA tech-
nology mapping on LUT-6.

Design
Flowtune [6] AlphaSyn w/o nn AlphaSyn w/ nn

LUTs rt (s) ¯LUTs r̄t (s) ˆLUTs ¯LUTs r̄t (s)

bfly 8187 1511.40 7974.6 945.39 7889 7949.9 1148.27
dscg 8191 1481.99 8018.9 1005.74 7965 7972.9 1065.17
fir 7958 1422.34 7815.6 952.29 7728 7778.1 1036.73
ode 5022 708.07 5010.7 593.29 4973 4995.2 830.44
or1200 2751 401.295 2725.2 300.62 2714 2720.6 564.46
syn2 8316 1510.25 8215.4 968.38 8172 8189.7 1142.71

Average 6737.5 1172.56 6626.7 794.27 6573.5 6601.1 964.63
Ratio 1.000 1.000 0.984 0.677 0.976 0.980 0.823

The setting for AlphaSyn is almost the same as
previous experiments except for the following: In
line with FlowTune’s implementation, the subsequence
ifraig;scorr;dc2;strash;dch -f is appended to each
stage, while AlphaSyn inserts this subsequence at
sequence indexes 12 and 24. The LUT information is
gathered by executing the ABC command sequence if

-K 6;mfs2;lutpack -S 1. Experimental results, presented
in TABLE VI, demonstrate that AlphaSyn outperforms
FlowTune across all benchmarks, achieving performance
gains of 1.64%, 2.43%, and 2.02% in FPGA technology
mapping for mean “w/o nn”, best “w/ nn”, and mean “w/
nn”. Additionally, AlphaSyn achieves speedups of 1.48×
and 1.22× for nn-free and nn-assisted versions, respectively.
These results highlight the superior performance and
efficiency of AlphaSyn compared with FlowTune for the
LUT mapping task. Specifically, integrating neural networks
greatly enhances the stability of AlphaSyn and yields
superior optimization results.

We also compare with DRiLLS [3] and ASPDAC’23 on
EPFL benchmarks [21] for FPGA mapping. Their results
are also collected from the “Last10” in the ASPDAC’23
paper, where for ASPDAC’23 the “RL-PPO-PRuned” (the
best) version is used. The action space is A = {balance,
rewrite, rewrite -z, resub, resub -z, refactor, refactor
-z}, and the sequence length L is 25. The LUT information
is collected by conducting the command if -a -K 6. The
experimental results are demonstrated in TABLE VII. On av-
erage, AlphaSyn demonstrates a 6.31% improvement without
nn and a 6.55% improvement with nn. The improvement is
up to a remarkable 10.74%.

D. Multi-objective Synthesis

We conduct experiments on the bfly circuit design with
the setting of FlowTune [6] on logic optimization. We first
randomly generate 100000 sequences, which is reasonable
and comparatively large, to represent the entire search space.
Based on Equation (4), we adjust the parameter β to op-
timize with different weights between the number of AIG
and_node and level, in order to construct the Pareto
front. As illustrated in Fig. 6, the results of AlphaSyn (“w/o
nn”) form a Pareto front that can encompass all the random
search outcomes as well as the result of FlowTune. We

TABLE VII Comparison with DRiLLS [3] and ASP-
DAC’23 [7] for FPGA technology mapping.

Design
[3] [7] AlphaSyn w/o nn AlphaSyn w/ nn

LUTs LUTs ¯LUTs r̄t (s) ˆLUTs ¯LUTs r̄t (s)

max 694 687.8 680.5 74.59 674 680 342.56
adder 244 244 244 62.74 244 244 368.74
cavlc 112.2 111.3 106.8 53.14 106 106 321.12
ctrl 28 28 28 38.81 28 28 341
int2float 42.6 42.3 39.2 56.62 39 39 332.82
router 70.1 69.5 65.6 24.59 65 65 320.43
priority 133.4 142.9 135.6 59.15 131 135 350.11
i2c 292.1 289.32 280.6 47.78 272 280 373.46
sin 1441.5 1438 1439.7 91.02 1435 1438 406.19
square 3889.4 3889 3877 166.27 3875 3877 523.26
sqrt 4708 4685.3 4415 269.59 4415 4415 589.93
log2 7583.6 7580.1 7580 365.77 7580 7580 706.96
multiplier 5678 5672 5687.5 245.75 5670.5 5672 620.53
voter 1834.7 1678.1 1538.8 111.44 1534 1537.4 470.64
div 7944.4 7807.1 6685.3 244.04 5088.4 6650.1 712.57
mem ctrl 10527.6 10309.7 9567.7 71.63 9211.5 9513.2 659.67

Average 2826.5 2792.2 2648.2 123.93 2523.0 2641.2 464.99
Ratio 1.000 0.988 0.937 - 0.893 0.934 -

22,400 22,800 23,200 23,600

65

70

75

80

85

and node

l
e
v
e
l

Random Search
FlowTune
AlphaSyn
AlphaSyn node

Fig. 6 Multi-objective synthesis with AlphaSyn. By tuning
the weight between and_node and level, a Pareto front
has been formed by AlphaSyn’s results. The result on ob-
jective of pure and_node minimization is specially marked
(“AlphaSyn node”) for fair comparison with FlowTune.

also specially mark the result of AlphaSyn on and_node
minimization, which is the fair comparison with FlowTune.
The outcome amply demonstrates our algorithm’s superiority
in multi-objective optimization.

VI. CONCLUSION

In summary, this paper introduces a novel framework,
AlphaSyn, for logic synthesis recipe generation to improve
circuit design QoR. Our domain-specific Monte Carlo tree
search (MCTS) algorithm improves exploration efficiency
while optimizing sampling point utilization. Key contribu-
tions include customized MCTS for logic synthesis opti-
mization, stable learning strategies, and some acceleration
techniques. Our experimental results show that AlphaSyn
outperforms state-of-the-art methods in various objectives
while reducing runtime. Future work could explore additional
domain-specific adaptations or incorporate more powerful
techniques to further improve the framework’s performance
and applicability.

8

REFERENCES

[1] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows with-
out human knowledge,” in ACM/IEEE Design Automation Conference
(DAC), 2018.

[2] A. B. Chowdhury, B. Tan, R. Carey, T. Jain, R. Karri, and S. Garg,
“Bulls-Eye: Active few-shot learning guided logic synthesis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2022.

[3] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, “DRiLLS: Deep
reinforcement learning for logic synthesis,” in IEEE/ACM Asia and
South Pacific Design Automation Conference (ASPDAC), 2020.

[4] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring logic
optimizations with reinforcement learning and graph convolutional net-
work,” in ACM/IEEE Workshop on Machine Learning CAD (MLCAD),
2020.

[5] Y. V. Peruvemba, S. Rai, K. Ahuja, and A. Kumar, “Rl-guided runtime-
constrained heuristic exploration for logic synthesis,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2021.

[6] W. L. Neto, Y. Li, P.-E. Gaillardon, and C. Yu, “FlowTune: End-
to-end automatic logic optimization exploration via domain-specific
multi-armed bandit,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2022.

[7] G. Zhou and J. H. Anderson, “Area-driven FPGA logic synthesis using
reinforcement learning,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), 2023.

[8] A. Grosnit, C. Malherbe, R. Tutunov, X. Wan, J. Wang, and H. B. Am-
mar, “Boils: Bayesian optimisation for logic synthesis,” in IEEE/ACM
Proceedings Design, Automation and Test in Eurpoe (DATE), 2022.

[9] C. Feng, W. Lyu, Z. Chen, J. Ye, M. Yuan, and J. Hao, “Batch
sequential black-box optimization with embedding alignment cells for
logic synthesis,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2022.

[10] X. Li, L. Chen, F. Yang, M. Yuan, H. Yan, and Y. Wan, “HIMap: a
heuristic and iterative logic synthesis approach,” in ACM/IEEE Design
Automation Conference (DAC), 2022.

[11] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
boolean reasoning for equivalence checking and functional property
verification,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), vol. 21, no. 12, pp. 1377–1394,
2002.

[12] J.-H. R. Jiang and S. Devadas, “Logic synthesis in a nutshell,” in
Electronic Design Automation. Elsevier, 2009, pp. 299–404.

[13] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in International Conference on Computer-Aided
Verification (CAV), 2010.

[14] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 2, p. 6,
2014.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[17] C. D. Rosin, “Multi-armed bandits with episode context,” Annals of
Mathematics and Artificial Intelligence, vol. 61, no. 3, pp. 203–230,
2011.

[18] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Annual Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[19] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Interna-
tional Conference on Machine Learning (ICML), 2019.

[20] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[21] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combi-

national benchmark suite,” in IEEE/ACM International Workshop on
Logic Synthesis, 2015.

9

https://yosyshq.net/yosys/

