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Abstract—Addressing the pressing need for energy-efficient
computing technologies, innovations such as Josephson junctions-
based superconducting logic circuits, particularly the Adia-
batic Quantum-Flux-Parametron (AQFP) logic, have sparked
increased research interest. AQFP logic, boasting superior energy
efficiency, faces unique design challenges. The current 4-phase
clocking scheme results in considerable circuit latency, a problem
further amplified with larger logic depth in the circuit. A novel
delay-line clocking scheme proposes increasing the number of
clock phases, which could significantly improve circuit latency
but also risks more severe timing violations. To address this issue,
this paper proposes DLPlace, the first placement framework
tailored for the delay-line clocking scheme, aiming to boost the
performance of AQFP circuits. DLPlace formulates timing-aware
global placement as a Lagrangian problem, targeting minimizing
the circuit latency, to determine the positions of all gates and
the delays of delay lines by the subgradient method. A timing-
aware detailed placement approach is then proposed, where
DLPlace introduces a row-wise gate order rearrangement method
to reduce wirelength and timing violations in AQFP circuits.
Furthermore, a dynamic programming approach is employed to
achieve wirelength and timing legalization, thereby addressing
the unique requirements of AQFP logic. The effectiveness of
DLPlace is validated through AQFP benchmark experiments,
demonstrating a significant reduction in both hardware footprint
and circuit latency compared to the baselines. This new frame-
work paves the way for the further optimization of AQFP circuit
performance, offering a promising solution to the physical design
challenges in superconductive electronics-based computing.

Index Terms—superconductor logic, AQFP, delay-line clocking,
placement

I. INTRODUCTION

Massive energy consumption has become an urgent concern
in modern society, resulting in the imperative requirement
for energy-efficient computing technologies. The power wall
problem encountered by CMOS-based computing systems
has accentuated the demand for energy-efficient computing
systems, which in turn, has spurred the development of
emerging technologies capable of providing comparable or
superior performance to CMOS technology, but with less
energy consumption. Among these technologies, Josephson
junctions (JJs)-based superconducting logic circuits have gar-
nered growing research attention. This includes the Rapid
Single-Flux-Quantum (RSFQ) logic [1] and its more energy-
efficient variants such as ERSFQ [2], Reciprocal Quantum
Logic (RQL) [3] and Adiabatic Quantum-Flux-Parametron
(AQFP) [4]. These emergent logic families are designed to

specifically address the inherent static power problem present
in RSFQ logic, with the primary goal of enhancing scalability.

Derived from Quantum-Flux-Parametron logic proposed in
1985 [5], AQFP logic significantly reduces energy dissipation.
By re-parameterizing the device for adiabatic operation, AQFP
achieves energy dissipation five or six orders of magnitude
lower than its CMOS counterpart and boasts the highest energy
efficiency among all superconducting logic families.

Despite its extraordinary energy efficiency, AQFP neces-
sitates a unique design methodology, given its distinct data-
propagation mechanism. Unlike CMOS, all AQFP gates oper-
ate in full synchronization with an AC power source that serves
as both a power supply and a clock reference. Therefore, to
facilitate data propagation in AQFP circuits, the utilization
of multiple clock sources exhibiting phase differences is a
prerequisite. This allows data to be conveyed across various
logic stages during a substantial overlap of adjacent clock
phases. On the other hand, logic bits in AQFP are represented
by the superconductive current amplitude, which is delivered
between logic gates by superconductive inductors, accounting
for inevitable current attenuation. This requires a precise
interconnect design to maintain an adequate bit-error rate,
translating into different wire-length constraints for microstrip
lines between various logic gates in the physical layout de-
sign. Consequently, these two distinctive requirements pose
design difficulties, especially given the lack of support from
automated design tools in the physical design domain.

To bridge the gap between logic design and physical design,
methodologies for AQFP placement have been proposed in the
past six years [6]–[9]. To resolve wire-length violations, the
common solution involves inserting buffer rows to halve the
original interconnect wire length. However, numerous buffers
inserted result in more power consumption and significant
circuit latency. Consequently, these aforementioned methods
prioritize reducing violations while optimizing the total num-
ber of inserted buffer rows. Murai et al. [6] first employ a
genetic algorithm (GA) to reposition gates within each logic
row, aiming to reduce wire-length violations and subsequently
decrease the number of inserted buffers, but suffers from
unaffordable runtime, particularly for larger circuits, due to
the computationally intensive nature of GA. ASAP [7] uses
a method incorporating the analytical global placement and
a row-wise detailed placement to significantly improve the
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Fig. 1. Placement schematics of an AQFP circuit using the
delay-line clocking scheme, where Ix is an AC clock signal,
and Id is a DC input for applying an offset flux to each gate.
(a) adopts the 4-phase clocking-based placement method. For
the bottom-right gate, its clock signal may arrive before its
data signal due to the high-speed signal propagation, causing
the setup time violation (sv); For the bottom-left gate, its next
data signal may arrive before its previous clock signal due
to the long clock wire, causing the hold time violation (hv).
(b) shows a feasible method meeting its timing constraints by
controlling the positions of gates and the delays of delay lines.

runtime. Li et al. [8] later introduce a GORDIAN algorithm-
based placement framework tailored for a specially designed
AQFP cell library, allowing more flexible routing spaces. As
the first attempt to enable high-speed AQFP layout design,
Dong et al. [9] propose TAAS, a placement framework further
considering the timing violations introduced by the meander-
ing clocking structure in the physical design of AQFP circuits.

In order to ensure adiabatic switching, AQFP gates are
specifically designed to function at a maximum clock fre-
quency of 5GHz. However, the actual speed of data prop-
agation between different logic stages hinges on the number
of clock phases within a single clock cycle of 200 ps. For
example, considering a 4-phase clocking operating at 5GHz,
data will traverse from the delivering stage to the receiving
stage within 50 ps. Therefore, increasing the number of clock
phases within a single cycle can significantly reduce the
circuit latency. This enhancement not only accelerates data
propagation but also leads to a substantial improvement in the
circuit’s overall performance. Presently, AQFP circuits utilize
a 4-phase clocking method [10], favored for its simplicity
and testing advantages. However, a drawback is its substantial
circuit latency, which intensifies with increasing logic depth.

A recent delay-line-based approach [11] suggests enhanc-
ing the number of clock phases by up to ten times using
a single AC source, a DC offset, and on-chip microstrip
delay lines. This innovative method not only substantially
improves circuit latency but also simplifies physical testing.
In fact, a study [12] demonstrates that this delay-line clocking
scheme significantly curtails the latency of an 8-bit ripple-
carry adder, registering a decrease of about 60% compared to
the 4-phase clocking scheme. However, the physical design
of this clocking scheme calls for meticulous attention. This
concern arises from the potential tenfold increase in effective
data propagation speed between logic stages, amounting to
5 ps. Such a speed enhancement could lead to more severe
timing violations between the arrival of the clock and data
compared to the 4-phase clocking scheme, thereby making the
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Fig. 2. A case shows the necessity of buffer insertion for
correct operation in an AQFP circuit with the function q = abc
using the delay-line clocking scheme. (a) and (b) are gate-
level schematics before and after buffer insertion, respectively,
where a, b, and c are three data inputs, and q is a data output.
(c) and (d) are timing schematics of (a) and (b), respectively.

delay-line clocking scheme unsuitable for existing placement
frameworks. Fig. 1 illustrates a timing violation case and its
feasible reposition approach in the delay-line clocking scheme.

To address the timing violation issue and support this
innovative clocking scheme, this paper proposes DLPlace, the
first placement framework specifically tailored for the delay-
line clocking scheme. This framework aims to further elevate
the performance of AQFP circuits to the next level.

This paper contributes significantly in the following ways:
• This paper proposes DLPlace, the first timing-aware

placement framework for AQFP circuits using the delay-
line clocking scheme. The framework aims to minimize
circuit latency while ensuring adherence to wirelength
and timing constraints.

• DLPlace formulates the global placement problem as the
Lagrangian problem through Lagrangian relaxation con-
cerning the maximum wirelength constraint and solves
the Lagrangian subproblem by the subgradient method.

• To further enhance wirelength and timing optimization,
DLPlace proposes a row-wise gate order rearrangement
method to reduce wirelength and timing violations, along
with a dynamic programming method to achieve wire-
length and timing legalization.

• Experimental results on AQFP benchmarks illustrate
DLPlace’s effectiveness for the delay-line clocking-based
placement of AQFP circuits in eliminating wirelength and
timing violations and minimizing the circuit latency.

II. PRELIMINARIES

A. AQFP Logic

AQFP circuits are realized by adiabatic superconductors
and can operate with energy dissipation close to the thermo-
dynamic and quantum limits [13], rendering it a promising
candidate for building extremely energy-efficient computing
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Fig. 3. Schematics of AQFP buffer chains adopting (a) 4-phase
clocking scheme and (b) delay-line clocking scheme, where
Ix1, Ix2, and Ix are AC clock signals, Id is a DC input, Iin
is the data input, and n indicates the number of clock stages
of the signal propagation in one clock cycle.

systems. Since AQFP logic gates are driven by AC power,
the propagation of a signal in AQFP logic is performed using
multi-phase excitation clocks. To ensure the correct operation
of AQFP circuits, buffers must be inserted so that all inputs
to each logic gate have the same clock stages (named logic
level), i.e., path balancing [14], [15]. As illustrated in Fig. 2,
two inputs of gate g2 in Fig. 2(a) have different logic levels.
When the clock signal arrives at gate g2, it has a large delay
relative to input a. So, the output of g2 in Fig. 2(c) may be
undetermined [16]. After buffer g3 is inserted in Fig. 2(b),
gate g2 can output ‘1’ correctly in Fig. 2(d). Four-phase clock
scheme and delay-line clock scheme are widely used in AQFP
circuit design. Take an example of the AQFP buffer chains in
Fig. 3. The 4-phase clocking scheme requires two AC clock
signals, allowing for signal propagation through four clock
stages (n = 4) in one clock cycle. In contrast, the delay-line
clocking scheme only requires one AC clock signal, enabling
signal propagation through four or more clock stages (n ≥ 4)
in one clock cycle by the delay configuration of delay lines.
Hence, in cases where a data signal is fed into two buffer
chains with an equal number of buffers, the chain using the
delay-line clocking scheme can output it faster than that using
the 4-phase clocking scheme. In other words, the use of the
delay-line clocking scheme results in smaller circuit latency.

B. Placement Constraints of AQFP Logic

1) Timing Constraints: Unlike the 4-phase clocking
scheme, the delay-line clocking scheme has strict timing
constraints and usually needs to adjust the arrival time of the
clock signal to each gate by delay lines. As shown in Fig. 4,
the circuit is divided into N gate rows according to the logic
level, where the ith gate row ri has Mi gates, i ∈ [1, N ].
The clock routing of the delay-line clocking scheme follows
a zigzag pattern, with even rows moving from right to left
and odd rows moving from left to right. To ensure the correct
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Fig. 4. Delay-line clocking-based placement schematic of an
AQFP circuit, where bi is gate row ri’s horizontal boundary.

operation of the circuit, the gate gi+1,k with setup time sti+1,k

and hold time hti+1,k must the following timing constraints:
• Setup time constraint

cti,j;i+1,k − dti,j;i+1,k ≥ sti+1,k + qti,j − lti, (1)

• Hold time constraint

cti,j;i+1,k − dti,j;i+1,k ≤ T − hti+1,k + qti,j − lti, (2)

where cti,j;i+1,k is the delay of the clock path between gi,j
and gi+1,k, dti,j;i+1,k is the delay of the data path between
gi,j and gi+1,k, qti,j is the delay from the receipt of the clock
signal by gate gi,j to the release of its output signal, and lti
is the delay of the delay line di between the ith gate row ri
and the (i+ 1)

th gate row ri+1. Besides, T is the clock cycle
of the circuit, usually set to 200 ps in AQFP logic.

2) Wirelength Constraints: Each data wire in AQFP circuits
consists of vertically and horizontally straight segments, corner
segments, and intersection segments. The wirelength, defined
as the total length of these segments, is a crucial consideration
that is explored in this paper. Since each net in AQFP circuits
has only two terminals, its wirelength is calculated as the
half-perimeter wire length (HPWL). Different AQFP gates
have varying output current magnitudes that determine the
maximum length of their output wires. Due to signal current
attenuation, it is crucial to restrain the length of each wire from
surpassing its maximum limit. As shown in Fig. 5, when a
wirelength violation occurs (orange wire), a buffer d insertion
is required to split the wire. Considering the path balancing
requirement, a buffer row ri+1 needs to insert between gate
rows ri and ri+1 (which becomes ri+2) shown in Fig. 5(b).

C. Problem Formulation

This paper focuses on the placement of AQFP circuits
using the delay-line clocking scheme. The process involves
determining the delay of the delay line between gate rows and
then establishing the position of each gate. The ultimate goal
is to meet wirelength and timing constraints while minimizing
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Fig. 5. Buffer row insertion for wirelength violations. (a)The
length of the orange wire exceeds its maximum length. (b) A
buffer row is inserted to eliminate this wirelength violation.

circuit latency. Hence, the delay-line clocking-based placement
of AQFP circuits can be formulated as follows:

• Input:
1) A given path-balanced AQFP netlist G(V,E), where

V is the gate set, and E is the set of data nets.
2) A cell library, where the unit wirelength is lµ, the

signal propagation speed is vw.
• Output:

1) A legalized top-left position (xv, yv) of each gate v,
v ∈ V ∪B, where B is the set of buffers inserted
for wirelength violations.

2) The delay lti of each delay line di, i ∈ [1, N).
• Constraints:

1) ∀u, v ∈ ri, yu = yv , ensuring that gates in the same
gate row have the same vertical position.

2) Timing constraints shown in Equations (1)–(2).
3) Wirelength constraints of data wires:

dli,j;i+1,k ≤ lmaxi,j , i ∈ [1, N), j ∈ [1,Mi], k ∈ [1,Mi+1],

(3)

where dli,j;i+1,k is the wirelength of the data path
between gate gi,j and gate gi+1,k, and lmaxi,j is the
maximum fan-out wirelength of gate gi,j .

4) Overlap constraints within the gate row:

xi,j + wi,j ≤ xi,j+1, i ∈ [1, N ], j ∈ [1,Mi), (4)

where wi,j denotes the width of gate gi,j .
• Goal:

Minimize the circuit latency of the generated delay-line
clocking-based placement while meeting wirelength and
timing constraints, formulated as follows:

min
∑

i∈[1,N)

lti +
∑

i∈[1,N ]

wi/vw, (5)

where wi denotes the width of gate row ri, calculated as

wi =

{
bi − bi−1, if i mod 2 == 1,

bi−1 − bi, otherwise,
(6)

and

bi =

{
xi,Mi

+ wi,Mi
+ lµ, if i mod 2 == 1,

xi,1 − lµ, otherwise.
(7)
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Fig. 6. The placement flow of DLPlace framework.

III. DLPLACE

This section describes the implementation details of the
proposed placement framework, whose overall flow is shown
in Fig. 6, composed of three parts: global placement, detailed
placement, and buffer row insertion.

A. Global Placement

For the placement of AQFP circuits using the delay-line
clocking scheme, all attentions focus on wirelength violations,
timing violations, and circuit latency. In the global placement
phase, there are two main tasks: i) A refinement of gate
positions with a global perspective and ii) a refinement of
the delays of delay lines with a global perspective, which
can reduce wirelength and timing violations while minimizing
the circuit latency. To simplify the problem, DLPlace assumes
that the gate order of each gate row and the distance between
each two adjacent gate rows are fixed in the global placement
phase, which will be updated in the detailed placement phase.
Besides, since the locations of all pins in each gate are fixed,
they are ignored in all equations to simplify the expressions.
So, the wirelength cli,j;i+1,k of the clock path and the wire-
length dli,j;i+1,k of the data path between gate gi,j and gate
gi+1,k can be respectively calculated as

cli,j;i+1,k =

{
2 ∗ bi − xi,j − (xi+1,k + wi+1,k) + yi+1 − yi, if i mod 2 == 1,

(xi,j + wi,j) + xi+1,k + yi+1 − yi − 2 ∗ bi, otherwise,

(8)

and

dli,j;i+1,k = |xi,j − xi+1,k|+ yi+1 − yi − hi,j , (9)

where hi,j is the height of gate gi,j , and their delays can
further be calculated as

cti,j;i+1,k = cli,j;i+1,k/vw + lti, (10)
dti,j;i+1,k = dli,j;i+1,k/vw. (11)

Hence, the circuit latency for the global placement can be
formulated as follows:

min
∑

i∈[1,N)

lti +
∑

i∈[1,N ]

wi/vw, (12)



s.t. Equations (1) − (2) : Timing constraints, (13)
Equations (3) : Wirelength constraints, (14)
Equation (4) : Overlap constraints. (15)

However, considering both wirelength constraints and tim-
ing constraints, this optimization problem is very difficult to
solve. Equation (3) is relaxed into the objective function with
Lagrangian multiplier λe, and the global placement can be
formulated as a Lagrangian problem L(x, lt, λ) as follows

min
∑

i∈[1,N)

lti +
∑

i∈[1,N ]

wi/vw +
∑
e∈E

λe(le − lmaxe
), (16)

s.t. Equations (1), (2), (4), (17)
λe ≥ 0, (18)

where Lagrangian multiplier λe is updated by the subgradient
method at the kth iteration:

λk+1
e = max

{
0, λk

e + sk(le − lmaxe)
}
, e ∈ E, (19)

where sk determines the step size of updating, which is used
to control the solution quality and convergence speed. The
convergence condition described in [17] suggests sk = 1

kα

with a constant value of α < 1 to effectively achieve this
goal. Moreover, to further optimize the solution speed, the
introduction of extra variables x+

i,j,k ≥ 0, x−
i,j,k ≥ 0 can

allow for the linearization of the absolute value operations
required in the calculation of data wirelength by the following
transformation:

xi,j − xi+1,k = x+
i,j,k − x−

i,j,k, (20)

|xi,j − xi+1,k| = x+
i,j,k + x−

i,j,k. (21)

It is worth noting that this transformation is equivalent because
the objective is to minimize and λe ≥ 0 [18]. Ultimately,
solving this model can yield the initial positions of all gates
and the delays of all delay lines.

B. Detailed Placement

Following the global placement phase, wirelength and tim-
ing violations may arise, predominantly due to the suboptimal
ordering of gates within each gate row. To address these issues,
the detailed placement phase aims to re-order gates according
to the wirelength and timing constraints while proposing a
dynamic programming method to rectify violations. Besides,
the distance between adjacent gate rows is updated via channel
routing, thereby adjusting the vertical position of each gate.

1) Gate Order Rearrangement: This paper proposes a
heuristic algorithm that aims to rearrange the gate order in
each gate row as a means to address violations in timing
and wirelength constraints. As detailed in Algorithm 1 with
the time complexity O(|E|), the algorithm first calculates the
weighted horizontal positions of each gate in a given row
according to its wirelength and timing constraints (lines 2-32),
and then re-orders all gates in gate row ri according to their
weighted horizontal positions (line 33). The weight applied to
each position calculation is a critical design consideration, as
it must account for both timing and wirelength constraints.

Algorithm 1: Gate order rearrangement.
Input: N gate rows.
Output: Re-ordered gate rows.

1 for i = 1 → N , j = 1 → Mi do
2 update = True, tw = 0, sx = 0.
3 for e in data edges of gate gi,j do
4 l = dle, vio = True.
5 trs = qtes + dte + stet .
6 trh = T + qtes + dte − htet .
7 x = es == gi,j ?xet :xet .
8 if e has setup time violation then
9 ∆ = |ctet − trs|.

10 if es == gi,j then
11 x = xes + (i mod 2 == 1 ?−∆ :∆).
12 l += − |xes − xet |+ |x− xet |.
13 else
14 x = xet + (i mod 2 == 1 ?∆ :−∆).
15 l += − |xes − xet |+ |x− xes |.

16 else if e has hold time violation then
17 ∆ = |ctet − ths|.
18 if es == gi,j then
19 x = xes + (i mod 2 == 1 ?∆ :−∆).
20 l += − |xes − xet |+ |x− xet |.
21 else
22 x = xet + (i mod 2 == 1 ?−∆ :∆).
23 l += − |xes − xet |+ |x− xes |.

24 else if e has no violation then
25 vio = False.

26 if vio then
27 update = True.

28 weight = max(1, l/lmaxe).
29 tw += weight.
30 sx += x ∗ weight.
31 if update then
32 xi,j = sx/tw.

33 re-order the gates in each gate row by their abscissa.

Take an input edge e of gate gi,j as an example, where es
and et are the source and target of edge e. Firstly, some metrics
are calculated (lines 4-7), including the current wirelength l
of edge e, the earliest clock arrival time trs required to satisfy
the setup time constraint, and its latest clock arrival time trh
required to satisfy the setup time constraint. If edge e cause
the setup violation, the new horizontal position x of gate gi,j
is estimated by the difference between the actual clock arrival
time ctet and trs, and wirelength l is also adjusted accordingly
(lines 8-15). If edge e cause the hold time violation, the
operation is similar (lines 16-23). Finally, the weight weight
assigned to new position x is set to the ratio of current
wirelength l and its maximum wirelength lmaxe

of edge e (line
28). The final horizontal position of gate gi,j is determined by
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Fig. 7. Trellis for an in-row gate placement process, where the
red line is the Viterbi path, i.e. the optimal placement solution.

the weighted average of these new positions (lines 29-32).
2) Wirelength and Timing Legalization: After the gate

order rearrangement phase, wirelength and timing legalization
become necessary to account for the changes in the horizontal
positions of gates. So, this paper proposes a row-wise legal-
ization algorithm based on the Viterbi algorithm [19], which
is a dynamic programming algorithm used to find the most
likely sequence (called the Viterbi path) of hidden states in
a hidden Markov model. As shown in Fig. 7, each gate has
W candidate positions in the gate row with M gates. Based
on the position of the (i − 1)th gate, the position of the ith

gate can be determined using the Viterbi algorithm. Firstly, a
triplet {wv, tv, wl} is defined as the cost of placing the ith

gate, where wv is the number of wirelength violations of the
ith gate, tv is the number of timing violations of the ith gate,
and wl is the total wirelength connected to the ith gate. The
comparison between two triplets is made by the lexicographic
order, and the addition of two triplets is defined as the addition
of corresponding elements separately. The cost c(xpi−1

i−1 , xpi

i )
of each edge is defined as the cost sum of the first (i − 1)
gates, where the (i − 1)th gate is placed at pi−1 and the ith

gate is placed at pi. So, the minimum cost c(xpi

i ) of placing
ith gate at pi can be formulated as

c(xpi

i ) =
pi−⌈wi−1/lµ⌉

min
pi−1=1

c(x
pi−1

i−1 , xpi

i ) + cost(xpi

i ), (22)

where wi−1 is the width of the (i− 1)th gate.
Algorithm 2 describes the complete process of the wire-

length and timing legalization for a given gate row, whose time
complexity of this algorithm is O(M ∗W ). The algorithm first
calculates the total gate width Wc of all gates and the available
width W for the in-row placement (lines 1-2), and then defines
variables dp and prev to record the cost and source of each
edge in Fig. 7. Next, the algorithm places the ith gate according
to the placement of the (i − 1)th gate to minimize the cost
(lines 4-20). Finally, the algorithm updates the positions of all
gates according to prev and returns the minimum cost for the
placement of the given gate row (lines 21-28).

3) Row Distance Adjustment: In consideration of the im-
pact of the distance between adjacent gate rows on circuit
latency, the vertical position of each gate is applied to the
calculation of the wirelength and timing to strictly meet
wirelength and timing constraints in this paper. All gates in the
same gate row are assumed to share the same vertical position,
and the distance between adjacent gate rows can be estimated
by the number of tracks required by the channel routing.

Algorithm 2: Wirelength and timing legalization.
Input: A gate row with M gates, left boundary bl, and

right boundary br.
Output: The total cost.

1 calculate the total gate width Wc of all gates.
2 W = ⌊(br − bl)/lµ⌋, cw = 0, nx = bl.
3 dp[M ][W ] = {∞,∞,∞}, prev[M ][W ] = −1.
4 for i = 1 → M do
5 pc = {∞,∞,∞}, pi = −1.
6 for j = ⌈cw/lµ⌉ → W − ⌈(Wc − cw)/lµ⌉ do
7 xi = bl + j ∗ lµ.
8 nx = xi + wi.
9 if nx > br then

10 break
11 calculate the cost c of current gate placed at j.
12 if i > 1 then
13 li = ⌊(xi − wi−1 − bl)/lµ⌋.
14 if li ̸= prev[i− 1][li] then
15 li = ⌊(xi − lµ − wi−1 − bl)/lµ⌋
16 c += dp[i− 1][li].

17 if (i == 1 ∧ j == 1) ∨ c < pc then
18 pc = c, pi = j.

19 dp[i][j] = pc, prev[i][j] = pi.

20 cw += wi.

21 res = {∞,∞,∞}.
22 for i = M → 1 do
23 j = ⌊(nx − wi − bl)/lµ⌋.
24 if i == M then
25 res = dp[i][j].

26 nx = bl + prev[i][j] ∗ lµ.
27 xi = nx.

28 return res

However, given that the wire congestion between adjacent
gate rows may be altered after carrying out the gate order
rearrangement, it is necessary to update the distance between
adjacent gate rows through channel routing to effectively
reduce the circuit latency.

C. Buffer Row Insertion

Upon completion of the detailed placement phase, wire-
length violations may still arise, primarily due to the insuffi-
cient fan-out driving force of AQFP gates, particularly AQFP
splitters. Since AQFP buffers possess a significant fan-out
driving force, few JJs, and a small area, they can be inserted to
eliminate wirelength violations. According to the description
of Section II-B2, buffer rows need to insert between adjacent
gate rows in cases where wirelength violations exist, with the
horizontal position of each buffer set as the average of horizon-
tal positions of the source and target of its corresponding wire.
After this buffer insertion phase, DLPlace proceeds with the
next iteration and continues to perform the global placement.



Algorithm 3: DLPlace algorithm.
Input: A path-balanced netlist G(V,E), TL, TD, TR.
Output: A corresponding legal placement.

1 group all gates into N gate rows by the logic level.
2 initialize the gate order of each gate row and the

distance between adjacent gate rows.
3 λe = 1,∀e ∈ E
4 while wirelength or timing violations exist do
5 tL = 0
6 while not converge ∧ tL ++ < TL do
7 solve the Lagrangian subproblem L(x, lt, λ)
8 tD = 0
9 while violations exist ∨ tD ++ < TD do

10 tR = 0
11 while violations exist ∨ tR ++ < TR do
12 re-order the gate order of each gate row.
13 adjust row spacing.

14 legalize wirelength and timing violations.

15 update λe,∀e ∈ E

16 insert buffer rows.

This paper has presented an overview of all the main
phases involved in DLPlace. Algorithm 3 shows the com-
plete algorithmic procedure of the delay-line clocking-based
placement, where TL, TD, and TR are used to control the
iteration number of the Lagrangian relaxation, the detailed
placement, and the gate order rearrangement, respectively.
Initially, an initial placement is generated (lines 1-2), with
Lagrangian multipliers initialized to 1 (line 3). The algorithm
then enters the iteration process (lines 4-16). Firstly, DLPlace
determines initial positions for all gates and delays for all
delay lines through the adoption of Lagrangian relaxation.
The algorithm then proceeds to the next iteration process
(lines 9-14), which mainly involves the adjustment of the gate
order of each gate row and the distance between adjacent
gate rows. Following this layer iteration, violations are further
eliminated by the dynamic programming algorithm, and the
Lagrangian multipliers are updated (line 15). Upon completing
the iteration of solving the Lagrangian problem, buffer rows
are inserted wherever wirelength violations exist (line 16). In
this way, DLPlace completes the placement process of AQFP
circuits using the delay-line clocking scheme.

IV. EXPERIMENTAL RESULTS

This section presents the implementation and evaluation of
the proposed delay-line clocking-based placement framework
for AQFP circuits. The proposed framework was developed
using C++, and its execution was carried out on a machine
running CentOS Linux 7, equipped with an Intel(R) Core(TM)
i9-9900X CPU @ 3.50GHz and 125 GB memory. To solve
the global placement problem, Gurobi [20] is selected as the
solver due to its superior performance, with version 10.0.0
being utilized. The benchmark circuits are obtained from [9]
and include an 8-bit Kogge-Stone adder (adder8), decoder,

Using 4-phase clocking

Using delay-line clocking

Fig. 8. The placement results of circuit c432, where small red
rectangles are gates, each large green box marks a buffer row,
and two zoom-in sub-figures show the placement results from
the 5th row to the 8th row in the input circuit.

32-bit sorter (sorter32), 32-bit approximate parallel counter
(apc32), 128-bit approximate parallel counter (apc128), as well
as several ISCAS’85 benchmark circuits [21].

The utilization of the delay-line clocking scheme in physical
design research on AQFP circuits has been limited due to
two primary reasons: (i) the absence of prior research in
this specific area and (ii) the challenges associated with the
direct application of existing CMOS-based physical design
frameworks on AQFP circuits utilizing the delay-line clocking
scheme. As a result, the baselines in this paper use state-of-
the-art methods for AQFP circuits using the 4-phase clocking
scheme, including the GORDIAN-based AQFP placement
method (GORDIAN-based) [8] and the timing-aware place-
ment method (TAAS) [9]. As discussed in Section I, the
GORDIAN-based method seeks to minimize the number of
buffer rows inserted to address wirelength violations, while
TAAS also further considers the timing constraints associated
with the 4-phase clocking scheme.

Table I shows the detailed comparison results between the
baselines and DLPlace, where the clock cycle of AQFP circuits
was assumed as 200 ps. The parameters TL, TD, and TR of
DLPlace were set to 20, 2, and 10, respectively. The “Original”
part displays the fundamental characteristics of input circuits,
including the number of AQFP logic gates, denoted as “Gates”,
and the circuit depth, denoted as “Depth”. On the other hand,
the “GORDIAN-based” part shows the results of the 4-phase
clocking-based method only targeting eliminating wirelength
violations. The “BRI” column represents the number of buffer
rows inserted to satisfy the wirelength constraint. The “Vi-
olations” column represents the total number of timing or
wirelength violations under the clock cycle of 200 ps. The “La-
tency” column represents the circuit latency of the generated
placement. Since the signal can propagate through four clock
phases in one clock cycle in the 4-phase clocking scheme, their



TABLE I. The comparison between baselines and DLPlace with TL = 20, TD = 2 and TR = 10 at a clock cycle of 200 ps.

Circuit Original GORDIAN-based [8] TAAS [9] DLPlace
Gates Depth BRI Violations Latency (ps) BRI Violations Latency (ps) BRI Violations Latency (ps)

adder8 446 25 24 0 2450 24 0 2450 0 0 594
apc32 379 27 26 0 2650 26 0 2650 0 0 625
apc128 1734 45 117 2157 8100 110 317 7750 24 0 2401
c432 1120 42 46 0 4400 45 0 4350 8 0 1310
c499 1908 31 62 1978 4650 62 234 4650 40 0 2926
c1355 1924 31 58 2011 4450 58 257 4450 32 0 2631
c1908 2212 39 67 1720 5300 66 213 5250 32 0 2681

decoder 764 20 34 360 2700 33 26 2650 13 0 1092
sorter32 960 30 29 274 2950 29 29 2950 27 0 2046

circuit latency can be estimated as (Depth+BRI)/4 ∗ 200. In
addition, the “TAAS” part shows the results of the 4-phase
clocking-based timing-aware method targeting satisfying both
wirelength and timing constraints. The results of both methods
are sourced from [9]. The “DLPlace” part shows the results
of the proposed delay-line clocking-based method, where the
latency is calculated as the total propagation delay of a clock
signal from the first gate of the first row to the last gate of the
last row. Compared to the baselines, there was no violation in
all results of DLPlace for all testcases, while there were still
a lot of violations in the results of the baselines. Meanwhile,
DLPlace had a significant reduction in the number of buffer
rows inserted and the circuit latency, specifically by 62.59%
and 56.70% over “GORDIAN-based”, and by 62.19% and
56.38% over “TAAS”, respectively. This result shows that the
DLPlace framework is effective for AQFP placement. Besides,
Fig. 8 shows the placement result of circuit c432. For the
baseline result [9] in the left part, a buffer row is inserted in
almost every two adjacent gate rows, while only eight buffer
rows are inserted in total in the DLPlace’s result in the right
part. This result further demonstrated DLPlace’s significant
advantage in the number of buffer rows inserted.

V. CONCLUSION

This paper introduces the placement problem of AQFP
circuits using the delay-line clocking scheme, including wire-
length and timing constraints. Meanwhile, this paper proposed
DLPlace, the first delay-line clocking-based placement frame-
work for AQFP circuits, which can eliminate wirelength and
timing violations while minimizing the circuit latency. The
experimental results on the AQFP logic benchmark circuits
show the effectiveness of the proposed algorithm, making
the generated placement satisfy the wirelength and timing
constraints of the delay-line clocking scheme. Meanwhile, the
number of buffer rows inserted and the circuit latency are
significantly reduced compared to the baselines.
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