
Handling Orientation and Aspect Ratio of Modules in
Electrostatics-based Large Scale Fixed-Outline Floorplanning

Fuxing Huang1, Duanxiang Liu1 Xingquan Li2, Bei Yu3, Wenxing Zhu1∗
1Fuzhou University, 2Peng Cheng Laboratory, 3The Chinese University of Hong Kong

Abstract—In this paper, we present an improved electrostatics-based an-
alytical method for fixed-outline floorplanning, which incorporates module
rotation and sizing driven by wirelength. To accurately compute the density
function after module rotation, we propose a novel density calculation
algorithm based on line drawing and polygon clipping algorithms commonly
used in computer graphics. By using this algorithm, we are able to accu-
rately compute the density function after module rotation without adding
any complexity. Moreover, we propose a module legalization algorithm by
adding module sizing and module rotation after the existing constraint
graph adjustment step. Furthermore, we adopt a linear programming to
minimize wirelength to improve the quality of the results. Experimental
results demonstrate that our floorplanning algorithm achieves at least 5.9%
and 11% reduction in half-perimeter wirelength on the HB+ and ami49 x
benchmarks, respectively, compared to state-of-the-art floorplanners.

Index Terms—Fixed-outline floorplanning, Global floorplanning, Module
rotation, Module sizing, Legalization, Constraint graph.

I. INTRODUCTION

Floorplanning is an essential component of the VLSI physical design
process, requiring the organization of a number of circuit modules
within a fixed-outline. However, this task is particularly challenging
given the current utilization of IP cores and the large number of
cells in modern chips. It requires careful consideration of several
complex considerations, including thermal and power issues, timing,
and voltage-island concerns. Despite its importance, floorplanning is
a known NP-hard problem, making designing an efficient algorithm
a significant challenge. A state-of-the-art floorplanner called PeF [1],
which utilizes Poisson’s equation, has shown positive results. However,
it has a limitation since it neglects module orientation. In this paper,
we aim to address this issue by employing analytical methods driven
by wirelength optimization to handle orientation and aspect ratio of
modules.

A. Previous Work

Fixed-outline floorplanning techniques can be divided into two cate-
gories: heuristic algorithms and analytical methods.

Heuristic algorithms are commonly utilized to address the floor-
planning problem, which generally begins by selecting a floorplan
representation, such as slicing tree [2]. The algorithms use heuristics,
e.g., simulated annealing, to search for a solution within the chosen
representation with the ultimate objective of finding an optimal solution.
Then the solution is subsequently decoded into an actual floorplan.
To overcome efficiency challenges when dealing with large-scale
benchmarks, heuristic algorithms are often combined with hierarchical
frameworks. These frameworks adopt partitioning or clustering to tackle
the problem size, e.g., Capo [3] and DeFer [4].

Capo [3] uses a min-cut partitioner to divide the original circuit into
multiple partitions. At the same time, the chip region is partitioned
into smaller bins. Parquet [5] is then used to perform fixed-outline
floorplanning for each partition along with its corresponding bin. DeFer
[4] begins by using partitioner to generate a slicing tree [2]. The tree
is designed to have a maximum of ten modules per leaf node. For each
such node, a dynamic programming approach is used to derive its shape
curve via enumerated packing process, which is then merged from the
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bottom to up. Finally, using fixed-outline as a constraint, the optimal
shape curve of the root is obtained and the top-down program is run
to determine the position and shape of each module.

Floorplanning algorithms based on heuristics efficiently handle ori-
entations and aspect ratios of modules. DeFer [4] is an example that
the orientations and aspect ratios of modules are used to optimize the
shapes of nodes in the slicing tree [2], via the shape curve. In addition,
the simulated annealing algorithm used in Capo [3] expands the solution
space by incorporating modules’ orientations and aspect ratios, which
allows for better solution exploration.

However, analytical-based floorplanning methods have not consider
both the orientations and aspect ratios of modules, due to their difficulty
in modeling. In general, analytical-based floorplanning consists of two
distinct stages. The first stage is the global floorplanning stage that
permits partial overlapping of modules and calculates their optimal
positions by optimizing an objective function. The second stage, called
the legalization stage, aims to eliminate overlap and achieve a legitimate
floorplanning result.

Recently, analytical-based algorithms have been introduced for fixed-
outline floorplanning, such as F-FM [6], [7], and PeF [1]. F-FM [6]
addresses voltage drop constraints, and [7] focuses on temperature
constraints. In their global floorplanning stage, both algorithms consider
their constraints in the NTUplace [8] framework. After global floorplan-
ning, F-FM divides modules into a slicing tree, balances the number
and area of the partitions, and merges shape curves with DeFer-like [4]
method to acquire a feasible solution. Conversely, the legalization stage
of [7] uses SAINT [9], which models the legalization problem as an
ILP. PeF [1] proposes an electrostatic model for density control in the
global floorplanning stage, which was originally introduced in ePlace
[10]. During the legalization stage, PeF develops a constraint graph-
based legalization algorithm and utilizes constraint graph adjustment to
obtain a legal floorplan.

Neither F-FM [6] nor [7] optimizes the orientation and aspect ratio
of modules during the global floorplanning stage. Although PeF [1]
optimizes the module aspect ratio by width adjustment in global
floorplanning, it uses a density-driven approach instead of a wirelength-
driven approach. Besides, PeF [1] does not consider the optimization
of module orientation.

B. Our Contributions

Analytical-based algorithms are known to be the most effective for
floorplanning, but have limitation in handling module orientation and
module’s aspect ratio. Even the most advanced analytical floorplanners,
including PeF [1], tend to neglect module orientation despite its
significant potential in reducing wirelength. Therefore, the aim of this
paper is to address the challenge of handling module orientation and
aspect ratio in analytical-based floorplanning. The main contributions
of this paper are summarized as follows:

• To handle the orientations and aspect ratios of modules in global
floorplanning, we introduce two new variables: module rotation
degree and soft module width. We use an analytical method to
optimize these two variables, which are driven by wirelength. This
allows the modules to be placed in desired orientations and aspect
ratios by rotation and sizing.



• After module rotation, we propose a novel density calculation
algorithm that accurately calculates the density function of the
rotated modules without increasing the complexity.

• We propose a legalization algorithm based on transitive reduction
graph. To improve the robustness of our legalization algorithm, we
add module sizing and module rotation after the existing constraint
graph adjustment step. Finally, we further enhance the solution
quality by minimizing the wirelength using a linear programming.

• Our algorithm achieves at least 5.9% and 11% reduction in
half-perimeter wirelength on the HB+ and ami49 x benchmarks,
respectively, compared to the state-of-the-art floorplanners, while
maintaining an acceptable runtime.

The remainder of this paper are organized into the following sections.
In Section II, we introduce the problem of fixed-outline floorplanning
and the necessary background knowledge. In Section III, we propose
our global floorplanning algorithm and legalization algorithm. In Sec-
tion IV, we present experimental results and comparisons. Finally, we
conclude and summarize our work in Section V.

II. PRELIMINARIES

This section begins with an introduction of the fixed-outline floor-
planning problem, followed by presenting the model for global floor-
planning and the corresponding floorplan representation for legalization.

A. Fixed-outline Floorplanning Problem

Let V be the set of rectangular modules that consists of two subsets,
Vh and Vs, representing the set of hard and soft modules, respectively.
Each module vi has its center coordinate (xi, yi), dimension (wi, hi),
and area Ai = wi × hi. Let θi denote the degree of counter-
clockwise rotation of the module vi around its center coordinate, while
each module has four legal orientations with their corresponding θi
of 0◦(360◦), 90◦, 180◦, and 270◦, respectively. The hard modules
in Vh have fixed dimensions, while the soft modules in Vs can be
adjusted with fixed area, subject to aspect ratio constraints, for which
ARi = hi

wi
, and ARl

i and ARu
i represent the lower and upper

bounds on a soft module’s aspect ratio. Additionally, a set of nets,
Net = {net1, net2, . . . , netm}, in which each net netj interconnects
multiple modules. Finally, WL(V ) represents the total wirelength of
the netlist. The fixed-outline floorplanning problem aims to place all
modules in a rectangular fixed-outline, R, with width W and height H .
The modules must not overlap each other, and the goal is to minimize
the total wirelength, WL(V ), among the modules.

B. Global Floorplanning Model

The rectangular fixed-outline R is divided into K ×K equal-sized
bins, denoted by B, and denote the bin in the j-th column and k-th row
by bj,k. The width and height of each bin are wb = W

K
and hb = H

K

respectively. Let ρ be the density function and ρj,k be the density of
bin bj,k. The formulation of the global floorplanning problem can be
described as a constrained minimization problem, which is presented
as:

min WL(V )

s.t. overflow ⩽ tof ,

where overflow is used to approximate the overlap among modules,
which can be computed by overflow =

∑K−1
j,k=0 max(ρj,k−1, 0)/K2

and tof is a user-specified target overflow value.
The total wirelength, WL(V ), is commonly calculated using the half-

perimeter wirelength (HPWL) in floorplanning. Floorplanning based
on analytical methods uses gradient descent to optimize the floorplan.
However, the HPWL function is non-differentiable. Therefore, a differ-
entiable wirelength function, such as the log-sum-exp (LSE) wirelength
[11], is required to approximate the HPWL function.

Electrostatic-based density control model is currently the mainstream
approach applied in floorplanning, such as PeF [1], and in placement
such as ePlace [10] and Pplace [12]. Pplace defines a new density
function and obtains the analytical solution of the Poisson’s equation.
In [12], the density function ρ is defined as:

ρj,k =
∑
vi∈V

Area(bj,k ∩ vi)
wb × hb

, ∀ρj,k ∈ ρ,

where Area(bj,k ∩ vi) is the intersection area between bin bj,k and
module vi. Subsequently, the discrete solution of the Poisson’s equation
is obtained, and based on the result, the electrostatic potential ψ(j, k)
of the bin bj,k is calculated according to the following formula:

ψ(j, k) =

K−1∑
u=0

K−1∑
v=0

au,v cos

(
u(j + 1

2
)π

K

)
cos

(
v(k + 1

2
)π

K

)
.

Here, the discrete cosine transform coefficient au,v is described in
Pplace [12]. The electrostatic potential energy of the individual module
vi and the total electrostatic potential energy of all modules V are
defined by:

N(vi) ≈
∑

bj,k∈B

Area(bj,k ∩ vi)ψ(j, k),

N(V ) ≈
∑
vi∈V

N(vi).

The reduction of module overlap is thus translated into the minimiza-
tion of the electrostatic potential energy. Therefore, the problem of
global floorplanning expressed as:

min LSE(V ) + λN(V )

s.t. ARl
i ⩽ ARi ⩽ ARu

i , ∀vi ∈ Vs

wi

2
⩽ xi ⩽W − wi

2
, ∀vi ∈ V

hi

2
⩽ yi ⩽ H − hi

2
, ∀vi ∈ V,

(1)

where λ is a penalty factor, which is updated in the same way as in
ePlace [10].

C. Floorplan Representation for Legalization

In this paper, we use a horizontal constraint graph Gh = (V,Eh) and
a vertical constraint graph Gv = (V,Ev) to represent a floorplan. Both
graphs are directed acyclic graphs (DAGs). The construction rules for
the graphs are similar to those in XDP [13]. We define the following
symbols: Let module vi be represented as vertex vhi in Gh. Each edge
ehi,j ∈ Eh represents a connection from vhi to vhj , i.e., vi is on the
left of vj . We use w(ehi,j) =

wi+wj

2
to denote the weight of edge ehi,j .

We set dummy nodes vhs and vht to represent the source and sink
of Gh, respectively, i.e., the leftmost and rightmost points. Similar to
XDP [13], we use the following attributes:

L(vhs) = 0,

L(vhj ) = max
i

(L(vhi) + w(ehi,j)),

R(vht) = max(L(vht),W ),

R(vhi) = max
j

(R(vhj )− w(e
h
i,j)),

slack(ehi,j) = R(vhj )− L(vhi)− w(e
h
i,j).

(2)

For each node vhi in Gh, we set two attributes L(vhi) and R(vhi)
to represent the leftmost and rightmost positions that vi can reach,
respectively. For each edge ehi,j , we set the slack slack(ehi,j) to
represent the maximum acceptable distance between vhi and vhj . The
symbols and attributes in Gv are defined in the same way and are not
repeated here.
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Fig. 1. Flowchart of our fixed-outline floorplanning algorithm.

III. OUR FLOORPLANNING ALGORITHM

This section presents our floorplanning algorithm that comprises
three parts: initial floorplanning, global floorplanning, and legalization.
The overall flowchart of the algorithm is depicted in Fig. 1. In the
initial floorplanning stage, we input the circuit netlist and employ
the Quadratic Placement method [14] to obtain an initial floorplan.
We divide the global floorplanning stage into two steps, detailed in
Subsection III-A. In the first step, the coordinates of modules are
optimized by the wirelength gradient and density gradient, while the
rotation degrees and widths of modules are optimized by wirelength
gradient. After determining the orientations of modules, in the second
step, we optimize the coordinates and widths of modules using the
wirelength gradient and density gradient proposed by PeF [1], to further
eliminate overlaps between modules. Our legalization algorithm is
based on the XDP [13], detailed in Subsection III-B, using three steps
of initial constraint graph construction, constraint graph adjustment,
module sizing and rotation to obtain two legal constraint graphs. Finally,
we solve a linear programming problem to determine the final position
of each module.

Next, we provide a detailed description of the global floorplanning
and legalization stages.

A. Global Floorplanning

During the global floorplanning stage, we consider both the wire-
length and the density of the modules, and strive to minimize the
increase in wirelength while eliminating overlap. Besides positions, the
rotation degrees θ of all modules and widths w of soft modules are
considered in the optimization process, resulting in a better solution
than those obtained by considering only the modules coordinates. As
shown in Fig. 2, the wirelength can be shorter while keeping the center
positions of the modules unchanged.

We divide the global floorplanning into two steps. In the first step, due
to the complexity of calculation, the gradient with respect to (w, θ) is
calculated only for the wirelength, and (w, θ) is regarded as a constant
in the calculation of density gradient. We also set the target overflow
t
′
of to 0.15 in the first step, because changing (w, θ) does not affect the

increase in overlap too much in the early stage of optimization. After
the first step, we determine and fix the orientations of modules through
the Orientation Determination step. In the second step, the module
coordinates and widths are optimized simultaneously by the density
gradient proposed by PeF [1] and the wirelength gradient including

our sizing force in Equation (5). During the gradient descent, when
the coordinate or aspect ratio of a module violate the constraints in
Equation (1), we use the method proposed by PeF [1] to project the
coordinate or aspect ratio to the feasible region.

Below, we introduce our formula for calculating the rotation force
and sizing force.

A

B

C

B

A
C

Fig. 2. Example of before and after optimizing module orientation and aspect
ratio. Module A is a soft module, which is sized to the desired aspect
ratio. Modules B and C are hard modules, which are rotated to the desired
orientations.

1) Rotation Force and Sizing Force: Our rotation force and sizing
force are defined as the gradient of the objective for optimization, i.e.,
wirelength, with respect to the rotation degree θ of modules and the
width w of soft modules. To take partial derivatives of the wirelength
with respect to (θ, w), we use the method proposed in [15]. In the
field of placement, [15] is an excellent work for placing standard cells
and macros simultaneously. Due to the differences between macros and
standard cells, placing both simultaneously can lead to many complex
problems. To solve this issue, [15] introduces a rotation force that allows
a macro to rotate around its center point to obtain its desired orientation.
The rotation force is the partial derivative with respect to θ obtained
by the chain rule differentiation.

After rotating the module vi by θi degrees, its pink position (xk, yk)
formula is proposed by [15] as follows:{

xk = xi + xorwi cos θi − yorhi sin θi

yk = yi + xorwi sin θi + yorhi cos θi,
(3)

where xor and yor are the offset rates of pink from the center of vi
in the x and y directions.

The partial derivative of the wirelength model with respect to the
direction θi of the module vi, also known as the rotation force as
described in [15], can be expressed by:

∂LSE(V )

∂θi
=
∂LSE(V )

∂xk
· ∂xk
∂θi

+
∂LSE(V )

∂yk
· ∂yk
∂θi

=
∂LSE(V )

∂xi
· (−xorwi sin θi − yorhi cos θi)

+
∂LSE(V )

∂yi
· (xorwi cos θi − yorhi sin θi).

(4)

Similarly, using the chain rule of differentiation, we obtain the sizing
force, obtained by the partial derivative of the wirelength model with
respect to the width wi of soft module vi ∈ Vs, as follows:

∂LSE(V )

∂wi
=
∂LSE(V )

∂xk
· ∂xk
∂wi

+
∂LSE(V )

∂yk
· ∂yk
∂wi

=
∂LSE(V )

∂xi
· (xor cos θi +

yorAi sin θi
w2

i

)

+
∂LSE(V )

∂yi
· (xor sin θi −

yorAi cos θi
w2

i

).

(5)

As seen from Fig. 3, the modules are subject to rotation force and
sizing force and tend to rotate and size to their desired orientations and
aspect ratios.

With the computation of the rotation force and sizing force, we
proceed to discuss the calculation of density force.
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Fig. 3. Diagram of Rotation Force and Sizing Force.

2) Density Force: The electrostatics-based density model considers
the density force on each module vi in the x and y directions as its
electric field force, represented as (qiξix , qiξiy ). The electric field force
can be calculated using the following formula:

qiξix ≈
∑

bj,k∈B

Area(bj,k ∩ vi)ξx(j, k),

qiξiy ≈
∑

bj,k∈B

Area(bj,k ∩ vi)ξy(j, k),

where ξx(j, k) and ξy(j, k) represent the electric field associated with
each bj,k in the x and y directions, as described in detail in [10], [12].

Unlike the Cross Potential Model proposed in [15] to approximate the
density force after module rotation, our density force formulas remain
unchanged from those of other electrostatics-based density models. This
is because our density calculation algorithm maintains the accuracy of
the model. Obtaining the electric fields, ξx(j, k) and ξy(j, k), requires
a triple Fast Fourier Transform (FFT) dependent on the density function
ρ. Therefore, the first step is to calculate the density function ρ. Our
proposed density calculation algorithm is outlined below.

When a module is at a legal orientation, i.e., 0◦(360◦), 90◦, 180◦,
or 270◦, i.e., the module is either horizontal or vertical, we can easily
calculate the intersection bins Xi = {bj,k|bj,k ∈ (B ∩ vi)} between
all bins B and module vi, and then calculate the intersection area
Area(bj,k ∩ vi). However, when a module is free to rotate around its
center, the form of intersection between the module and bins changes,
as shown in Fig. 4.

Edge intersection bins

Internal intersetion bins

Fig. 4. Two forms of intersection between a module and bins.

To expedite the computation of the density function ρ after rotating
each module, we initially determine the intersection bins Xi among
module vi and all bins B. For ease of downstream processing, we
partition Xi into two kinds of bins: the set of edge intersection bins
Ei = {(col, row), . . . } and the set of internal intersection bins Ii =
{(col, (rowmin, rowmax)), . . . }, as illustrated in Fig. 4. The set of
edge intersection bins Ei comprises bins partially overlapped by module
vi, namely, these bins intersecting with an edge of vi. Each bin in

the set of internal intersection bins Ii is wholly covered by module
vi. Specifically, Ei is a regular set, in which each element represents
the position of a bin, i.e., the bin at row row-th and column col-th.
On the other hand, Ii is a hash table, with col serving as the key and
(rowmin, rowmax) as the values. Within the hash table Ii, col captures
the bins located in the col-th column, while (rowmin, rowmax) records
the upper and lower bounds of the bins in the column col-th intersecting
module vi, namely, the bins spanning rows rowmin-th to rowmax-th
in the column col-th.

To obtain Ei, we use Bresenham’s line drawing algorithm [16], which
is an algorithm for finding the pixels that intersect a line on a bitmap and
drawing the line accordingly. The algorithm uses only integer addition
and subtraction in its computation, making it highly efficient, and has
therefore been widely applied in computer graphics. By treating bins as
pixels, we can use the Bresenham’s line drawing algorithm to obtain Ei.
After obtaining Ei of the module vi using Bresenham’s line drawing
algorithm, Ii can be obtained from Ei as a subsequent step.

Algorithm 1 Module Drawing Algorithm
Input: module vi; width and height wb and hb of bins.
Output: edge intersection bins Ei; internal intersection bins Ii.

1: function MODULEDRAW(vi, wb, hb)
2: Points← ENDPOINTS(vi);
3: for j = 0→ 3 do
4: k = (j + 1) mod 4;
5: (xj , yj)← Points[j];
6: (xk, yk)← Points[k];
7: Ei ∪ LINEDRAW(xj , yj , xk, yk, wb, hb);
8: for each (col, row) ∈ Ei do
9: if Ii[col] = NULL then

10: Ii[col] = (row, row);
11: else
12: (rowmin, rowmax)← Ii[col];
13: rowmin ← min(row, rowmin);
14: rowmax ← max(row, rowmax);
15: Ii[col] = (rowmin, rowmax);
16: return Ei, Ii.

Algorithm 1 delineates this process, whereby we input module vi
along with the width and height of the bins to compute Ei and Ii. At
line 2, in the counterclockwise order the four vertices of module vi are
computed, akin to how we determine the position of point pin through
Equation (3). Next, from lines 3 to 7, the algorithm loops across the
four edges and applies Bresenham’s line drawing algorithm to each to
yield Ei. Subsequently, from line 8, each element in Ei is traversed,
and Ii is computed from Ei utilizing the property that Ii is enclosed by
Ei. Within lines 9 to 15, the presence of the bin in the col-th column
is checked in Ii. If absent, the bin at row row-th and column col-th is
appended to Ii. Otherwise, the upper and lower bounds of the column
col-th bin in Ii are updated to (rowmin, rowmax). Finally, the sets of
edge intersection bins Ei and internal intersection bins Ii are returned.

Once we have the bins that intersect the module vi, we calculate the
intersection area between the module vi and each bin, and accumulate
it in the density function ρ. For the two forms of intersection bins, we
use two different area calculation formulas. For the bin in Ei as shown
in Fig. 5, which is equivalent to the intersection of two polygons, we
use the Sutherland-Hodgman polygon clipping algorithm [17] to clip
the clipping polygon. The area of the polygon is calculated using the
following approach:

Given a polygon ployi consisting of vertices ordered either clockwise
or counterclockwise, i.e., ployi = {(x1, y1), . . . , (xn, yn)}, its area can



Fig. 5. Polygon clipping between module vi and bin bj,k , and clipping polygon
ployc.

be expressed by Green’s formula as:

Area(ployi) =
1

2

n∑
i=1

|xiyi+1 − xi+1yi| ,

where xn+1 = x1, yn+1 = y1 means that the first vertex and the last
vertex are adjacent.

Each bin in Ii has an intersection area that equals its own area, since
the module entirely surrounds it vi. Based on this, we can derive the
density computation algorithm shown in Algorithm 2.

Algorithm 2 Density Calculation
Input: uncalculated density function ρ; all modules V ; width and

height of bins wb and hb.
Output: calculated density function ρ.

1: Initialize ρ to 0;
2: for each vi ∈ V do
3: (Ei, Ii)←ModuleDraw(vi, wb, hb);
4: Polyv ← Polygon(vi);
5: for each (j, k) ∈ Ei do
6: Polyb ← Polygon(bj,k);
7: Polyc ← PolygonClip(Polyv, Polyb);
8: ρj,k = ρj,k + PolygonArea(Polyc)/(wb × hb);
9: V isit(j, k);

10: for each (col, (rowmin, rowmax)) ∈ Ii do
11: j = col;
12: for k = rowmin + 1→ rowmax − 1 do
13: if isV isit(j, k) then continue;
14: ρj,k = ρj,k + 1;
15: return ρ.

Algorithm 2 takes as input the uncalculated density ρ, the set of all
modules V , the width and height wb and hb of the bins. The output is
the calculated density ρ. In line 1, the density is initialized by setting
the density of each bin to 0. In line 2, we loop through all modules
in V to compute the intersection area between each module and its
intersection bins. In line 3 we call Algorithm 1 to get Ei and Ii. In
line 4 we find the polygonal geometry of the module vi and denote
it as Polyv . In lines 5-9, we loop through each bin in Ei, apply the
polygon intersection algorithm to obtain the intersecting polygon ployc,
calculate its area using Green’s formula, and accumulate it into ρ. In
lines 10-14, we calculate the overlapping area between each bin in Ii
and module vi, and accumulate it into ρ.

Now, let us analyze the complexity of our density calculation
algorithm. For each module vi, the time complexity of Bresenham’s
line drawing algorithm is determined by the number of elements in the
set Ei, which is O(|Ei|). Therefore, the time complexity of Algorithm 1
is also O(|Ei|). Note that, the time complexity of Sutherland-Hodgman
algorithm [17] is O(nm), where n is the number of edges of the
polygon and m is the number of edges of the clipping window. Since
we are using a 4-edge polygon in our case, Sutherland-Hodgman

algorithm is of constant complexity. Thus, we can conclude that the time
complexity for calculating the density of each module vi is O(|vi∩B|).
Therefore, the time complexity of our density calculation algorithm is
O(

∑
vi∈V |vi ∩ B|) = O(K2). As we need to maintain Ei and Ii,

the space complexity is O(avg(|Ei| + |Ii|)) ≪ O(K2). The time
consumption in practical applications will be verified in the experiment
section (Section IV). The density calculation algorithm can be used to
calculate the density function ρ, while a similar method can be used to
calculate the density force for each module, which will not be repeated
here.

3) Orientation Determination: At the first step of the global floor-
planning stage, we use a density calculation algorithm to allow modules
to rotate at arbitrary rotation degrees driven by wirelength. However,
legal module orientations are limited to four rotation degrees: 0◦(360◦),
90◦, 180◦, and 270◦. Therefore, at the end of the first step of
global floorplanning, it is necessary to determine the legal placement
orientations of modules based on their rotation degrees. To accomplish
this, we adopt the macro orientation determination method from [15].
This method uses the proximity principle to rotate the macro to the
nearest legal orientation relative to the current rotation degree. For
certain special rotation degrees, such as 45◦, the proximity principle
is not applicable. As such, [15] coped with this problem by solving an
ILP to determine the orientations of the modules with the minimum
overlap.

After the first step of global floorplanning, we fix the rotation degrees
of all modules to their legal degrees, and proceed to the second step of
global floorplanning. The second step is similar to the first step, except
that the rotation degrees of modules are not optimized and the density
gradient formula of PeF [1] is used, which is not repeated here.

B. Legalization

Our legalization algorithm is modified from the classic macro le-
galization and detailed placement algorithm XDP [13]. The speed of
legalization is improved by using the more efficient transitive reduction
algorithm GK [18] during the initial constraint graph construction
step, and the more efficient min-cut-max-flow algorithm Dinic [19]
during the constraint graph adjustment step. For enhancing robustness
of the legalization process, we modify the edge capacity formula in the
constraint graph adjustment step, and introduce the module sizing and
rotation step. The quality of the solution after legalization is improved
by a linear programming modified from [13] in the module coordinate
assignment step.

1) Initial Constraint Graph Construction: We construct the Gh and
Gv based on the results of the global floorplanning. Following the
construction rules in [13], the total number of edges in the combined
graph E = Eh∪Ev will be up to O(|V |2), i.e., |E| = O(|V |2), where
many transitive edges are not needed but are shown as in Fig. 6(a).

(a) (b)

Fig. 6. (a) Transitive Closure Graph; (b) Transitive Reduction Graph.

When the constraint graph is adjusted, computing the constraint graph
attributes, as specified in Equation (2), requires a topological sort with
time complexity O(|V | + |E|). In the subsequent module coordinate
assignment step, we need to solve linear programming problems, which
takes less time if the total number of edges can be decreased. Therefore,
to reduce the time and space consumption, we need to remove transitive
edges, as shown in Fig. 6(b).

The transitive reduction algorithm used in [13] is the depth first
search. The time complexity for constructing the complete constraint



graph using this algorithm is O(|V |(|V | + |E|)), where O(|E|) =
O(|V |2), so using the depth first search for transitive reduction requires
a time complexity of O(|V |3), which can be time-consuming for large
|V |. Therefore, in this paper, we adopt the transitive reduction algorithm
proposed in GK [18], whose time complexity is O(|V ||Etr|), where
|Etr| is the total number of edges after transitive reduction. Through our
experiments, we found that O(|Etr|) = O(|V | log(|V |)), so using this
algorithm, the time complexity for constructing the constraint graphs is
reduced to O(|V |2 log(|V |)).

2) Constraint Graph Adjustment: The purpose of this step is to ad-
just the constraint graphs to satisfy the fixed-outline constraint. Taking
the horizontal constraint graph Gh as an example, after constructing
the constraint graph Gh, we compute the attributes of each module (as
shown in Equation (2)) to obtain its range of feasible positions after
eliminating overlaps, i.e., L(vhi) ⩽ xi ⩽ R(vhi). At the same time, we
get the longest path consisting of all edges with slack = 0. If the length
of the longest path exceeds the fixed-outline, i.e., R(vht) > W for the
sink node vht of the constraint graph, it indicates that the constraint
graph exceeds the fixed-outline and needs to be adjusted.

The adjustment process has three parts. First, we need to find the
longest path subgraph Gc, i.e., the graph consisting of all edges ehi,j
with slack(ehi,j) = 0 and their nodes vhi and vhj in Gh. Then we
compute the capacity of each edge in Gc and use the Dinic algorithm
[19] to compute the min-cut-max-flow to get the min-cut set. Finally,
we remove all edges ehi,j in the min-cut set and construct the edges
evi,j in Gv . If adjusting the edge ehi,j causes the longest path of Gv

exceeding the fixed-outline height, then we set the capacity of the edge
as +∞. For all edges connecting vhs and vht , their capacities are also
set to +∞. The capacities of the remaining edges are computed as
follows:

capacitye(e
h
i,j) = max(L(vvi) +

hi + hj

2
− L(vvj ), 0).

Note that our capacity calculation formula is somewhat different from
that in [13]. The goal of [13] is to minimize the total displacement of
all modules, while our goal is to select the edges that have the least
impact on another constraint graph.

The step of constraint graph adjustment is iterated until the length
of the longest path in both constraint graphs is less than the fixed-
outline, indicating that we have obtained two legal constraint graphs.
For further information on the constraint graph adjustment step, refer
to the comprehensive introduction provided by [13].

(a) (b)

Fig. 7. (a) Floorplan that violates constraints; (b) The longest path subgraph
Gc of Gh corresponding to (a).

When the global floorplanning result is particularly complex, both
slack of the two constraint graphs are tight. As shown in Fig. 7, Fig.
7(a) represents the graph in which all the modules vi are centered at
the coordinate (L(vhi), L(vvi)) after eliminating the overlaps. It can
be seen that the horizontal direction has exceeded the fixed-outline,
which requires a constraint graph adjustment. However, the capacities
of all edges in the longest path subgraph Gc of the horizontal constraint
graph in Fig. 7(a) are set to +∞, as shown in Fig. 7(b). This means
that adjusting these edges will increase the longest path in the vertical
constraint graph Gv , making it impossible for the min-cut-max-flow

algorithm to select the min-cut set, resulting in a legalization failure.
However, we found that many nodes in Gc still have some slack in
the vertical direction. To fully utilize the remaining slack and obtain a
legal result, we propose a new step called module sizing and rotation.

3) Module Sizing and Rotation: In floorplanning, any soft module
can change its aspect ratio within a certain range with a fixed area. In
addition, all modules can be rotated in any of the four orientations.
Based on this premise, we propose the step of module sizing and
rotation to make the constraint graph legal. To facilitate subsequent
discussion, we introduce several attributes using horizontal constraint
graph as an example.

• The slack of a module is defined as the range within which the
module can move left or right without overlapping with other
modules, and is calculated as follows:

slack(vhi) = R(vhi)− L(vhi).

• The sizing capacity of a soft module is defined as the maximum
reduction in width that can be achieved while maintaining its area
and without increasing the length of the longest path of another
constraint graph. The sizing capacity of a soft module is calculated
by:

capacitys(vhi) = wi −
Ai

min(slack(vvi) + hi,
√
ARu

i ·Ai)
.

For a soft module with slack 0 or aspect ratio that reaches its upper
bound, its sizing capacity is set to 0.

• Since the aspect ratio of a hard module cannot be adjusted,
we can achieve width-height swapping by rotating the module.
Thus, we define the rotation capacity of a hard module as the
maximum reduction in width that can be achieved after rotating
the module, without increasing the length of the longest path of
another constraint graph. For hard modules with slack 0 or widths
which are smaller than their heights respectively, their rotation
capacities are set to 0. The rotation capacities of the remaining
hard modules are calculated as:

capacityr(vhi) = wi − hi.

The following Algorithm 3 describes the step of module sizing and
rotation in the horizontal direction.

In Algorithm 3, we take as input two constraint graphs and the width
and height of fixed-outline, and output a horizontal constraint graph that
has been completed with module sizing and rotation. First, we compute
the attributes of both constraint graphs using Equation (2). We then enter
a loop that continues until the length of the longest path of the horizontal
constraint graph is less than or equal to the width of the fixed-outline.
At each iteration of the loop, we extract the longest path subgraph Gc

from the horizontal constraint graph and compute the sizing capacity
of all soft modules and the total sizing capacity. We then compute
the amount of compression required and perform sizing on each soft
module, distributing the compression amount using weighted averaging,
with the total compression limited to the adjustable capacity capacityS
(see lines 6-9). Next, we compute the remaining compression amount,
and if it is less than or equal to zero, this indicates that Gc satisfies
the constraints and no further hard module rotations are required (see
lines 10-11). However, if there is still compression remaining, then hard
module rotation is required (see lines 11-17). First, we calculate the
rotation capacity for hard modules, and then we construct a min-heap
based on the rotation capacity. We loop through the heap, taking the top
element for rotation, which can be either clockwise or counterclockwise,
until the compression amount is less than zero. Finally, after completing
module sizing and hard module rotation, we update the attributes of
the two constraint graphs (see line 18). Our strategy is performing
module sizing first, followed by module rotation. This is mainly because



Algorithm 3 Module Sizing and Rotation
Input: constraint Graphs (Gh, Gv), fixed-outline(W,H).
Output: Gh after module sizing and rotation.

1: Calculate attributes according to Eq. (2);
2: while R(vht) ≤W do
3: Extract the longest path subgraph Gc from Gh;
4: Calculate capacitys of all soft modules in Gc;
5: Calculate the sum of sizing capacities capacityS ;
6: Press = R(vht)−W ;
7: for each vi ∈ (Vs ∩Gc) do
8: p(vhi) =

capacitys(vhi
)

capacityS
min(Press, capacityS);

9: Set the width and height of vi to wi−p(vhi) and Ai
wi−p(vhi

)
;

10: Press = Press− capacityS ;
11: if Press ≤ 0 then Continue;
12: Calculate capacityr of all hard modules in Gc;
13: Build the min heap heap according to the capacityr;
14: while Press > 0 do
15: vi ← heap;
16: Rotate the module vi by 90◦or − 90◦;
17: Press = Press− capacityr(vci);
18: Calculate attributes according to Eq. (2);
19: return Gh.

module sizing is more controllable than module rotation, allowing us to
precisely distribute the amount of adjustment needed to each module.
Moreover, module rotation is more rigid, so we give priority to rotating
modules with smaller rotation capacity.

4) Module Coordinate Assignment: Through the aforementioned
steps, we obtain a legal horizontal constraint graph Gh and a legal
vertical constraint graph Gv . In this step, similar to the approach in
[13], we use a linear programming to assign the final position for
each module. However, unlike [13], which minimizes the displacement
of each module, we directly use linear programming to minimize
wirelength presented in [20] to determine the final positions of the
modules. The linear programming model is as follows:

min
∑

netk∈Net

(Rk − Lk + Tk −Bk)

s.t. Lk ≤ x′
i ≤ Rk ∀vi ∈ netk, ∀netk ∈ Net

Bk ≤ y′i ≤ Tk ∀vi ∈ netk, ∀netk ∈ Net

x′
j − x′

i ≥
wi + wj

2
∀ehi,j ∈ Eh

y′j − y′i ≥
hi + hj

2
∀evi,j ∈ Ev

wi

2
≤ x′

i ≤ W −
wi

2
hi

2
≤ y′i ≤ H −

hi

2
.

In the above model, the variables Rk, Lk, Tk, and Bk represent
the right, left, top, and bottom boundaries of the bounding box of the
net netk, respectively. Additionally, the variables x′i and y′i denote the
center coordinates of the final position of module vi. Moreover, the first
two constraints ensure that the center position of each module is inside
the bounding box of the net. For easy illustration and understanding,
we assume that all pins are located at the center of the module. In
practice, we use the real pin location. The third and fourth constraints
ensure that the modules do not overlap. Finally, the fifth and sixth
constraints ensure that all modules are placed within the fixed-outline.
For the solution of this LP problem, we used CPLEX [21] optimization
solver.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results of our proposed
floorplanning algorithm. To demonstrate the effectiveness, we compare
it to state-of-the-art floorplanners on IBM-HB+ [22] and ami49 x [23]
benchmarks. Our algorithm is implemented in C++ and operates in
single-threaded mode on a Linux operating system. The machine used
for the experiments has a 5.10GHz 12th Gen Intel Core CPU and 64GB
memory. The evaluation metrics used in the experiments are the HPWL
(half-perimeter wirelength) and the CPU time. In the experiments, we
set the target overflow tof to 0.05.

A. IBM-HB+ Benchmarks

The HB+ benchmarks were created by enlarging the largest hard
modules in the HB benchmarks by 100% and decreasing the area of the
remaining soft modules, while retaining the total area of modules. This
complex design makes processing the HB+ benchmarks more challeng-
ing. The floorplanners compared on this benchmarks include DeFer [4],
and the state-of-the-art PeF [1] which also uses the electrostatics-based
density model. Unfortunately, we found that all pins of the modules
of the HB+ benchmarks are located at the centers of the modules, i.e.,
xor = 0 and yor = 0. This implies that the partial derivatives of
the wirelength with respect to θ (Equation (4)) and w (Equation (5))
are 0. Therefore, our wirelength-driven module rotation and sizing are
ineffective for these benchmarks. However, it must be remarked that in
practical chip design, the pins are usually not placed at the centers of
macros, hence this situation does not really occur.

TABLE I
RESULTS ON THE HB+ BENCHMARKS

Basic Information HPWL (×106) time (s)

Name white-
space DeFer PeF ours DeFer PeF ours

HB+01 26% 3.09 3.00 2.72 1.8 4.3 4.1
HB+02 25% 6.17 6.02 5.37 15.3 4.3 7.8
HB+03 30% 9.19 8.17 7.67 4.0 8.1 11.0
HB+04 25% 10.26 9.72 8.98 14.2 7.5 10.7
HB+06 25% 8.78 7.91 7.44 5.0 7.1 6.2
HB+07 25% 15.48 14.07 13.58 4.6 7.2 8.0
HB+08 26% 18.73 17.19 16.49 19.3 9.7 12.7
HB+09 25% 16.66 15.81 14.56 4.2 9.0 9.1
HB+10 20% 45.12 40.61 37.62 6.3 32.9 16.6
HB+11 25% 26.99 24.58 23.39 7.1 9.3 14.2
HB+12 26% 50.17 48.96 46.41 5.5 15.0 13.8
HB+13 25% 35.51 32.65 30.62 5.9 14.2 11.7
HB+14 25% 64.50 59.62 57.73 12.0 16.7 21.6
HB+15 25% 84.29 73.93 71.64 14.7 24.8 27.9
HB+16 25% 98.66 87.32 85.23 8.1 20.0 23.8
HB+17 25% 144.50 138.44 133.73 14.7 20.5 26.4
HB+18 25% 71.86 68.05 66.58 11.3 14.5 14.5

Ratio 1.143 1.059 1.000 0.706 0.944 1.000

Table I gives the experimental results of DeFer, PeF and our
algorithm on the HB+ benchmarks. The first two columns show the
basic information about each benchmark, including its name and
whitespace rate. Columns 3 through 5 present the HPWL results of
each floorplanner, in units of 106. Columns 6 through 9 give the CPU
times of each floorplanner, in seconds. The last row presents the ratio,
which is the average ratio of the HPWL (time) result of each benchmark
by the respective floorplanners to our HPWL (time) result for the
corresponding benchmark.

As can be seen from the table, our floorplanning algorithm achieves
HPWL reductions of 14.3% and 5.9% compared to DeFer and PeF,
respectively. Furthermore, the HPWL result of each benchmark by our
algorithm is better than those of the other two floorplanners for the
corresponding benchmark. Regarding the runtime comparison, due to
different machines used by the floorplanners, we quote the runtimes



directly from the respective references directly for a rough comparison.
PeF was performed on a 3.60GHz Intel Core i3-9100 CPU with 4GB
of memory and Defer used a Core Duo 1.86GHz CPU with 2GB of
memory. Although our machine is the best, we can see that DeFer and
PeF are faster than ours, taking only 70% and 94% of our runtime,
respectively. In fact, they are actually much faster than ours because of
their inferior machines.

B. ami49 x Benchmarks

The ami49 x benchmarks are currently the largest benchmarks for
floorplanning. Therefore, we use the ami49 x benchmarks as described
in [23] to evaluate the effectiveness of our floorplanning algorithm.

TABLE II
RESULTS ON THE AMI49 X BENCHMARKS, WHITESPACE 15%

HPWL (×106) time (min)
Circuit Name PeF ours PeF ours
ami49 10 2.68 2.33 0.08 0.03
ami49 20 6.80 6.13 0.09 0.06
ami49 40 19.03 15.99 0.22 0.17
ami49 60 32.30 29.25 0.43 0.24
ami49 80 47.30 42.88 1.08 0.51
ami49 100 65.32 59.60 1.57 0.67
ami49 150 113.86 107.17 2.57 1.34
ami49 200 170.02 161.70 5.02 2.43

Ratio 1.11 1.00 1.90 1.00

On the ami49 x benchmarks, we compare our floorplanning algo-
rithm with PeF [1], the experimental results are presented in Table II.
The first column of Table II shows the circuit names of the benchmarks.
Columns 2-3 give the wirelength results for each floorpanner, in units
of 106. Columns 4-5 present the runtimes in minutes. The last row
shows the ratio calculation, which is the same as in Table I.

From the table, we can see that our floorplanning algorithm reduces
the HPWL result by 11% compared to PeF. In addition, the HPWL
results of all benchmarks are smaller than the corresponding results of
PeF. Regarding the runtime comparison, we have taken the runtimes
directly from PeF’s paper. It can be seen that PeF has longer runtime
than ours. Because of different machines, this comparison is not fair, but
may give an intuitive feeling of our algorithm’s efficiency. Fig. 8 gives

Fig. 8. Result of ami49 10 by our floorplanning algorithm (490 modules, 4521
nets, HPWL = 2.33× 106).

the floorplan of ami49 10 obtained by our floorplanning algorithm. It
can be seen that all the modules have been rotated to their desired
orientations.

It is noteworthy that our HPWL is 11% less than PeF in this
experiment, while this number is 5.9% on the HB+ benchmarks. We
believe that this discrepancy is due to the difference between the
ami49 x and the HB+ benchmarks. As mentioned earlier, in the HB+
benchmarks, the pins of the modules are all located at the centers of the
modules, while in the ami49 x benchmarks, the pins of the modules
are almost all located at the edges of the modules. This also indirectly
demonstrates the effectiveness of our rotation and sizing.

C. Effectiveness of Rotation and Sizing

In this experiment, we aim to demonstrate the effectiveness of our
module rotation and module sizing driven by wirelength. Since only
the modules in the ami49 x benchmarks have pins that are not at the
centers of the modules, we only test the performance of our rotation and
sizing on these benchmarks. We compare the results between enabling
and disabling module rotation and module sizing in our floorplanning
algorithm.

TABLE III
RESULTING HPWL AND CPU TIMES OF OUR ALGORITHM WITHOUT AND

WITH MODULE ROTATION AND MODULE SIZING ON THE AMI49 X
BENCHMARK CIRCUITS

Ours w/o R&S Ours w/ R&S
Circuit Name HPWL(×106) CPU(s) HPWL(×106) CPU(s)
ami49 10 2.52 1.6 2.33 1.9
ami49 20 6.48 3.9 6.13 4.2
ami49 40 16.75 9.9 15.99 10.6
ami49 60 30.18 14 28.25 14.7
ami49 80 44.97 28.6 42.88 30.6
ami49 100 61.28 38.9 59.60 40.4
ami49 150 112.28 77.6 107.17 80.5
ami49 200 165.27 143.8 161.70 145.9

Ratio 1.05 0.93 1.00 1.00

Table III presents the benchmark names in the first column, the wire-
length (HPWL) and runtime of our algorithm without and with rotation
and sizing are given in columns 2-3 and columns 4-5, respectively. The
units for HPWL and runtime are 106 and seconds, respectively.

As shown in the table, enabling module rotation and module sizing
in our algorithm reduces the HPWL by 5%, compared to that disabling
module rotation and module sizing. In addition, the runtimes for the two
experiments are almost the same, confirming that the time complexity
of our density calculation Algorithm 2 is almost the same as that of
the original density calculation in [12].

V. CONCLUSION

This paper has proposed an improved fixed-outline floorplanning
algorithm based on electrostatics that incorporates module rotation
and module sizing driven by wirelength. To accurately calculate the
density function after module rotation, a novel density calculation
algorithm was introduced based on line drawing algorithm and polygon
clipping algorithm in computer graphics. With this algorithm, it is
able to calculate the density after module rotation precisely without
increasing complexity. A floorplan legalization algorithm has been
designed with module sizing and module rotation after constraint graph
adjustment. Moreover, a linear programming has been adopted to
minimize wirelength and enhance the quality of the results. Experi-
mental results demonstrate that our floorplanning algorithm reduces the
average half-perimeter wirelength by 5.9% and 11% on the HB+ and
ami49 x benchmark circuits, respectively, compared to state-of-the-art
floorplanners. Although our two-step global floorplanning can solve the
problem better, an ideal scheme is to use the wirelength gradient and
density gradient to simultaneously optimize the coordinates, rotation
degrees and widths of modules, which deserves further investigation.
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