
Machine Learning in EDA: When and How
Bei Yu

Chinese University of Hong Kong

Abstract—Machine learning is a powerful technique that can
derive knowledge from large data set, and provide prediction and
modeling. Since VLSI chip designs have extremely high complexity
and gigantic data, recently there has been a surge in applying and
adapting machine learning to accelerate the design closure. In this
paper, we will discuss when and how to apply machine learning
in Electronic Design Automation (EDA) improving the efficiency
and quality of the design process. Furthermore, we highlight
distinct challenges in EDA, including improved netlist representa-
tion, advanced timing modeling, netlist-layout multimodality, and
constrained AIGC.

I. MACHINE LEARNING IN EDA

Over the past few decades, there has been a noticeable trend
towards increasing standardization and complexity in the field
of Electronic Design Automation (EDA). The contemporary
chip design flow can be divided into two distinct parts: firstly,
the front-end EDA, encompassing architectural design, high-
level synthesis, and logic synthesis; and secondly, the back-
end EDA, comprising placement and routing. As semiconductor
technology continues to advance, the scale of integrated circuits
has grown exponentially, presenting significant challenges to
the scalability and reliability of the chip design flow.

Several recent survey papers have been published on the topic
of ML-EDA. Rapp et al. [1] presented a comprehensive survey
of the application of machine learning in the optimization and
exploration strategies of integrated circuits, along with trends
in the employed ML algorithms. Huang et al. [2] categorized
existing ML studies in the EDA field into four distinct cat-
egories: decision-making, performance prediction, black-box
optimization, and automated design, ordered by increasing
degree of automation. Chen et al. [3] summarized the state-
of-the-art research in ML-EDA, utilizing a taxonomy of ML
methodologies, and offered potential insights from previously
resolved EDA problems. It is worth noting that their focus
is primarily on applied ML algorithms in recent years, which
complements our survey that specifically examines the unique
challenges encountered in EDA.

In this section, we aim to provide a comprehensive survey on
the application of ML methods in each stage of the EDA flow,
as illustrated in Figure 1. We will commence by discussing the
microarchitecture design of a processor, which aims to define
the implementation of an instruction set architecture (ISA).
Due to the vast design space, an efficient design space explo-
ration (DSE) technique, coupled with feature engineering, is
promising for microarchitecture design. One notable approach
in this domain is BOOM-Explorer [4], which utilizes a novel
Gaussian process model with deep kernel learning functions

Architecture

Logic Syn

Placement

Routing

E
D

A

Front-E
nd

E
D

A

B
ack-E

nd

module test
 input in[3];
 ...
end module

Feature
Engineering CNN GNN CNN+

GNN

HLS

Fig. 1 Typical ML methodologies in different EDA stages.

to characterize the relevant features. This enables BOOM-
Explorer to explore microarchitecture designs that strike an
optimal balance between power consumption and performance,
while significantly reducing the time required for DSE.

High-level synthesis (HLS) transforms a high-level specifi-
cation of an integrated circuit (IC) into a register-transfer level
(RTL) description. However, the synthesis process can be time-
consuming, especially for large-scale systems. To address this
challenge, machine learning algorithms, including feature engi-
neering and graph neural networks (GNN), have been employed
to accelerate HLS. For instance, Sun et al. [5] developed a novel
correlated multiobjective and multi-fidelity Gaussian process
(CGP) model to effectively handle the relationships among
various design objectives, thereby improving the efficiency of
HLS. Additionally, Ferretti et al. [6] proposed the use of graph
representation learning from software specifications. Fine-tuned
with a few-shot learning approach, the learned model enables
effective DSE after a short training period.

Following high-level synthesis, logic synthesis is responsible
for transforming the RTL description of a circuit into a gate-
level representation in the target technology. Notably, both
GNN and convolutional neural networks (CNN) have been
leveraged to expedite the logic synthesis process. Xu et al. [7]
introduced SNS, which combines GNN and CNN to predict the
area, power, and timing of a wide range of designs. By leverag-
ing this approach, the delay in obtaining synthesis results can be
significantly reduced. Wang et al. [8] developed a novel frame-
work for netlist representation learning based on contrastive
learning (CL). This framework extracts the fundamental logic
functionality of netlists using a customized GNN architecture
designed specifically for circuit representation learning, thereby
improving efficiency in logic synthesis.

Machine-learning techniques, such as CNN and combina-
tions of CNN and GNN, have also found applications in the
back-end EDA flow, i.e., placement and routing. To accelerate
placement, DREAMPlace [9] tackles the analytical placement
problem by analogizing it to training a neural network, which
enables more efficient placement algorithms. Liu et al. [10]979-8-3503-0955-3/23/$31.00 ©2023 IEEE

employed a CNN to predict congestion hotspots, which are
then integrated into a placement engine to achieve more route-
friendly results. Routing is typically the most time-consuming
task in physical design, and it often requires a combination
of ML models and traditional algorithms for effective solu-
tions. For instance, Qu et al. [11] proposed a reinforcement
learning (RL)–based algorithm that learns an ordering policy
to minimize design rule check violations based on net features.
To reduce turnaround time at the pre-routing stage, Liu et
al. [12] designed a concurrent learning-assist early-stage timing
optimization framework called TSteiner. They utilize a cus-
tomized GNN to obtain sign-off timing optimization gradients,
which guide the refinement of Steiner points. These approaches
demonstrate the potential of combining ML methodologies with
traditional algorithms in back-end EDA tasks.

II. HOW MACHINE LEARNING INTEGRATED

A. Methodologies Perspective

There are significant disparities between traditional EDA
methodologies and ML approaches. Traditional EDA encom-
passes techniques such as placement, routing, synthesis, simula-
tion, and more. These methods demonstrate robustness through
the analysis of optimality in known problems. They require less
training data, exhibit solvability in known problem domains,
and offer good interpretability. However, when confronted with
dynamic and complex problems, traditional EDA methods may
oversimplify the problem, leading to suboptimal solutions.

In contrast, machine learning methods encompass super-
vised learning [13], unsupervised learning [8], [14], and rein-
forcement learning techniques [15]. Machine learning methods
are amenable to parallel computation using GPUs [16], [17],
facilitating the efficient design and end-to-end training for
complex problems. Leveraging data, machine learning methods
demonstrate the ability to solve a wide range of problems. How-
ever, they are susceptible to overreliance on data, potentially
underutilizing the inherent mechanisms and characteristics of
the problem.

B. Task Type Perspective

Over time, there have been noticeable trends in the applica-
tion of machine learning in the field of EDA.

Fig. 2 categorizes articles from recent MLCAD conferences,
providing insights into the changing proportions of research on
different data types. Notably, studies on tabular data consis-
tently maintained a high proportion, accounting for 50.00% in
2019 and 68.75% in 2021. Furthermore, there is an increasing
trend in research on image data, with proportions reaching
24.00% in 2020 and 26.09% in 2022. We also observed signif-
icant growth in research related to graph data, with respective
increases of 12.00% in 2019 and 13.50% in 2022 compared
to the previous years. In 2022, graph data research accounted
for 26.09%, positioning it as an equally important focus as
image data. While the proportion of research on textual data is
relatively low, its significance should not be underestimated.

We next delve into the different purposes of machine learning
algorithms applied to EDA, as observed in recent MLCAD
conferences. The purposes are categorized as shown in Figure

Tab
ular Image Tex

t
Gra

ph Oth
er

0%

25%

50%

75%

N
b
.
of

P
u
b
s.

2019
2020
2021
2022

Fig. 2 Recent years show a noticeable trend toward a high
proportion of tabular data, accompanied by an increase in image
and graph data.

3. Decision-making emerges as the primary focus in recent
years, with proportions of 50.00% in 2019, 56.00% in 2020,
and 34.78% in 2022. Classification and regression are identified
as other essential research objectives, with relatively balanced
proportions of 37.50% each in 2019 and 2021. However, there
has been a notable increase in the proportion of regression,
reaching 32.00% in 2020 and 52.17% in 2022. This suggests a
growing focus on utilizing machine learning for classification,
regression analysis, prediction, and modeling in EDA applica-
tions. Lastly, generation represents a relatively small research
area, with proportions peaking at 8.70% in 2022.

Dec
ision

Cla
ssifi

cati
on

Reg
ress

ion

Gen
erat

ion
0%

25%

50%

75%

N
b
.
of

P
u
b
s.

2019
2020
2021
2022

Fig. 3 The observed trend reflects a strong interest for using
machine learning for decision support, classification, and re-
gression analysis.

C. Learning Closure Perspective

In traditional machine learning approaches, data is typically
divided into training and testing sets for model evaluation.
However, this approach has limitations when applied to EDA
scenarios. To successfully introduce AI-accelerated EDA tech-
nologies to the market, a different machine learning paradigm,
as shown in Fig. 4, is required.

Initial Design of
Experiments Accuracy-aware Learning

Self-Verification

Knowledge Extraction

Data Augmentation

Fig. 4 Adaptive integrated machine learning paradigm.

At the beginning of this process, it is crucial to design
initial experiments and establish a data acquisition loop for the
targeted EDA application. The subsequent training process aims
to achieve the desired accuracy, which aims to dynamically
adjust the training based on the accuracy requirements of
the model to align the preset requirements. Additionally, this
process is accompanied by a self-validation phase that takes
into account out-of-distribution factors, such as PVT variations,
tails of Monte Carlo distributions, and more. Based on the
models’ accuracy and robustness, further data augmentation is

similar
semantic
Close

different
semantic

Distant

I1

I2

A
I1
I2

B

I1

I2

C A

B
C

A

C
B

Expected embeddings

Acquired embeddings

Fig. 5 Illustration of the main challenge for netlist representa-
tion learning.

performed to enhance the model’s precision and generalization.
After completing the closed-loop training process, the extrac-
tion of relevant knowledge becomes paramount. The extracted
knowledge is then fed back to design teams to further improve
the design process.

By adopting this machine learning paradigm, a wide range of
chip design challenges can be effectively addressed, surpassing
the traditional “train and test” paradigm.

III. UNIQUE CHALLENGES IN EDA
Although so many machine learning algorithms have been

deployed in various EDA stages, there are still some unique
challenges that need to be solved.

A. Better Netlist Representations
Due to the graph nature of netlists, the emerging Graph

Neural Networks (GNNs) have become the top choice for netlist
representation learning [18]. A conventional GNN [19] follows
an iterative neighborhood aggregation scheme to capture the
structural information within nodes’ neighborhoods. In recent
years, we have seen a wide application of GNN in many netlist-
level tasks, e.g., testability analysis [20], reverse engineer-
ing [14], [21], power estimation [22], etc. While these GNN-
driven works have achieved promising results compared with
traditional methods, they are far from competent for learning
high-quality netlist representations, as pointed out by previous
studies [8]. The main challenge faced by the conventional GNN
methods is their limited generalization capacity, stemming from
the inherent instability of netlist structures. In particular, the
netlist (graph) structure of a given circuit might vary greatly
with respect to different technology nodes, cell libraries, or
even logic synthesis tools.

Fig. 5 gives an example to illustrate the limitation of con-
ventional GNNs when dealing with netlists, given the fact
that semantic (logic functionality) and structural information
of netlists may conflict with each other. We consider three
distinct netlists, denoted as A, B, and C, respectively. In this
context, both A and B implement the same function and share
akin semantics. As a consequence, they should ideally manifest
proximity within the representation space. However, structural
methods would push their representations apart, driven by their
disparate structures. Conversely, A and C implement different
functions, thus diverging in terms of their underlying semantics.
Nevertheless, their representations would be pulled close by
structural methods based on their similar structures.

As evidenced by the above example, the main challenge
at hand centers around developing methodologies that can

TABLE I Comparison among netlist representation methods
Characteristic Deep DAG AIG Functional Relative-similarity

ShapeHashing [23] % ! % % %

GraphSage [19] ! % % % %

ABGNN [14] ! ! % % %

FGNN [8] ! ! % ! !

DeepGate [24] ! ! ! ! %

transcend the constraint of structural instability, enabling the
acquisition of netlist representations that possess broader ap-
plicability and robustness. Encouragingly, recent endeavors
have been directed towards enhancing the quality of netlist
representations with an emphasis on better generalization ca-
pabilities. For instance, Wang et al. [8] introduce a novel
self-supervised netlist representation learning flow that aspires
to learn universal netlist knowledge. By utilizing contrastive
learning, netlists/gates with similar functionality (semantic) will
be drawn closer in the representation space, while those with
distinct functionality will be pushed away. The results presented
by them demonstrate the notable superiority of functionality-
based netlist representations compared with structural ones,
particularly when generalizing to unseen data. Similarly, Deep-
Gate [24] utilizes signal probability (i.e., the probability of
being logic ‘1’) for every gate as supervision to learn the logic
functionality of netlists. To bolster the generalization potential
of their model, the authors further transform the netlists into a
unified form, and-invertor graphs (AIGs). Nevertheless, repre-
sentations learned through signal probability can not model the
relative distance between different logic functions. TABLE I
summarizes the comparison between different netlist represen-
tation learning methods. In sum, recent advances showcase a
promising trajectory toward more adaptive and robust netlist
representations.

B. Timing Modeling

Fig. 6 illustrates one timing path where one signal propagates
from the startpoint to the endpoint. A timing path contains
many cells and wires. During timing analysis, it is necessary
to give accurate cell and wire delay results in a fast way.
Traditionally, cell timing is calculated based on look-up-tables,
including nonlinear cell delay model (NLDM) and current
source model (CSM) [25], and wire timing is computed based
on analytical models, including Elmore model [26] and D2M
model [27]. However, the accuracy and efficiency of traditional
methods cannot meet timing sign-off requirements in advanced
technologies. Some simple machine learning models, such as
XGBoost and random forest, helped to solve some timing
modeling problems, such as cell delay modeling [28], wire
delay modeling [29], path-based timing analysis [30], and
routing-free timing analysis [31]. However, it is still hard for
simple learning models to capture structural information, which
limits their accuracy [32].

To solve the issue, timing modeling has stepped into the
graph-learning era [32]–[35]. Netlists are described as graphs
where cells are nodes and wires are edges. Popular graph
learning methods are used to learn information from circuit
structure through aggregating information from local neighbors.
They can achieve node embedding and graph embedding. For

Wire path

Timing path

Cell path

A1 A2
ZN A2

Cell 3
Z

Z
Wire A

Wire B
Cell 2

A2

A1
A1

Cell 1

Signal

Loop

VSS

A1

VDD VDD

ZN

A2

A1

A2

T1 T2

T3

T4

R R

RR

R

R

C

C

Fig. 6 One example of the timing path in the netlist, cell (cell
path) and wire (wire path).

timing modeling, the rich information of timing paths is much
more important but is difficult to learn via current graph
learning methods [34], [35].

Timing paths are composed of cells and wires. For cell timing
modeling and wire timing modeling, there are few paths in
them. As shown in Fig. 6, the timing path in cells, called
cell path, is the timing arc containing the charging path when
PMOS is on and the discharging paths when NMOS is on; In
addition, the timing path in wires, called wire path, is the path
for a signal to propagate from the wire source to the target
wire sink. The path number in one cell and one wire is much
smaller than that in large-scale netlists. The limited number
of cell paths and wire paths opens a door for graph learning
to collect their path information with high efficiency. HGAT
[36] can aggregate heterogeneous information from transistors,
capacitors and resistors on different cell paths simultaneously.
GNNTrans [37] also embed wire path through combining local
wire structure information learned from GNNs and global
relationships among all elements minded by the transformer.

For large-scale netlists, the number of timing paths in them
exponentially increases with numbers of cells and wires. Con-
ventional graph learning methods have extremely low efficiency
and memory issues in embedding all paths in netlists. Besides,
many layers need to be stacked to learn information for long
netlist paths. The deep model causes an over-smoothing issue,
which significantly degrades timing modeling accuracy [34],
[37]. Thus, achieving path embedding on the netlist level is
still an open challenge for timing modeling in ML for EDA
topics.

C. Netlist+Layout: Multimodality
Diverse deep-learning-based approaches have been proposed

to replace the time-consuming engines in EDA tools to predict
routing congestion [10], [38]–[41], design rule violation [42]–
[44], timing [13], [45], [46], etc. To improve accuracy, most
existing methods use either vision models with geometric layout
features or graph models with logical netlist connections. How-
ever, these methods have several common issues. First, they do
not fully explore how to fuse layout and netlist features from
different modalities. Thus, they cannot effectively combine the
information from cell locations and net connectivity. Second,
they only use local information and ignore long-range interac-
tions. For example, vision-based models use convolutional lay-
ers to extract local features for congestion prediction, but they

Cell-to-cell Cell-to-net Net-to-net

Fusion

Downsample

Congestion Map

Message Passing:
Fig. 7 Illustration of a possible multi-modality fusion solution.
It enables global information aggregation by utilizing hierar-
chical feature maps and explicitly models the routing demand
via net-to-net message passing.

TABLE II Comparison among routability prediction methods
Characteristic RUDY∗ Macro Routing-Free Cell-to-cell Cell-to-net Multi-scale

RouteNet [42] ! ! % % % %

GAN [38] ! ! ! % % %

NAS [49] ! ! ! % % %

Cross-Graph [50] % % ! ! % %

LHNN [40] ! % ! ! ! %

PGNN [43] ! % ! ! % %

CircuitGNN [51] ! % ! ! ! %

Lay-Net [47] ! ! ! ! ! !

∗: Any network that is aware of routability features are considered as RUDY-Aware.

lack a global view of the layout. For graph-based methods, the
over-smoothing problem of GNN prevents them from collecting
long-range information. Third, existing GNN models overlook
the interactions arising from the overlaps of nets, which is
a crucial factor contributing to non-ideal results like routing
congestion. Even though the long-range connections can be
established according to the netlist, the cell-to-cell or cell-to-
net links in existing approaches [40] cannot directly model the
physical interactions in GNNs. These limitations highlight the
demand for multimodal models customized to EDA problems.

Recently, we noticed some efforts trying to address the above
challenges. A representative work, Lay-Net [47], is illustrated
in Fig. 7. It embeds message passing in vision-based models
to enable long-range information collection via hierarchical
feature maps and enrich graph message passing via improved
connection types. Specifically, Lay-Net conducts the netlist-
based message passing on the output of a vision-based block,
serving as a multi-modality fusion mechanism. For long-range
information, it utilizes Swin Transformer [48] to construct hier-
archical feature maps based on layout features, which models
an image in various scales with patch merging and extracts
multi-scale features with self-attention in shifted windows.
Furthermore, the GNN model is enhanced by introducing a
heterogeneous graph neural network structure that enables cell-
to-cell, cell-to-net, and net-to-net message passing.

TABLE II presents the difference between different mod-
els for routability prediction, including congestion prediction,
design rule violation (DRV) prediction, etc. Most methods
are RUDY-aware since routability-based features are essential
for congestion prediction. Macro-aware feature is important
because we observe that congestion frequently appears around
macros. Routing-free is also a common feature, which means

that a method does not rely on the time-consuming trial global
routing process. Among these methods, Lay-Net [47] shows
superior performance, highlighting the importance of layout-
netlist information fusion and multi-scale feature extraction in
congestion prediction.

D. Constrained AIGC

Differing from the general concept of artificial intelligence
generated content (AIGC), the generated content within the
EDA domain is typically subject to additional design rules.
Evaluating the quality of models relies significantly on the
legality of the output. A prime example of constrained AIGC
in EDA pertains to the generation of layout patterns. The
establishment of reliable layout pattern libraries serves as the
cornerstone for diverse designs for manufacturability research.
With the escalating demand for layout patterns in lithogra-
phy design applications based on machine learning [52]–[54],
constructing a feasible large-scale pattern library could prove
highly time-consuming due to the extended logic-to-chip design
cycle. Recent literature has proposed several learning-based
methods for generating layout patterns, such as [55]–[58]. To
fit the latent distribution of layout patterns and generate novel
instances, famous generative models in computer vision domain
have been introduced in pattern generation task. However, two
predominant constraints differentiate layout pattern generation
from conventional image generation.

The first significant constraint pertains to the discrete nature
of layout patterns, as depicted in Fig. 8. In a layout pattern,
the state of each pixel is binary, while prevailing image gen-
eration techniques are designed for continuous state spaces.
To transform a continuous model output to a layout pattern,
some existing works [55], [56] transform these into layout
topologies through binary truncation upon generating contin-
uous examples. However, such truncation could potentially
compromise the model’s capacity. Since the details of model
prediction is removed in the truncation process. To address this
concerns, DiffPattern [58] introduces a practical framework for
layout pattern generation. Through the application of a discrete
diffusion model, DiffPattern confines each entry’s state within
a pre-defined discrete state space. As a result, DiffPattern can
directly generate discrete layout patterns without clipping.

On a different note, the generated layout patterns are required
to follow the design rules, which makes the layout pattern
generation more challenging. To prevent the production of illicit
layout patterns that contravene design rules, [56], [57] derive
latent regularization from the training dataset. However, the
implicit constraint learned from this training set might lack
flexibility and reliability. Beyond the inconvenience of needing
to train a new model on a specific dataset that adheres to
updated design rules, a significant proportion of the generated
patterns violate these rules. Addressing these concerns, Diff-
Pattern [58] devises a nonlinear system capable of identifying
a legal solution for each topology matrix. This system can be
easily adjusted to accommodate various design rules.

While the realm of constrained AIGC in the context of EDA
has experienced substantial exploration in recent literature, the

Continuous
Model

Binarization

(a)

Discrete
Model

(b)

Fig. 8 Illustration of the discrete state space constraint in layout
pattern generation. (a) The binarization on continuous model
output may lead to information loss; (b) Discrete model can
output discrete samples directly.

pursuit of a more robust constrained AIGC approach within
EDA remains a persistently challenging and evolving endeavor.

IV. CONCLUSION AND FUTURE DIRECTION

Recent advancements have witnessed the integration of ML
into EDA, a merger that has promised and delivered notable
improvements in the design flow. This incorporation has been
marked by successful outcomes in classification, detection, and
design space exploration challenges. Despite the advancements
and numerous ML algorithms introduced into EDA, the path
forward still presents unique obstacles, like the development
of better netlist representations and addressing issues related to
timing modeling, netlist-layout multimodality, and constrained
content generation.

One future direction is applying large language models
(LLMs) into the EDA flow, harnessing their analytical capabil-
ities to optimize chip design processes, and revolutionize the
way EDA flows are conceptualized and implemented. Interested
readers may refer to [59], [60] for more discussions and
explorations.

ACKNOWLEGEMENT

The author thanks many students and collaborators, who have
helped to develop the works and perspectives given in this
paper: Guojin Chen, Hongduo Liu, Zixiao Wang, Ziyi Wang,
Peng Xu, Yuyang Ye, Yu Zhang, Su Zheng.

REFERENCES

[1] M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf, and J. Henkel,
“MLCAD: A survey of research in machine learning for CAD keynote
paper,” IEEE TCAD, vol. 41, no. 10, pp. 3162–3181, 2021.

[2] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong et al., “Machine learning for electronic design automation: A
survey,” ACM TODAES, vol. 26, no. 5, pp. 1–46, 2021.

[3] T. Chen, G. L. Zhang, B. Yu, B. Li, and U. Schlichtmann, “Machine
learning in advanced IC design: A methodological survey,” IEEE MDAT,
vol. 40, no. 1, pp. 17–33, 2022.

[4] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “BOOM-Explorer:
RISC-V BOOM microarchitecture design space exploration framework,”
in Proc. ICCAD, 2021.

[5] Q. Sun, T. Chen, S. Liu, J. Miao, J. Chen, H. Yu, and B. Yu, “Correlated
multi-objective multi-fidelity optimization for hls directives design,” in
Proc. DATE, 2021.

[6] L. Ferretti, A. Cini, G. Zacharopoulos, C. Alippi, and L. Pozzi, “Graph
neural networks for high-level synthesis design space exploration,” ACM
TODAES, vol. 28, no. 2, pp. 1–20, 2022.

[7] C. Xu, C. Kjellqvist, and L. W. Wills, “Sns’s not a synthesizer: A deep-
learning-based synthesis predictor,” in Proc. ISCA, 2022.

[8] Z. Wang, C. Bai, Z. He, G. Zhang, Q. Xu, T.-Y. Ho, B. Yu, and Y. Huang,
“Functionality matters in netlist representation learning,” in Proc. DAC,
2022.

[9] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled GPU acceleration for modern VLSI
placement,” in Proc. DAC, 2019.

[10] S. Liu, Q. Sun, P. Liao, Y. Lin, and B. Yu, “Global placement with deep
learning-enabled explicit routability optimization,” in Proc. DATE, 2021.

[11] T. Qu, Y. Lin, Z. Lu, Y. Su, and Y. Wei, “Asynchronous reinforcement
learning framework for net order exploration in detailed routing,” in
Proc. DATE, 2021.

[12] S. Liu, Z. Wang, F. Liu, Y. Lin, B. Yu, and M. Wong, “Concurrent sign-
off timing optimization via deep steiner points refinement,” in Proc. DAC,
2023.

[13] Z. Wang, S. Liu, Y. Pu, S. Chen, T.-Y. Ho, and B. Yu, “Realistic sign-off
timing prediction via multimodal fusion,” in Proc. DAC, 2023.

[14] Z. He, Z. Wang, C. Bai, H. Yang, and B. YU, “Graph learning-based
arithmetic block identification,” in Proc. ICCAD, 2021.

[15] Z. Pei, F. Liu, Z. He, G. Chen, H. Zheng, K. Zhu, and B. Yu, “AlphaSyn:
Logic synthesis optimization with efficient monte carlo tree search,” in
Proc. ICCAD, 2023.

[16] Z. Yu, G. Chen, Y. Ma, and B. Yu, “A GPU-enabled level set method for
mask optimization,” in Proc. DATE, 2021.

[17] G. Chen, Z. Yu, H. Liu, Y. Ma, and B. Yu, “DevelSet: Deep neural level
set for instant mask optimization,” in Proc. ICCAD, 2021.

[18] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong et al., “Machine learning for electronic design automation: A
survey,” ACM TODAES, vol. 26, no. 5, pp. 1–46, 2021.

[19] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proc. NIPS, 2017.

[20] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High performance graph convolutional networks with applications in
testability analysis,” in Proc. DAC, 2019.

[21] L. Alrahis, A. Sengupta, J. Knechtel, S. Patnaik, H. Saleh, B. Mohammad,
M. Al-Qutayri, and O. Sinanoglu, “Gnn-re: Graph neural networks for
reverse engineering of gate-level netlists,” IEEE TCAD, vol. 41, no. 8,
pp. 2435–2448, 2021.

[22] Y. Zhang, H. Ren, and B. Khailany, “Grannite: Graph neural network
inference for transferable power estimation,” in Proc. DAC, 2020.

[23] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures
in a sea of bit-level gates,” in Proc. HOST, 2013.

[24] M. Li, S. Khan, Z. Shi, N. Wang, H. Yu, and Q. Xu, “Deepgate: Learning
neural representations of logic gates,” in Proc. DAC, 2022.

[25] Synopsys, “PrimeTime user guide,” https://www.synopsys.com/cgi-bin/
imp/pdfdla/pdfr1.cgi?file=primetime-wp.pdf, 2023.

[26] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, no. 1, pp. 55–63, 1948.

[27] C. J. Alpert, A. Devgan, and C. Kashyap, “A two moment RC delay
metric for performance optimization,” in Proc. ISPD, 2000.

[28] S. M. Ebrahimipour, B. Ghavami, H. Mousavi, M. Raji, Z. Fang, and
L. Shannon, “Aadam: a fast, accurate, and versatile aging-aware cell
library delay model using feed-forward neural network,” in Proc. ICCAD,
2020.

[29] H.-H. Cheng, I. H.-R. Jiang, and O. Ou, “Fast and accurate wire timing
estimation on tree and non-tree net structures,” in Proc. DAC, 2020.

[30] A. B. Kahng, U. Mallappa, and L. Saul, “Using machine learning to pre-
dict path-based slack from graph-based timing analysis,” in Proc. ICCD,
2018.

[31] D. Hyun, Y. Fan, and Y. Shin, “Accurate wirelength prediction for
placement-aware synthesis through machine learning,” in Proc. DATE,
2019.

[32] R. Liang, Z. Xie, J. Jung, V. Chauha, Y. Chen, J. Hu, H. Xiang, and G.-J.
Nam, “Routing-free crosstalk prediction,” in Proc. ICCAD, 2020.

[33] Z. Xie, R. Liang, X. Xu, J. Hu, Y. Duan, and Y. Chen, “Net2: A
graph attention network method customized for pre-placement net length
estimation,” in Proc. ASPDAC, 2021.

[34] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,” in
Proc. DAC, 2022.

[35] K. K.-C. Chang, C.-Y. Chiang, P.-Y. Lee, and I. H.-R. Jiang, “Timing
macro modeling with graph neural networks,” in Proc. DAC, 2022.

[36] Y. Ye, T. Chen, Z. Wang, H. Yan, B. Yu, and L. Shi, “Fast and accurate
aging-aware cell timing model via graph learning,” IEEE TCAS II, 2023.

[37] Y. Ye, T. Chen, Y. Gao, H. Yan, B. Yu, and L. Shi, “Fast and accurate
wire timing estimation based on graph learning,” in Proc. DATE, 2023.

[38] C. Yu and Z. Zhang, “Painting on placement: Forecasting routing conges-
tion using conditional generative adversarial nets,” in Proc. DAC, 2019.

[39] W. Li, G. Chen, H. Yang, R. Chen, and B. Yu, “Learning point clouds in
eda,” in Proc. ISPD, 2021.

[40] B. Wang, G. Shen, D. Li, J. Hao, W. Liu, Y. Huang, H. Wu, Y. Lin,
G. Chen, and P. A. Heng, “LHNN: Lattice hypergraph neural network
for VLSI congestion prediction,” in Proc. DAC, 2022.

[41] S. Zheng, L. Zou, S. Liu, Y. Lin, B. Yu, and M. D. F. Wong, “Mitigating
distribution shift for congestion optimization in global placement,” in
Proc. DAC, 2023.

[42] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen, and
J. Hu, “RouteNet: Routability prediction for mixed-size designs using
convolutional neural network,” in Proc. ICCAD, 2018.

[43] K. Baek, H. Park, S. Kim, K. Choi, and T. Kim, “Pin accessibility and
routing congestion aware DRC hotspot prediction using graph neural
network and U-Net,” in Proc. ICCAD, 2022.

[44] R. Liang, H. Xiang, J. Jung, J. Hu, and G.-J. Nam, “A stochastic approach
to handle non-determinism in deep learning-based design rule violation
predictions,” in Proc. ICCAD, 2022.

[45] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in Proc. DAC,
2019.

[46] X. He, Z. Fu, Y. Wang, C. Liu, and Y. Guo, “Accurate timing prediction
at placement stage with look-ahead RC network,” in Proc. DAC, 2022.

[47] S. Zheng, L. Zou, P. Xu, S. Liu, B. Yu, and M. D. F. Wong, “Lay-
net: Grafting netlist knowledge on layout-based congestion prediction,”
in Proc. ICCAD, 2023.

[48] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” in
Proc. CVPR, 2021.

[49] C.-C. Chang, J. Pan, T. Zhang, Z. Xie, J. Hu, W. Qi, C.-W. Lin,
R. Liang, J. Mitra, E. Fallon, and Y. Chen, “Automatic routability
predictor development using neural architecture search,” in Proc. ICCAD,
2021.

[50] A. Ghose, V. Zhang, Y. Zhang, D. Li, W. Liu, and M. Coates, “Gener-
alizable cross-graph embedding for gnn-based congestion prediction,” in
Proc. ICCAD, 2021.

[51] Z. Yang, D. Li, Y. Zhang, Z. Zhang, G. Song, J. Hao et al.,
“Versatile multi-stage graph neural network for circuit representation,”
Proc. NeurIPS, vol. 35, pp. 20 313–20 324, 2022.

[52] G. Chen, W. Chen, Q. Sun, Y. Ma, H. Yang, and B. Yu, “DAMO: Deep
agile mask optimization for full-chip scale,” IEEE TCAD, vol. 41, no. 9,
pp. 3118–3131, 2022.

[53] G. Chen, Z. Pei, H. Yang, Y. Ma, B. Yu, and M. Wong, “Physics-
informed optical kernel regression using complex-valued neural fields,”
in Proc. DAC, 2023.

[54] W. Zhao, X. Yao, Z. Yu, G. Chen, Y. Ma, B. Yu, and M. D. F. Wong,
“AdaOPC: A self-adaptive mask optimization framework for real design
patterns,” in Proc. ICCAD, 2022.

[55] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “Deepattern:
Layout pattern generation with transforming convolutional auto-encoder,”
in DAC, 2019.

[56] X. Zhang, J. Shiely, and E. F. Young, “Layout pattern generation and
legalization with generative learning models,” in ICCAD, 2020.

[57] L. Wen, Y. Zhu, L. Ye, G. Chen, B. Yu, J. Liu, and C. Xu, “Layoutrans-
former: Generating layout patterns with transformer via sequential pattern
modeling,” in ICCAD, 2022.

[58] Z. Wang, Y. Shen, W. Zhao, Y. Bai, G. Chen, F. Farnia, and B. Yu,
“Diffpattern: Layout pattern generation via discrete diffusion,” arXiv
preprint arXiv:2303.13060, 2023.

[59] J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-Chat: Challenges
and Opportunities in Conversational Hardware Design,” in Proc. MLCAD,
2023.

[60] Z. He, H. Wu, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu,
“ChatEDA: A Large Language Model Powered Autonomous Agent for
EDA,” in Proc. MLCAD, 2023.

 https://www.synopsys.com/cgi-bin/imp/pdfdla/pdfr1.cgi?file=primetime-wp.pdf
 https://www.synopsys.com/cgi-bin/imp/pdfdla/pdfr1.cgi?file=primetime-wp.pdf

