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ABSTRACT
Sparse deep neural network (DNN) has become an important tech-
nique for reducing the inference cost of large DNNs. However, com-
puting large sparse DNNs is very challenging because inference
iterations can incur highly irregular patterns and unbalanced loads.
To address this challenge, the recent HPEC Graph Challenge seeks
novel high-performance inference methods for large sparse DNNs.
Despite the rapid progress over the past four years, solutions have
largely focused on static model compression or sparse multiplica-
tion kernels, while ignoring dynamic data compression at inference
time which can achieve significant yet untapped performance ben-
efits. Consequently, we propose SNICIT, a new GPU algorithm to
accelerate large sparse DNN inference via compression at inference
time. SNICIT leverages data clustering to transform intermediate
results into a sparser representation that largely reduces compu-
tation over inference iterations. Evaluated on both HPEC Graph
Challenge benchmarks and conventional DNNs (MNIST, CIFAR-10),
SNICIT achieves 6 ∼ 444× and 1.36 ∼ 1.95× speed-ups over the
previous champions, respectively.
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1 INTRODUCTION
Deep neural networks (DNNs) have achieved unprecedented suc-
cess in many applications, such as image classification [15, 37],
speech recognition [8], and drug discovery [27]. To learn more
complex patterns, modern DNNs are evolving toward the use of
larger and deeper layers of parameters. For example, the natural
language processing (NLP) model GPT-3 [5] developed by OpenAI
contains 175 billion parameters. To mitigate the high computa-
tion costs of deploying large DNNs (i.e., inference), researchers
have proposed various techniques (pruning [6, 13, 14, 40], sparse
training [9, 21, 43], etc.) that generate sparsified models with fewer
parameters while retaining decent accuracy. However, computing
large sparse DNNs is very challenging because it can incur highly
irregular patterns and unbalanced load over inference iterations
(i.e., forward propagation). To tackle this challenge, MIT and Ama-
zon co-organized the Sparse DNN Graph Challenge (SDGC) at
IEEE HPEC [22], seeking novel sparse inference solutions from the
high-performance computing (HPC) community.

In the past four years, winners of SDGC have proposed vari-
ous solutions to accelerate large sparse DNN inference, such as
accelerator hardware [16, 20], tensor core kernels [34], task graph
parallelism [17, 18, 29, 30], fine-grained optimization space explo-
ration [38], input feature partitioning [4], and compile-time data
embedding [39]. While order-of-magnitude speed-ups have been
reported, solutions have largely focused on static model compres-
sion or sparse multiplication kernel algorithms. Recently, a few
works [12, 25, 26, 28, 33, 40] have achieved another degree of speed-
up via data compression techniques at inference time, such as ex-
ploiting activation sparsity and caching historical results. While
these works mostly target dense DNN, their results have inspired us
to accelerate sparse DNN inference by exploring data compression
at inference time.

Figure 1 illustrates our motivation. When feeding an input batch
to a sparse DNN, we discover that the intermediate results at later
layers exhibit a higher degree of similarity and become more cen-
tralized. We visualize the outputs of layers 2, 4, and 8 in a batch
on a 2-dimensional space using t-SNE [35] (the scatter plot in Fig-
ure 1). We can clearly see that convergence of intermediate results
takes place at layer 8, where the cluster layout of the ten labels
is highly centralized and does not change onwards. After conver-
gence, multiplying nearly identical intermediate results with the
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Figure 1: SNICIT explores similarity in intermediate results,
and converts the representation of the intermediate results
to reduce computational intensity.

weight matrix can incur many redundant computations. To miti-
gate this redundancy, we can turn converged intermediate results
into a sparser representation. Specifically, we find the centroid of
each class from intermediate results and replace every non-centroid
intermediate result with deviation (i.e., residue error) to its centroid.
This organization allows us to sparsify the intermediate results and
thus largely reduce the computational intensity after convergence,
as shown in the line chart in Figure 1.

In this paper, we propose SNICIT, an efficient GPU algorithm to
accelerate sparse DNN inference using compression at inference
time. We summarize our technical innovations below:
• We introduce a sparse representation for storing converged
intermediate results using centroids and residue errors. This
representation allows us to largely reduce redundant com-
putations after convergence.
• We introduce an efficient GPU kernel algorithm to convert
intermediate results into our sparse representation at infer-
ence time.
• We introduce a feed-forward GPU kernel to quickly update
intermediate results of post-convergence layers atop our
sparse representation.

We have evaluated SNICIT on the official SDGC benchmarks [22].
Compared with the 2021 champion XY-2021 [38], SNICIT is up to
6.31× faster, which translates to a 24000× speed-up over the official
CPU baseline provided by SDGC. To further demonstrate the effi-
ciency beyond SDGC, we evaluate SNICIT on four medium-scale
DNNs that are representative of common deep-learning applica-
tions. Compared with the 2020 champion SNIG-2020 [30] which
provides a more general solution than XY-2021, SNICIT is up to
1.83× faster with only an accuracy loss of 0.06% for sparse DNNs
targeting MNIST [41], and 1.48× faster with only an accuracy loss
of 0.45% for sparse DNNs targeting CIFAR-10 [2]. In this work, we
focus on inference acceleration for given DNNs, which means that
modifications on DNNs themselves are out of the scope. The source
code is available at https://github.com/IDEA-CUHK/SNICIT.

2 BACKGROUND
In this section, we introduce SDGC and go through related works
of DNN inference acceleration.

Table 1: Statistics of SDGC benchmarks.

Benchmarks Bias Density Connections Size
Neurons Layers (GB)

1024
120

−0.3 0.03
3,932,160 0.076

480 15,728,640 0.30
1920 62,914,560 1.22

4096
120

−0.35 0.008
15,728,640 0.328

480 62,914,560 1.32
1920 251,658,240 5.26

16384
120

−0.4 0.002
62,914,560 1.38

480 251,658,240 5.54
1920 1,006,632,960 22.17

65536
120

−0.45 0.0005
251,658,240 5.78

480 1,006,632,960 23.12
1920 4,026,531,840 92.48

2.1 Sparse DNN Graph Challenge
Recently, the HPC community worked with MIT and Amazon to
co-organize the Sparse DNN Graph Challenge (SDGC) at IEEE
HPEC [22]. The challenge established a rigorous environment to
evaluate the performance of an inference method over a set of large
sparse DNNs. The input matrix, Y(0) , consists of stacks of feature
vectors derived from the handwritten digit dataset MNIST [41]. Each
28 × 28 pixel image is resized with fine granularity to 32 × 32 (1024
neurons), 64 × 64 (4096 neurons), 128 × 128 (16384 neurons), and
256 × 256 (65536 neurons), and then flattened into columns to form
feature vectors purposed for different network architectures. The
network architectures are generated based on Radix-Net synthetic
sparse DNN generator [23]. Each neuron in all architectures has 32
edge connections with neurons in adjacent layers. The non-zero
weights are set by random values, and the biases are set as constants.
The detailed statistics are listed in Table 1. Participants are invited
to efficiently implement the consecutive feed-forward computation
of Y(𝑖+1) = 𝜎 (W(𝑖+1) · Y(𝑖 ) + b(𝑖+1) ), where Y(𝑖 ) , Y(𝑖+1) , W(𝑖+1)
and b(𝑖+1) denote the input matrix, output matrix, weight matrix
and bias matrix of layer 𝑖 . 𝜎 (·) is ReLU [1] with an upper bound of
32, which is the activation function used in the contest.

Although SDGC only targets sparse linear layers, they are essen-
tial components of machine learning models (e.g., Transformers,
graph neural networks). We shall demonstrate that our solution not
only outperforms previous champions of SGDC but can also acceler-
ate common DNN problems (MNIST and CIFAR-10) that incorporate
sparse linear layers for performance improvement.

2.2 Related Works
2.2.1 Acceleration of Sparse DNN Inference. Previous SDGC win-
ners [4, 16, 20, 30, 34, 38, 39] have made great contributions in
different aspects to the acceleration of sparse DNN inference.
BF-2019 [4], champion of SDGC 2019, partitions the input matrix
into different sections and distributes the computation overmultiple
GPUs. SNIG-2020 [30], champion of SDGC 2020, further reduces
synchronization and communication overheads across CPU and
GPUs by utilizing GPU task graphs. XY-2021 [38], the champion
of SDGC 2021, generalizes the sparse matrix multiplication kernels
to a universal form and builds an optimization space. It finds the
performance-optimal solution in the optimization space with the
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cost model they proposed. The champions [34, 39] of SDGC 2022
reorder the rows and columns of the weight matrices in a similarity-
based manner offline and divide the weight matrices into dense
and sparse submatrices. Sun et al. [34] compute dense and sparse
submatrices with Tensor Cores and CUDA Cores respectively. Xu et
al. [39] compute their self-defined cost of each submatrix and decide
whether the traditional computing mode (same as XY-2021 [38])
or data-embedding computing mode (compile-time optimization)
is to be used. In addition, Huang et al. [16], SDGC 2019 honorable
mention, and Jain et al. [20], SDGC 2021 innovation awards, de-
velop FPGA accelerators, providing hardware architectural support
for fast sparse DNN inference. There are also works [11, 13, 32] for
sparse DNN inference acceleration outside SDGC. Guo et al. [13]
and Gale et al. (Sputnik) [11] apply tiling-based approach in sparse
matrix multiplication. Mishra et al. [32] exploit 2:4 sparsity pattern,
utilizing the innovations in NVIDIA Ampere GPU architecture.
Most of these works focus on static model compression or sparse
matrix multiplication kernel design. Much less attention was given
to dynamic data compression at inference time, which can achieve
significant yet untapped performance benefits.

2.2.2 Accelerating DNNs via Data Compression at Inference Time.
Some works [12, 26, 33, 40] explore sparsities in intermediate results
at inference time. Concretely, they induce sparsity in intermedi-
ate results (or activation maps), and rely on different compression
strategies to speed up the inference. DASNet [40] proposes a dy-
namic winners-take-all dropout technique to prune the none top-
ranking intermediate results. Kurtz et al. [26] boost activation spar-
sity by applying Hoyer regularization and thresholding. They apply
compressed sparse row (CSR) to compress the intermediate results
and boost inference speed. Georgiadis [12] leverages a three-stage
compression and acceleration pipeline that sparsifies, quantizes
and entropy encodes the activation maps for faster inference. Oh et
al. [33] propose to use dense representation with sparse access con-
volution, instead of CSR convolution. Other works [25, 28] exploit
the similarity patterns within a DNN’s intermediate results. They
store the historical output of hidden layers to construct caches. A
hit is reported if confidence for the similarity between a query’s
intermediate result and a cached result is rather high. Upon hit,
the query can then obtain the pre-stored label and experience an
early exit, which can yield a shorter inference latency. These works
introduce nontrivial overhead proportional to the number of layers.
Moreover, they have not applied data compression techniques at
inference time to sparse DNNs yet.

3 ALGORITHM
Our algorithm, as shown in Figure 2, consists of four key compo-
nents: pre-convergence sparse matrix multiplication, cluster-based
conversion, post-convergence update, and final results recovery.
We assume intermediate results converge at threshold layer 𝑡 , where
the intermediate results are highly centralized and the cluster lay-
out does not change onwards. Term pre-convergence indicates the
computation taking place before layer 𝑡 , while post-convergence
indicates the computation occurring after layer 𝑡 .

Pre-convergence sparse matrix multiplication is simply a feed-
forward process that continuously calculates the results of each
pre-convergence layer. Cluster-based conversion transforms the

Table 2: Notations used in this paper.

Not. Description of the notation
𝑁 Number of neurons for each layer
𝑙 Layers of the sparse DNN
𝐵 Batch size of the input
W(𝑖 ) Weight matrix of layer 𝑖
b(𝑖 ) Bias matrix of layer 𝑖
Y(𝑖 ) Output of layer 𝑖 , of size 𝑁 × 𝐵. Each column is an

intermediate result vector.
Y(0) Input of the sparse neural network, of size 𝑁 × 𝐵
𝜎 Activation function, 𝜎 (𝑥) = min(max(𝑥, 0), 32)
𝑡 Index of threshold layer where convergence occurs
𝑠 Sample size
𝑛 Dimension of each sample
Ŷ(𝑖 ) Converted output of layer 𝑖 , of size 𝑁 × 𝐵
F Sample matrix, of size 𝑛 × 𝑠 , sampled from Y(𝑡 )

M Centroid mapper that maps a residue error column
index to a centroid column index

y∗ Set of centroid column indices
A:,𝑖 Column 𝑖 of matrix A

intermediate results into a much sparser representation at inference
time, which can compress the computational workload after con-
vergence. In post-convergence update, we develop a feed-forward
GPU kernel that quickly computes the intermediate results of post-
convergence layers in the sparse representation. In the end, we
retrieve the results from the sparse representation in the final re-
sults recovery stage. Table 2 gives essential notations along with
their descriptions throughout this paper.

3.1 Pre-convergence Sparse Matrix
Multiplication

During the pre-convergence phase, we have

Y(𝑖+1) = 𝜎 (W(𝑖+1) · Y(𝑖 ) + b(𝑖+1) ), (1)
where 𝑖 = 0, 1, ..., 𝑡 − 1. The acceleration of these series of sparse

matrix multiplications has already been intensively studied [4, 30,
38]. SNICIT does not impose any constraint on the kernel used in
the pre-convergence phase. The implementation of any previous
SDGC champion can be easily incorporated here.

3.2 Cluster-based Conversion
In cluster-based conversion, we convert intermediate results at
layer 𝑡 , Y(𝑡 ) , to a much sparser form, Ŷ(𝑡 ) . We resort to a coarse-
grained clustering algorithm to find the centroids (certain columns
of Y(𝑡 ) ) in Y(𝑡 ) . We then assign the closest centroid to each non-
centroid column, and replace the column with the residue error
to the centroid, forming a new matrix, Ŷ(𝑡 ) . Since the activation
function in SDGC has both an upper bound and a lower bound,
many elements of the non-centroid column and the corresponding
centroid share the same value and can cancel out, making the
residue error column very sparse. The computational workload of
matrix multiplication in future post-convergence layers is hence
reduced. Section 3.2.1 will cover the selection of centroids, while
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representation. Different colors represent different classes in Ŷ(𝑖 ) . Post-convergence update computes the outputs of post-
convergence layers while maintaining them in sparse representation. Final results recovery translates the sparse representation
output of the last layer back to the original dense representation.

Section 3.2.2 will further explain how to obtain residue errors and
the construction of Ŷ(𝑡 ) .

3.2.1 Centroids Selection. Fine-grained clustering algorithms, such
as K-Means [31], Mean Shift [10], or even their GPU-accelerated
versions [3, 42] will result in tremendous overhead in our case.
These algorithms require reading all the elements in Y(𝑡 ) and have
to undergo multiple iterations before finally arriving at stable cen-
troids. In SNICIT, on the other hand, we select the centroids by a
coarse-grained sampling approach. To reduce the search space, we
first apply column sampling to take out only a small proportion
of columns from Y(𝑡 ) . Then, we use sum downsampling to further
reduce the complexity of the samples. Finally, we narrow down the
centroids by pruning the downsampled results.

Column Sampling. In a large-scale clustering problem, if a clus-
tering 𝐶 satisfies strict threshold separation (there exists a constant
𝑇 such that ∥p− q∥ ≤ 𝑇,∀p, q ∈ 𝐶𝑖 , and ∥p− q∥ > 𝑇,∀p ∈ 𝐶𝑖 ,∀q ∈
𝐶 𝑗≠𝑖 ), then it suffices for an algorithm to take 𝑠 = 𝑂 (𝑘 log 𝑘

𝛿
) sam-

ples uniformly and randomly so that the samples contain at least
one point from each cluster with a probability at least 1 − 𝛿 , where
𝑘 is the number of clusters [36].

Inspired by this property, and noticing that the columns of Y(𝑡 )

are highly centralized, we randomly sample 𝑠 columns from Y(𝑡 ) .
Since the datasets (i.e., MNIST or CIFAR-10) already shuffled the
inputs from different classes, we can simply take the first 𝑠 columns.

DimensionReductionwith SumDownsampling. Now, we have
𝑠 columns, each containing up to 65536 elements. These elements
will be constantly accessed for multiple rounds in future steps, caus-
ing a large overhead. Therefore, a dimension reduction method is
needed to portray the original columns in a lightweight representa-
tion, while preserving their features. We adopt a sum downsampling
approach. Concretely, sum downsampling divides the original col-
umn into 𝑛 segments, each containing 𝑁 /𝑛 elements, where 𝑁 is
the number of neurons per layer. For each segment, we run a simple
sum reduction algorithm in parallel on GPU. Figure 3a depicts the
combined procedure of column sampling and sum downsampling.
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Figure 3: (a) Column sampling and sum downsampling. We
take the first 𝑠 columns from the original matrix of interme-
diate results, Y(𝑡 ) , and downsample them to matrix F. The
grayscale level of each cell represents the value of the corre-
sponding element. A red block in Ŷ(𝑡 ) represents a segment
to be summed up. (b) Illustration of sample pruning. (Algo-
rithm 1)

The resulting sample matrix F is then generated from the original
matrix Y(𝑡 ) .

Sample Pruning. To ensure that our 𝑠 dimension-reduced samples
in F cover all the 𝑘 classes, as suggested in [36], 𝑠 satisfies 𝑠 >> 𝑘 .
This indicates that there are multiple samples in a single class.
To reduce the complexity of clustering, it is necessary to prune
the redundant samples in F. Algorithm 1 demonstrates the GPU
implementation of sample pruning. We launch the kernel by <<<

1, (𝑛, 𝑠) >>>. Since 𝑛 and 𝑠 are relatively small, we only launch one
block. We go through the columns of F iteratively. In each iteration,
we set the current column as the base, and compare the remaining
columns with it in parallel. Some of the remaining columns will
be pruned and discarded for further comparisons if they exhibit
strong similarity to the base.
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At the beginning of the kernel, we construct 𝑏𝑎𝑠𝑒 (an array for
a column under comparison at each iteration), 𝑑𝑖 𝑓 𝑓 (an array to
record the differences between a remaining column and 𝑏𝑎𝑠𝑒), and
an array that records the remaining column indices after pruning,
𝑡𝑚𝑝_𝑖𝑑𝑥 , which is initialized as the original column indices, in
shared memory (lines 2-5). Then, we traverse each column (𝑐𝑚𝑝),
and as long as this column is not discarded, we set 𝑏𝑎𝑠𝑒 to be this
column (lines 6-9) and initialize 𝑑𝑖 𝑓 𝑓 with zeros (lines 10-12). The
difference between 𝑏𝑎𝑠𝑒 and another remaining column 𝑖 is defined
as the number of elements that have a difference larger than [, a
pre-defined parameter.

𝑑𝑖 𝑓 𝑓 [𝑖] = Σ𝑛𝑗=1sgn( |F[𝑖] [ 𝑗] − 𝑏𝑎𝑠𝑒 [ 𝑗] | − [) . (2)

All valid columns’ elements are accessed in a parallel manner,
and the differences between 𝑏𝑎𝑠𝑒 and the accessed columns are
summed up using atomic operations (lines 13-15). If the difference
between a column and 𝑏𝑎𝑠𝑒 is smaller than 𝑛 · 𝜖 , where parameter
𝜖 < 1, we consider the column and 𝑏𝑎𝑠𝑒 to be in the same class and
set the column’s index to −1, discarding the column (lines 16-18).
Finally, after all the columns are traversed, we update 𝑐𝑜𝑙_𝑖𝑑𝑥 with
𝑡𝑚𝑝_𝑖𝑑𝑥 (lines 19-20). The active (≠ −1) elements in the resulting
𝑐𝑜𝑙_𝑖𝑑𝑥 are considered as indices of centroid columns, chosen from
Y(𝑡 ) . We discard all the −1s from 𝑐𝑜𝑙_𝑖𝑑𝑥 and sort the remaining
valid centroid indices. We then store them in y∗, the set of centroid
column indices. The iteration order (line 6) can impact selected
centroids. However, at least one centroid will represent a class, and
thus which column becomes which class centroid does not matter.

We illustrate Algorithm 1 with an example in Figure 3b. First, we
choose column 0 as 𝑏𝑎𝑠𝑒 , compare the rest of the columns with 𝑏𝑎𝑠𝑒
in parallel, and discard columns with high similarities with column
0. In this case, we discard column 1 and column 3 by setting the
corresponding 𝑡𝑚𝑝_𝑖𝑑𝑥 as −1. Then, we choose the next remaining
column (column 2) as𝑏𝑎𝑠𝑒 and conduct the comparison and pruning
with the remaining columns once again. Eventually, the surviving
columns (0 and 2) are the centroids chosen from Y(𝑡 ) .

3.2.2 Residue Errors and Ŷ(𝑡 ) . Here, we explain how to arrive at
residue error columns and the construction of Ŷ(𝑡 ) . Every non-
centroid column in Y(𝑡 ) will first select the closest centroid from y∗

(the set of centroid column indices) in terms of 𝐿0 norm, and store
that very centroid’s index in a mapperM. For centroid columns, the
corresponding values inM are −1. This process can be expressed
as the following equation.

M(𝑖) =
{
argmin𝑗∈y∗ ∥Y

(𝑡 )
:,𝑖 − Y

(𝑡 )
:, 𝑗 ∥𝐿0, 𝑖 ∉ y∗;

−1, 𝑖 ∈ y∗,
(3)

M is a fixed array. It will not be modified in future computations.
For non-centroid column 𝑖 , 𝑖 ∉ y∗ is equivalent to M(𝑖) ≠ −1. By
assigning each non-centroid column 𝑖 to a certain centroid M(𝑖),
the non-centroid column 𝑖 finds a class represented by the centroid
M(𝑖). We obtain the residue error for column 𝑖 by operating vector
subtraction on non-centroid column 𝑖 and centroid columnM(𝑖).
Then, we store the residue error column in Ŷ(𝑡 ) at 𝑖𝑡ℎ column. The
centroid columns, on the other hand, remain unchanged and are
also stored in Ŷ(𝑡 ) at the same position as in Y(𝑡 ) , as shown in
Equation (4).

Algorithm 1 Kernel to prune samples
Input: 𝑐𝑜𝑙_𝑖𝑑𝑥 : column indices of F, F: sample matrix,𝑛: number of

rows in F, 𝑠 : number of columns in F, [: parameter, 𝜖 : parameter
Output: 𝑐𝑜𝑙_𝑖𝑑𝑥 : updated column indices of F
1: 𝑡𝑖𝑑 ← thread.𝑥 + thread.𝑦 ∗ blockDim.𝑥

2: shared 𝑏𝑎𝑠𝑒[𝑛], 𝑑𝑖 𝑓 𝑓 [𝑠], 𝑡𝑚𝑝_𝑖𝑑𝑥[𝑠]
3: if thread.𝑥 == 0 then
4: 𝑡𝑚𝑝_𝑖𝑑𝑥[thread.𝑦]← 𝑐𝑜𝑙_𝑖𝑑𝑥[thread.𝑦]
5: __syncthreads()
6: for 𝑐𝑚𝑝 ← 0; 𝑐𝑚𝑝 < 𝑠; 𝑐𝑚𝑝 + + do
7: if 𝑡𝑚𝑝_𝑖𝑑𝑥[𝑐𝑚𝑝]≠ −1 then
8: if 𝑡𝑖𝑑 < 𝑛 then
9: 𝑏𝑎𝑠𝑒[𝑡𝑖𝑑]← F[𝑡𝑖𝑑][𝑡𝑚𝑝_𝑖𝑑𝑥[𝑐𝑚𝑝]]
10: if 𝑡𝑖𝑑 < 𝑠 then
11: 𝑑𝑖 𝑓 𝑓 [𝑡𝑖𝑑]← 0
12: __syncthreads()
13: if 𝑡𝑚𝑝_𝑖𝑑𝑥[thread.𝑦]≠ −1 and |F[thread.𝑥][thread.𝑦]

− 𝑏𝑎𝑠𝑒[thread.𝑥]| < [ then
14: atomicAdd(𝑑𝑖 𝑓 𝑓 [thread.𝑦],1)
15: __syncthreads()
16: if thread.𝑥 == 0 and thread.𝑦 ≠ 𝑐𝑚𝑝 and

𝑑𝑖 𝑓 𝑓 [thread.𝑦]< 𝑛𝜖 then
17: 𝑡𝑚𝑝_𝑖𝑑𝑥[thread.𝑦]← −1
18: __syncthreads()
19: if 𝑡𝑖𝑑 < 𝑠 then
20: 𝑐𝑜𝑙_𝑖𝑑𝑥[𝑡𝑖𝑑]← 𝑡𝑚𝑝_𝑖𝑑𝑥[𝑡𝑖𝑑]

Ŷ(𝑡 ):,𝑖 =


Y(𝑡 ):,𝑖 − Y

(𝑡 )
:,M(𝑖 ) , 𝑖 ∉ y∗;

Y(𝑡 ):,𝑖 , 𝑖 ∈ y∗ .
(4)

Algorithm 2 describes the GPU kernel that constructs Ŷ(𝑡 ) and
centroid mapper M. For centroid 𝑖 , the mapper value M(𝑖) is ini-
tialized to be −1 before calling the kernel. The number of cen-
troids, 𝑐𝑒𝑛𝑡_𝑐𝑛𝑡 , is also counted beforehand. The kernel is called by
<<< (𝐵 + 1024 − 1)/1024, 1024 >>>. 1024 consecutive columns of
Y(𝑡 ) are grouped and accessed by threads in one single block. We
use a shared array 𝑐𝑒𝑛𝑡 to store 1024 consecutive elements of a cen-
troid in y∗ (line 2). Then, we iterate all the centroids (line 4). In each
centroid, we divide Ŷ(𝑡 ) columns into segments, each having 1024
elements. We iteratively inspect all the segments and record the
𝐿0 norm of the difference between each non-centroid column with
the current centroid (lines 5-13). In the iterations, we use variable
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 to mark the closest centroid to each non-centroid column
(lines 14-16). Next, we apply Equation (4) to Y1, and obtain Ŷ(𝑡 )

(lines 17-22). Finally, we update mapperM with the non-centroid
column’s closest centroid, and 𝑛𝑒_𝑟𝑒𝑐 with whether the residue
error column is non-empty or not (lines 23-29). This algorithm is
illustrated in Figure 4 from a high-level perspective.

Centroids are chosen in a one-shot fashion and are not recom-
puted. There is no guarantee that the centroid indices remain the
same throughout post-convergence layers. However, as the main
purpose of finding centroids is to convert the original represen-
tation to a sparse representation, there is no need to adjust them
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Figure 4: The construction of Ŷ(𝑡 ) and a completeM. Initially,
we have Y(𝑡 ) and an incompleteM with only centroid indices
marked as −1. Then, each non-centroid column finds the
closest centroid, and updates the correspondingM entry with
the centroid’s index and the corresponding Ŷ(𝑡 ) column with
residue error. Different colors represent different classes in
Ŷ(𝑡 ) .

Algorithm 2 Kernel to construct Y(𝑡 ) andM

Input: Y0: Y(𝑡 ) , 𝑐𝑒𝑛𝑡_𝑐𝑜𝑙 : y∗, 𝑐𝑒𝑛𝑡_𝑐𝑛𝑡 : number of centroids, M:
index mapper, 𝑁 : number of neurons, 𝐵: batch size

Output: Y1: Ŷ(𝑡 ) , M: index mapper, 𝑛𝑒_𝑟𝑒𝑐: records whether
columns are non-empty in Ŷ(𝑡 )

1: 𝑡𝑖𝑑 ← thread.𝑥 + thread.𝑦 ∗ blockDim.𝑥

2: shared 𝑐𝑒𝑛𝑡[1024]
3: 𝑑𝑖𝑠𝑡 ← 𝑁 + 1
4: for 𝑖 ← 0; 𝑖 < 𝑐𝑒𝑛𝑡_𝑐𝑛𝑡 ; 𝑖 + + do
5: 𝑡ℎ𝑖𝑠_𝑑𝑖𝑠𝑡 ← 0
6: for 𝑟 ← 0; 𝑟 < 𝑁 /1024; 𝑟 + + do
7: 𝑐𝑒𝑛𝑡 [thread.𝑥] ← Y0[1024𝑟 + thread.𝑥] [𝑐𝑒𝑛𝑡_𝑐𝑜𝑙 [𝑖]]
8: __syncthreads()
9: if 𝑡𝑖𝑑 < 𝐵 then
10: for 𝑘 ← 0; 𝑘 < 1024; 𝑘 + + do
11: if 𝑐𝑒𝑛𝑡 [𝑘] ≠ Y0[1024𝑟 + 𝑘] [𝑡𝑖𝑑] then
12: 𝑡ℎ𝑖𝑠_𝑑𝑖𝑠𝑡 + +
13: __syncthreads()
14: if 𝑡ℎ𝑖𝑠_𝑑𝑖𝑠𝑡 < 𝑑𝑖𝑠𝑡 then
15: 𝑑𝑖𝑠𝑡 ← 𝑡ℎ𝑖𝑠_𝑑𝑖𝑠𝑡
16: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑖

17: for 𝑟 ← 0; 𝑟 < 𝑁 ; 𝑟 + + do
18: if 𝑡𝑖𝑑 < 𝐵 then
19: if M[𝑡𝑖𝑑] ≠ −1 then
20: Y1[𝑟 ] [𝑡𝑖𝑑] ← Y0[𝑟 ] [𝑡𝑖𝑑] − Y0[𝑟 ] [𝑐𝑒𝑛𝑡_𝑐𝑜𝑙 [𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ]]
21: else
22: Y1[𝑟 ] [𝑡𝑖𝑑] ← Y0[𝑟 ] [𝑡𝑖𝑑]
23: if 𝑡𝑖𝑑 < 𝐵 then
24: if M[𝑡𝑖𝑑] ≠ −1 then
25: M[𝑡𝑖𝑑] ← 𝑐𝑒𝑛𝑡_𝑐𝑜𝑙 [𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ]
26: if 𝑑𝑖𝑠𝑡 == 0 then
27: 𝑛𝑒_𝑟𝑒𝑐 [𝑡𝑖𝑑] ← false
28: else
29: 𝑛𝑒_𝑟𝑒𝑐 [𝑡𝑖𝑑] ← true

to yet another sparse form based on new centroids. Frequently
updating them can incur significant runtime overhead.

3.3 Post-convergence Update
The goal of post-convergence update is to derive Ŷ(𝑖+1) from Ŷ(𝑖 )

in a systematic manner with low latency, where 𝑖 = 𝑡, 𝑡 + 1, ..., 𝑙 − 1.
We summarize the general principle for post-convergence update in
Equation (5). If a column in Ŷ(𝑖 ) is a centroid, then we do not have
to consider any errors when updating to the upcoming layer. We
can simply apply the standard feed-forward formula in Equation (1).
If a column in Ŷ(𝑖 ) is a residue error column, then we have to first
find the proper output of layer 𝑖 , then update the column with the
new residue error of layer 𝑖 + 1.

Ŷ(𝑖+1):, 𝑗 =


𝜎 (W(𝑖+1) · Ŷ(𝑖 ):, 𝑗 + b

(𝑖+1) ), 𝑗 ∈ y∗;

𝜎 (W(𝑖+1) · Ŷ(𝑖 ):, 𝑗 +W
(𝑖+1) · Ŷ(𝑖 ):,M( 𝑗 ) + b

(𝑖+1) )

−𝜎 (W(𝑖+1) · Ŷ(𝑖 ):,M( 𝑗 ) + b
(𝑖+1) ), 𝑗 ∉ y∗ .

(5)
Illustrated in Figure 5, we assign two kernels in series for Equa-
tion (5) calculations. We use the first kernel to calculate the matrix
multiplication ofW(𝑖+1) ·Ŷ(𝑖 ) , which corresponds to the underlined
terms in Equation (5). We call this load-reduced sparse matrix multi-
plication (spMM) because Ŷ(𝑖 ) is a sparser matrix compared to Y(𝑖 )

after conversion, and the workload of W(𝑖+1) · Ŷ(𝑖 ) is, therefore,
smaller thanW(𝑖+1) · Y(𝑖 ) . A detailed description of load-reduced
spMM is provided in Section 3.3.1. Then, we apply another kernel
to update the centroids and residue errors in Ŷ(𝑖+1) (detailed in
Section 3.3.2).

3.3.1 Load-reduced spMM. In this section, we determine a suitable
spMM strategy for an efficientW(𝑖+1) · Ŷ(𝑖 ) computation. W(𝑖+1)

is a highly sparse matrix, stored in a compressed form. Ŷ(𝑖 ) is also
a sparse matrix, but stored in a dense format. We can adopt sparse-
sparse matrix multiplication (spGEMM), nevertheless, there are two
major issues. Firstly, Ŷ(𝑖 ) should be transformed into a compressed
format in each layer, introducing nontrivial overhead proportional
to the number of post-convergence layers. Secondly, spGEMM can
be highly irregular and may exhibit low arithmetic intensity [7].
Considering that relatively dense centroid columns and relatively
sparse residue error columns exist in the same matrix Ŷ(𝑖 ) , the
workload for spGEMM will be greatly imbalanced. Therefore, we
resort to sparse-dense matrix multiplication.

We record and sort the indices of non-empty columns of Ŷ(𝑖 )
(True elements in ne_rec), and store the indices in 𝑛𝑒_𝑖𝑑𝑥 . Similar
to Section 3.1, we leverage off-the-shelf kernels [4, 38] from SDGC
champions for our spMM problem. However, there are two adjust-
ments made. (1) We neglect the entirely empty columns of Ŷ(𝑖 ) , so
that memory access overhead and computational workload can be
greatly reduced. As shown in Figure 5 (load-reduced spMM), we
only apply the spMM kernel on non-empty columns (marked by
𝑛𝑒_𝑖𝑑𝑥) in Ŷ(𝑖 ) . In order to induce more empty columns in Ŷ(𝑖 )

and boost computation speed, we relax the condition in the con-
struction and update of Ŷ(𝑖 ) . After obtaining Ŷ(𝑖 ) columns from
Equation (4) and Equation (5), we prune elements that are close
to zero. (2) We only perform multiplication in the kernel, and we
leave bias addition and the activation function to the next kernel.
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Figure 5: We apply two kernels in post-convergence update:
(1) load-reduced spMM and (2) centroids and residue errors
update.

3.3.2 Centroids and Residue Errors Update. After retrieving the re-
sults of spMM, we update the centroids and residue errors for Ŷ(𝑖+1)
using Equation (5). We describe the kernel in Algorithm 3, and it is
called by <<< size(𝑛𝑒_𝑖𝑑𝑥), 1024 >>>. We launch size(𝑛𝑒_𝑖𝑑𝑥)
blocks, each of which is associated with a non-empty column in
W(𝑖+1) · Ŷ(𝑖 ) . Each block contains 1024 threads. We divide the
columns into 𝑁 /1024 segments and access one segment in parallel
at a time. First, we obtain the corresponding non-empty column
index of a certain block (line 1). If the column is a centroid column,
then we just simply update the corresponding column in Ŷ(𝑖+1) ,
with the first case of Equation (5), and set its non-empty record
𝑛𝑒_𝑟𝑒𝑐 to True (lines 2-6). If the column is not a centroid column,
we then update the corresponding column using the second case of
Equation (5), while counting the non-zero elements in the result-
ing column (lines 7-11). Finally, for this non-centroid column, we
update 𝑛𝑒_𝑟𝑒𝑐 with whether the column is non-empty or not (lines
12-13).

We demonstrate the idea of Algorithm 3 in Figure 5 (centroids
and residue errors update). We find the indices of non-empty
columns in W(𝑖+1) · Ŷ(𝑖 ) from 𝑛𝑒_𝑖𝑑𝑥 . Within these non-empty
columns, we then find centroid columns and error columns by
checking their M values. We apply different actions to the two
cases based on Equation (5), and we obtain the resulting Ŷ(𝑖+1) .
Finally, we update 𝑛𝑒_𝑟𝑒𝑐 with whether the non-empty column
is still non-empty. For example, in Figure 5, column 8 in Ŷ(𝑖+1)

turns into an empty column and the corresponding 𝑛𝑒_𝑟𝑒𝑐 value is
updated as False.

𝑛𝑒_𝑟𝑒𝑐 is updated in Algorithm 3 for every layer. 𝑛𝑒_𝑖𝑑𝑥 , never-
theless, is updated outside the kernel by running serial iterations on
𝑛𝑒_𝑟𝑒𝑐 . To avoid too much serial iteration overhead, 𝑛𝑒_𝑖𝑑𝑥 can be
updated less frequently than 𝑛𝑒_𝑟𝑒𝑐 . In practice, we update 𝑛𝑒_𝑖𝑑𝑥
by an interval of 200 layers for the SDGC benchmarks.

Algorithm 3 Kernel to update centroids and residue errors

Input: Y0:W(𝑖+1) · Ŷ(𝑖 ) ,M: centroid index mapper, 𝑛𝑒_𝑖𝑑𝑥 : non-
empty columns’ indices in Ŷ(𝑖 ) ,𝑁 : neuron size,𝑏: bias (constant
for each SDGC benchmark), 𝐵: batch size

Output: Y1: Ŷ(𝑖+1) , 𝑛𝑒_𝑟𝑒𝑐: records whether columns are non-
empty in Ŷ(𝑖+1)

1: 𝑟 ← 𝑛𝑒_𝑖𝑑𝑥 [block.𝑥]
2: if M[𝑟 ] == −1 then
3: for 𝑗 ← thread.𝑥 ; 𝑗 < 𝑁 ; 𝑗+ = blockDim.𝑥 do
4: Y1[ 𝑗] [𝑟 ] ← 𝜎 (Y0[ 𝑗] [𝑟 ] + 𝑏)
5: 𝑛𝑒_𝑟𝑒𝑐 [𝑟 ] ← true
6: return
7: 𝑐𝑜𝑢𝑛𝑡 ← 0
8: for 𝑗 ← thread.𝑥 ; 𝑗 < 𝑁 ; 𝑗+ = blockDim.𝑥 do
9: 𝑣 ← 𝜎 (Y0[ 𝑗] [M[𝑟 ]] +Y0[ 𝑗] [𝑟 ] +𝑏) − 𝜎 (Y0[ 𝑗] [M[𝑟 ]] +𝑏)
10: 𝑐𝑜𝑢𝑛𝑡+ = __syncthreads_count(𝑣 ≠ 0)
11: Y1[ 𝑗] [𝑟 ] ← 𝑣

12: if thread.𝑥 == 0 then
13: 𝑛𝑒_𝑟𝑒𝑐 [𝑟 ] ← (𝑐𝑜𝑢𝑛𝑡 ≠ 0)

3.4 Final Results Recovery
Eventually, in the final layer, we recover the final result Y(𝑙 ) from
Ŷ(𝑙 ) . We simply reverse Equation (4).

Y(𝑙 ):,𝑖 =

{
Ŷ(𝑙 ):,𝑖 + Ŷ

(𝑙 )
:,M(𝑖 ) , 𝑖 ∉ y∗;

Ŷ(𝑙 ):,𝑖 , 𝑖 ∈ y∗ .
(6)

Following this guideline, we easily restore the final result Y(𝑙 )
by reversing the generation of centroids and residue errors in a
parallel manner.

4 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of SNICIT on two
fronts: (1) The official SDGC benchmarks at a large scale and (2) Four
medium-scale sparse DNNs targeting MNIST [41] and CIFAR-10 [2]
workloads. The purpose of the second experiment is to demon-
strate that SNICIT can scale beyond HPEC SDGC benchmarks and
accelerate medium-scale sparse DNNs that are representative of
common deep-learning applications. We ran our experiments on
a CentOS 8 x86 64-bit machine, with 8 Intel i7-11700 CPU cores
at 2.5 GHz, one RTX A6000 48 GB GPU, and 128 GB RAM. The
programs are compiled with Nvidia CUDA nvcc with optimization
flag -O3 enabled.

4.1 SDGC Benchmarks
We first evaluate SNICIT by comparing our performance with the
latest three open-source champions of SDGC. Next, we study the
runtime breakdown. Notice that pre-convergence sparse matrix
multiplication has identical performance as XY-2021, and cluster-
based conversion and final results recovery introduce a certain
overhead. Therefore, the overall acceleration in SNICIT comes from
post-convergence update. We will study this efficiency in depth by
presenting SNICIT’s reduction of latency in post-convergence lay-
ers. Finally, we will analyze the impact of threshold layer 𝑡 and
batch size 𝐵 on runtime. In the following experiments, we set 𝑠 = 32,
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Figure 6: Comparing SNICIT’s average latency per post-
convergence layer with that of XY-2021 [38]. The x-axis indi-
cates the SDGC benchmarks.

𝑡 = 30, 𝑛 = 16, 𝜖 = [ = 0.03. We use the spMM kernel from XY-2021
for spMM tasks in pre-convergence and post-convergence stages.
We use the notation, 𝑁 -𝑙 , to represent the DNN benchmark of 𝑙
layers each of 𝑁 neurons.

4.1.1 Runtime Comparison With Previous Years’ Champions. We
consider the champions of SDGC 2019 (BF-2019 [4]), 2020
(SNIG-2020 [30]), and 2021 (XY-2021 [38]) as our baselines. We
do not consider the 2022 champions [34, 39] because their code is
not open-source. However, when we look at the runtime results
of [34, 39], their speed-ups over XY-2021 [38] are not as good as
SNICIT (e.g., 2.46× by [34], 1.61× by [39], and 6.31× by SNICIT for
the largest SDGC benchmark). We configure the batch size 𝐵 as
60000 for benchmarks with neuron size smaller than 65536, and
30000 for benchmarks with neuron size equal to 65536, to ensure
that no overflow occurs in GPU memory.

Table 3 shows the overall performance comparison. SNICIT out-
performs all the baselines across all the benchmarks. Our speed-up
increases as the size of each benchmark (neuron size and layer
depth) becomes larger. For example, at the largest benchmark
of 1920 layers each of 65536 neurons, SNICIT achieves a 6.31×
speed-up over XY-2021 [38]. This is because we reinterpreted post-
convergence layer 𝑖’s result, Y(𝑖 ) , in a sparser form, Ŷ(𝑖 ) , leading
to a large computation reduction when propagating results over
layers. Since deeper DNN has more post-convergence layers, the
reduction becomes more remarkable.

4.1.2 Latency Reduction in Post-convergence Layers. Figure 6 com-
pares the average latency per post-convergence layer (layer 𝑡 ∼ 𝑙)
between SNICIT and XY-2021 [38] on the 12 official SDGC bench-
marks. We can see the average latency of SNICIT is much faster
than XY-2021, and the difference becomes larger when the DNN
size increases. For example, for benchmark 65536-1920, the latency
reduction in post-convergence layers is up to 18.69×.

4.1.3 Runtime Breakdown. Figure 7 breaks down the runtime of
the entire inference workload for four DNNs (1024-120, 4096-120,
16384-120, and 65536-120). When the number of neurons enlarges,
pre-convergence latency will dominate to a larger extent. In terms
of overhead, the final results recovery latency is negligible (0.25%
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Figure 7: Runtime breakdown of four DNNs: (a) 1024-120, (b)
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Figure 9: Runtime vs batch size 𝐵 on four DNNs: (a) 1024-1920,
(b) 4096-1920, (c) 16384-1920, and (d) 65536-1920.
∼ 0.43%) on all benchmarks, while the cluster-based conversion
latency grows with neuron size (9.65% ∼ 16.92%).

4.1.4 Impact of Threshold Layer 𝑡 and Batch Size 𝐵. We study the
runtime of SNICIT at different threshold layers (i.e., 𝑡 ) on three
DNNs (1024-120, 4096-120, and 16384-120). As shown in Figure 8,
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Table 3: Overall runtime comparison of SNICIT and the previous years’ champions (XY-2021 [38],
SNIG-2020 [30] and BF-2019 [4]) on HPEC Sparse DNN Graph Challenge (SDGC) benchmarks [22]. All
the results match the golden reference provided by the SDGC evaluation platform.

Benchmarks SNICIT (Ours) XY-2021 [38] SNIG-2020 [30] BF-2019 [4]
Neuron Layer Runtime (ms) Runtime (ms) Speed-up Runtime (ms) Speed-up Runtime (ms) Speed-up

1024
120 13.40 14.93 1.11× 242 18.06× 498 37.16×
480 25.10 40.93 1.63× 835 33.27× 1496 59.60×
1920 72.52 143.15 1.97× 3203 44.17× 5464 75.34×

4096
120 32.39 39.06 1.20× 731 22.57× 1792 55.32×
480 44.17 93.89 2.12× 2464 55.78× 5387 121.96×
1920 89.30 312.32 3.51× 9407 105.34× 19750 221.16×

16384
120 112.09 142.91 1.27× 2523 22.51× 6687 59.66×
480 125.82 332.93 2.65× 8374 66.56× 20314 161.45×
1920 179.37 1094.11 6.10× 31656 176.48× 73528 409.92×

65536
120 462.81 559.61 1.21× 9950 21.50× 29142 62.97×
480 506.96 1316.97 2.60× 28824 56.86× 84455 166.59×
1920 689.18 4346.82 6.31× 104205 151.20× 305655 443.50×

SNICIT performs the best when 𝑡 is between 20 and 40. When 𝑡 is
beyond this range, the advantage of SNICIT becomes smaller. We
observe that when 𝑡 is small, i.e., the intermediate output entries
are not fully converged, SNICIT will cluster more centroids, which
will prolong post-convergence update. When 𝑡 is too large, the time
spent on pre-convergence sparse matrix multiplication becomes
dominant as this step is the most time-consuming (see the runtime
breakdown in Figure 7).

Next, we study the impact of batch size 𝐵 on runtime using the
four deepest DNNs (1024-1920, 4096-1920, 16384-1920, and 65536-
1920). Figure 9 plots the runtime of SNICIT and XY-2021 [38] at
different batch sizes. When 𝐵 increases, the speed-up of SNICIT
becomes larger. This is because when the batch size becomes larger,
the workload of XY-2021 increases. However, the number of cen-
troids remains basically unchanged within the batches, and more
intermediate results are represented in the sparse form. The work-
load of SNICIT becomes relatively smaller than XY-2021, thus the
speed-up will be larger.

4.2 Beyond SDGC
We have demonstrated that SNICIT outperforms previous SDGC
champions on SDGC benchmarks at a large scale. In this section, we
show that SNICIT can also handle medium-scale sparse DNNs that
are representative of common deep-learning applications. We apply
PyTorch 1.12.1 and SparseLinear [19] toolkit to train three sparse
DNNs (A, B, and C in Table 4) on the MNIST [41] dataset and one
sparse DNN (D in Table 4) on the CIFAR-10 [2] dataset. Networks
A, B, and C consist of a fully connected layer of size 784×𝑁 at
the first layer, 𝑙 sparsely connected layers each of size 𝑁 × 𝑁 , and
a fully connected output layer of size 𝑁×10. Network D consists
of three consecutive series of two convolution layers + one max
pooling layer combination, a fully connected layer for dimension
calibration, 𝑙 sparsely connected layers each of size 𝑁 × 𝑁 , and
finally a fully connected output layer of size 𝑁×10. The densities
for all networks are between 50% ∼ 60%. We use cross-entropy as
our loss function and Adam [24] as our optimization algorithm. We
train the neural network for 150 epochs using a learning rate of

Table 4: Statistics of medium-scale sparse DNNs (DS: dataset,
MN: MNIST, and CF: CIFAR-10), and performance comparison
between SNICIT and the previous champions (SNIG-2020 [30]
and BF-2019 [4]).

ID 𝑁 − 𝑙 DS DNN
acc.

Acc.
loss

Speed-up w.r.t.
SNIG- BF-

2020 [30] 2019 [4]
A 128-18 MN 94.94% 0.24% 1.38× 1.58×
B 256-18 MN 96.88% 1.43% 1.83× 1.95×
C 256-12 MN 95.61% 0.06% 1.36× 1.40×
D 256-12 CF 75.86% 0.45% 1.48× 1.53×

6 × 10−5. The activation function 𝜎 (·) is ReLU [1] with an upper-
bound of 1. In this experiment, we focus on the 𝑙 sparsely connected
hidden layers for the four networks and compare SNICIT with the
baselines on these sparse layers, and we count our threshold layer
𝑡 from the first sparsely connected layer.

4.2.1 Baselines and SNICIT’s Implementation. We consider
BF-2019 [4] and SNIG-2020 [30] as our baselines. We do not in-
clude XY-2021 [38] because its open-source implementation is hard-
coded for SDGC benchmarks. For SNICIT’s implementation, we
follow the guideline of Section 3 with somemodifications: We adopt
spMMkernels from BF-2019 [4] for spMM tasks in pre-convergence
and post-convergence stages. In cluster-based conversion, we do
not perform sum downsampling, given the relatively small neuron
size. Here, we update 𝑛𝑒_𝑖𝑑𝑥 for every layer, since 𝑙 for medium-
scale benchmarks is relatively small. We set 𝑡 as the largest even
integer no greater than 𝑙/2, 𝑠 = 128, 𝜖 = [ = 0.03, and run SNICIT
and the baselines on the testing set of MNIST or CIFAR-10, which
consists of a batch of 𝐵 = 10000 inputs.

4.2.2 Runtime and Accuracy Comparison With Baselines. Table 4
shows SNICIT’s (1) inference accuracy loss (caused by pruning, elab-
orated in Section 3.3.1) from the initial DNN and (2) speed-ups over
two baselines. The baselines do not have inference accuracy loss.
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Figure 10: Runtime breakdown for medium-scale sparse
DNNs: (a) DNN A, (b) DNN D.
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Figure 11: Comparing SNICIT’s average latency per
post-convergence layer with that of SNIG-2020 [30] and
BF-2019 [4]. The x-axis indicates the medium-scale sparse
DNNs.

SNICIT outperforms both SNIG-2020 and BF-2019 on all medium-
scale sparse DNNs by up to 1.95× speed-up with negligible accuracy
losses. Furthermore, we find SNICIT exhibits better performance
when the medium-scale sparse DNN is deeper and larger, which is
consistent with SDGC results. On the other hand, if the given DNNs
are small, dense, and have many labels, the overhead of our cluster-
based conversion may outweigh the advantage of post-convergence
update. In this case, SNICIT may not perform well compared with
other approaches.

Figure 10 shows the runtime breakdown of SNICIT on medium-
scale DNNs A and D. Similar to the SDGC benchmark, pre-
convergence sparse matrix multiplication takes the majority of
the runtime here (62.00% and 66.70%), and recovery of final results
has very little overhead (4.30% and 0.30%). Figure 11 compares the
average latency across post-convergence layers between SNICIT
and the baselines. SNICIT has lower average post-convergence la-
tency than both BF-2019 and SNIG-2020 across all medium-scale
sparse DNNs. Moreover, the variation of post-convergence latency
for SNICIT is much smaller than that of BF-2019 and SNIG-2020
(similar to SDGC benchmarks in Figure 6). This result shows that
post-convergence update exhibits good scalability across different
DNNs.

4.2.3 Impact of Threshold Layer 𝑡 and Batch Size 𝐵. We now study
the performance of SNICIT and baselines at different combinations
of threshold layer 𝑡 and batch size 𝐵 on the medium-scale sparse
DNNs. We conduct a grid search for 𝑡 ∈ [0, 𝑙) with a step size of 2,
and for 𝐵 ∈ {1000, 2000, 2500, 5000, 10000} on all the medium-scale

sparse DNNs. We report the results in Figure 12, which includes
SNICIT’s speed-ups over SNIG-2020 [30] and SNICIT’s accuracy
loss at different (𝑡, 𝐵) points.

From Figures 12a, 12c, 12e, and 12g, we conclude that a larger 𝐵
leads to larger speed-ups. For example, when 𝐵 = 1000, SNICIT is
only faster than SNIG-2020 on DNN B. However, as 𝐵 increases to
10000, SNICIT is faster than the SNIG-2020 regardless of 𝑡 values.
Next, when we fix 𝐵 and increase 𝑡 from 0 to 𝑙 −2, it is apparent that
SNICIT’s speed-up over SNIG increases first, reaches the maximum
at a 𝑡 that is slightly smaller than 𝑙/2, then decreases. For example,
when 𝐵 = 10000 on benchmark B, the speed-up increases from
2.25× (𝑡 = 0) to 2.75× (𝑡 = 2), then decreases to 1.06× (𝑡 = 16). This
feature aligns well with what we discussed in Section 4.1.4.

From Figures 12b, 12d, 12f, and 12h, we discover that 𝐵 does
not impact much SNICIT’s inference accuracy. When 𝑡 increases,
SNICIT’s inference accuracy loss generally decreases. However,
this trend is not monotonic: (1) A larger 𝑡 indicates fewer near-zero
residue error prunings in Ŷ(𝑖 ) update, resulting in lower accuracy
loss. (2) On the other hand, a smaller 𝑡 yields more centroids during
cluster-based conversion. More centroids can better represent a
batch of intermediate results, which can also lead to fewer near-zero
residue error prunings and lower accuracy loss. For example, in
Figure 12d, 𝑡 = 2 has a smaller accuracy loss compared to 𝑡 = 0 and
𝑡 = 4 for all 𝐵.

The best selection strategy of 𝑡 and 𝐵 depends on the applica-
tion (e.g., neural network architectures) and GPU memory capacity.
Since there is no universal optimal value, we parameterize it for
applications. However, according to our experiments, using 𝑙/2 for
𝑡 can generally achieve a good balance between accuracy loss and
speed-up. Applications can further fine-tune the result by decreas-
ing 𝑡 to gain more speed-up or increasing 𝑡 to gain more inference
accuracy.

5 CONCLUSION
In this paper, we have presented SNICIT, a novel GPU algorithm
to accelerate sparse DNN inference via compression at inference
time. We leverage data clustering to convert intermediate results
to a sparse representation that largely reduces computation over
inference iterations. We have evaluated SNICIT on both the official
SDGC benchmarks and medium-scale sparse DNNs. SNICIT is up
to 6.31× faster than the champion of SDGC 2021 (XY-2021 [38]) on
SDGC benchmarks, up to 1.83× faster than the champion of SDGC
2020 (SNIG-2020 [30]) for sparse DNNs targeting MNIST [41], and
1.48× faster than the champion of SDGC 2020 (SNIG-2020 [30]) for
sparse DNNs targeting CIFAR-10 [2].

In the future, we will explore the application of SNICIT in sparse
DNN training. Furthermore, we plan to develop a dynamic data-
driven approach for determining threshold 𝑡 .
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(a) SNICIT’s speedup over SNIG on
DNN A for different (𝑡, 𝐵) .

(b) SNICIT’s accuracy loss on
DNN A for different (𝑡, 𝐵) .

(c) SNICIT’s speedup over SNIG on
DNN B for different (𝑡, 𝐵) .

(d) SNICIT’s accuracy loss on
DNN B for different (𝑡, 𝐵) .

(e) SNICIT’s speedup over SNIG on
DNN C for different (𝑡, 𝐵) .

(f) SNICIT’s accuracy loss on DNN
C for different (𝑡, 𝐵) .

(g) SNICIT’s speedup over SNIG on
DNN D for different (𝑡, 𝐵) .

(h) SNICIT’s accuracy loss on DNN
D for different (𝑡, 𝐵) .

Figure 12: Impact of different (threshold 𝑡 , batch size 𝐵) com-
binations on the performance of SNICIT. Darker pixel colors
signify larger values (i.e., speed-up or accuracy loss). For (a),
(c), (e), and (g), pixels under the red rectilinear lines represent
points with an actual speed-up (i.e., speed-up > 1).
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