Do Not Train It: A Linear Neural Architecture Search of Graph Neural
Networks

Peng Xu'" Lin Zhang?"

Abstract

Neural architecture search (NAS) for Graph neu-
ral networks (GNNs), called NAS-GNNs, has
achieved significant performance over manually
designed GNN architectures. However, these
methods inherit issues from the conventional NAS
methods, such as high computational cost and
optimization difficulty. More importantly, previ-
ous NAS methods have ignored the uniqueness
of GNNs, where GNNs possess expressive power
without training. With the randomly-initialized
weights, we can then seek the optimal architec-
ture parameters via the sparse coding objective
and derive a novel NAS-GNNs method, namely
neural architecture coding (NAC). Consequently,
our NAC holds a no-update scheme on GNNs and
can efficiently compute in linear time. Empirical
evaluations on multiple GNN benchmark datasets
demonstrate that our approach leads to state-of-
the-art performance, which is up to 200x faster
and 18.8% more accurate than the strong base-
lines.

1. Introduction

Remarkable progress of graph neural networks (GNNs) has
boosted research in various domains, such as traffic predic-
tion, recommender systems, etc., as summarized in (Wu
et al., 2021). The central paradigm of GNNs is to gener-
ate node embeddings through the message-passing mecha-
nism (Hamilton, 2020), including passing, transforming, and
aggregating node features across the input graph. Despite
its effectiveness, designing GNNSs requires laborious efforts
to choose and tune neural architectures for different tasks

“Equal contribution !'The Chinese University of Hong
Kong, China International Digital Economy Academy, China
3Shenzhen International Graduate School, Tsinghua Univer-
sity, China *Carnegie Mellon University, USA. Correspon-
dence to: Bei Yu <byu@cse.cuhk.edu.hk>, Lin Zhang
<linzhang(0529 @ gmail.com>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

3

Xuanzhou Liu?® Jiaqi Sun® Yue Zhao* Haiqin Yang? Bei Yu'

90
oNAC

85 +SANE
S
>80
o
3
ot
275

70

100 10! 102

Running Time (Min) in log base 10

Figure 1: Accuracy vs. running time on Cora. NAC (ours) outper-
forms the leading methods significantly in both accuracy and speed
(in minutes).

and datasets (You et al., 2020), which limits the usability of
GNNs. To automate the process, researchers have made ef-
forts to leverage neural architecture search (NAS) (Liu et al.,
2019a; Zhang et al., 2021b) for GNNs, including Graph-
NAS (Gao et al., 2020), Auto-GNN (Zhou et al., 2019),
PDNAS (Zhao et al., 2020) and SANE (Zhao et al., 2021b).
In this work, we refer the problem of NAS for GNNs as
NAS-GNNs.

While NAS-GNNs have shown promising results, they in-
herit issues from general NAS methods and fail to account
for the unique properties of GNN operators. It is impor-
tant to understand the difficulty in general NAS training
(e.g., architecture searching and weight evaluation). Based
on the searching strategy, NAS methods can be catego-
rized into three types: reinforcement learning-based meth-
ods (Zoph & Le, 2017), evolutionary algorithms-based meth-
ods (Jozefowicz et al., 2015), and differential-based meth-
ods (Liu et al., 2019a; Wu et al., 2019a). Both reinforcement
learning-based and evolutionary algorithm-based methods
suffer from high computational costs due to the need to re-
train sampled architectures from scratch. On the contrary, the
weight-sharing differential-based paradigm reuses the neural
weights to reduce the search effort and produces the opti-
mal sub-architecture directly without excessive processes,
such as sampling, leading to significant computational cost
reduction and becoming the new frontier of NAS.

However, the weight sharing paradigm requires the neu-
ral weights to reach optimality so as to obtain the optimal
sub-architecture based on its bi-level optimization (BLO)

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

strategy (Liu et al., 2019a), which alternately optimizes the
network weights (outputs of operators) and architecture pa-
rameters (importance of operators). First, it is hard to achieve
the optimal neural weights in general due to the curse of di-
mensionality in deep learning, leading to unstable searching
results, also called the optimization gap (Xie et al., 2022).
Second, this paradigm often shows a sloppy gradient esti-
mation (Bi et al., 2020a;b; Guo et al., 2020b) due to the
alternating optimization, softmax-based estimation, and un-
fairness in architecture updating. This type of work suffers
from slow convergence during training and is sensitive to
initialization due to the wide use of early termination. If not
worse, it is unclear why inheriting weights for a specific ar-
chitecture is still efficient—the weight updating and sharing
lack interpretability.

Is updating the GNN weights necessary? Or, does updating
weights contribute to optimal GNN architecture searching?
Existing NAS-GNN methods rely on updating the weights,
and in fact, all these issues raised are due to the need to
update weights to the optimum. Unlike other deep learning
structures, graph neural networks behave almost linearly, so
they can be simplified as linear networks while maintaining
superior performance (Wu et al., 2019b). Inspired by this,
we find that the untrained GNN model is nearly optimal
in theory. Note that the first paper on modern GNNs,
i.e., GCN (Kipf & Welling, 2017a), already spotted this
striking phenomenon in the experiment, but gained little
attention. To the best of our knowledge, our work is the
first to unveil this and provide theoretical proof. The issues
mentioned before may not be as much of a concern given no
weight update is needed, making NAS-GNN much simpler.

In this paper, we formulate the NAS-GNN problem as a
sparse coding problem by leveraging the untrained GNNss,
called neural architecture coding (NAC). We prove that un-
trained GNNs have built-in orthogonality, making the output
dependent on the linear output layer. With no-update scheme,
we only need to optimize the architecture parameters, result-
ing in a single-level optimization strategy as opposed to the
bi-level optimization in the weight-sharing paradigm, which
reduces the computational cost significantly and improves
the optimization stability. Much like the sparse coding prob-
lem (Zhang et al., 2015), our goal is also to learn a set
of sparse coefficients for selecting operators when treating
these weights collectively as a dictionary, making sharing
weights straightforward and understandable. Through exten-
sive experiments on multiple challenging benchmarks, we
demonstrate that our approach is competitive with the state-
of-the-art baselines, while decreasing the computational cost
significantly, as shown in Figure 1.

In summary, our main contributions are:

- Problem Formulation: We present (to our best knowl-
edge) the first linear complexity NAS algorithm for GNNss,

namely NAC, which is solved by sparse coding.

- Theoretical Analysis: Our NAC holds a no-update
scheme, which is theoretically justified by the built-in
model linearity in GNNs and orthogonality in the model
weights.

- Effectiveness and Efficiency: We compare NAC with
state-of-the-art baselines and show superior performance
in both accuracy and speed. Especially, NAC brings up
to 18.8% improvement in terms of accuracy and is 200 x
faster than baselines.

2. Related Work and Preliminaries

Graph Neural Networks (GNNs) are powerful representa-
tion learning techniques (Xu et al., 2019) with many key ap-
plications (Hamilton et al., 2017). Early GNNs are motivated
from the spectral perspective, such as Spectral GNN (Bruna
et al., 2014) that applies the Laplacian operators directly.
ChebNet (Defferrard et al., 2016) approximates these op-
erators using summation instead to avoid a high computa-
tional cost. GCN (Kipf & Welling, 2017b) further simplifies
ChebNet by using its first order, and reaches the balance
between efficiency and effectiveness, revealing the message-
passing mechanism of modern GNNs. Concretely, recent
GNNSs aggregate node features from neighbors and stack
multiple layers to capture long-range dependencies. For in-
stance, GraphSAGE (Hamilton et al., 2017) concatenates
nodes features with mean/max/LSTM pooled neighbouring
information. GAT (Velickovic et al., 2018) aggregates neigh-
bor information using learnable attention weights. GIN (Xu
et al., 2019) converts the aggregation as a learnable function
based on the Weisfeiler-Lehman test instead of prefixed ones
as other GNNs, aiming to maximize the power of GNNs.

GNNss consist of two major components, where the aggrega-
tion step aggregates node features of target nodes’ neighbors
and the combination step passes previous aggregated features
to networks to generate node embeddings. Mathematically,
we can update node v’s embedding at the [-th layer by

hl=¢ (W' -o({h ' ,Vue Nw)})), (1)

where N (v) denotes the neighbours of v. W denotes the
trainable weight shared by all nodes at the /-layer. ¢ is an ac-
tivation function (with ReLU as default). A main difference
of different GNNss lies in the design of the the aggregation
functions, o(-). As GNNs have a large design space (You
et al., 2020), this makes it challenging for the architecture
search.

Neural Architecture Search (Xie & Yuille, 2017) gener-
ally includes three major parts, i.e., search spaces, search
strategies, and evaluation methods. Recent advances adopt
weight-sharing (Xie et al., 2022) to avoid (re-)training from
scratch as in previous methods, where any architecture can
share the weights directly for evaluation without re-training.

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

In particular, making the weights and architectural parame-
ters differentiable (Liu et al., 2019a; Luo et al., 2018) further
improves the training efficiency. Although efficient, weight-
sharing NAS has genetic issues that are caused by its bi-level
optimization, including over-fitting and inaccurate gradient
estimation (Xie et al., 2022), making these methods collapse
unexpectedly. A variety of methods are proposed to ad-
dress this from different perspectives, while mainly adding
regularization towards weights, such as using k-shot (Su
et al., 2021), paths dropout (Bender et al., 2018), sampling
paths (Guo et al., 2020a), sparsity (Zhang et al., 2021a).
However, these cures are still within the bi-level optimiza-
tion framework, which can at best alleviate the problem but
not directly tackle it. In this work, we propose NAC, a
linear (i.e., single-level) optimization paradigm, to address
the issues in weight-sharing NAS.

Concretely, consider WS-NAS defined by {.A, W}, where
A and W denote the search space and weights of neural net-
works, respectively. WS-NAS addresses two subproblems
of these two space alternatively using a bi-level optimization
framework (Liu et al., 2019a), including weight optimization
and architecture optimization as shown in the following.

o = argmax My (0" (),),
(a7

2

s.t. w*(a) = argmin Ly (a, w),
w

where £ denotes a loss function in the training set. M
denotes an evaluation metric, such as accuracy, in the vali-
dation set. Optimizing separately, WS-NAS avoids the po-
tential biased caused by imbalance dimensionality between
w and a, i.e., the neural weights and the architecture pa-
rameters. DARTS (Liu et al., 2019a) further converts the
discrete search space into a differentiable one with the help
exp((xgi’j))
Soeom(ai?)’
where O represents the search space consisting of all oper-
ators. Thus, we can get the importance of each operator in
the format of probability. However, it is difficult to reach
the optimal state for the objectives defined in Equation (2)
simultaneously, because achieving optimality in deep neural
networks is still an open question, and the gradient w.r.t.
is intractable (Xie et al., 2022). In practice, researchers often
apply early stopping to tackle it, which leads to unexpected
model collapse (Zela et al., 2020) and initialization sensi-
tivity (Xie et al., 2022). More related work can be found at
Appendix A.13.

NAS for Graph Neural Networks: Many NAS methods
have been proposed and adapted for GNNs, such as Graph-
NAS (Gao et al., 2020), Auto-GNN (Zhou et al., 2019), and
SANE (Zhao et al., 2021b), and thus enable learning an
adaptive GNN architecture with less human effort. Meth-
ods like Auto-GNN and GraphNAS adopt reinforcement
learning (RL) for searching, and thus suffer from the ex-

of the softmax function that is writing as

pensive computational cost. Thanks to the weight-sharing
policy, SANE (Zhao et al., 2021b) avoids heavy retraining
processes in RL methods, which leads to superior perfor-
mance in general. However, this type of work also faces
issues from the weight-sharing differential framework, such
as bias optimization and instability due to bi-level optimiza-
tion. In this work, our proposed method NAC focuses on the
NAS for GNNs, and we use GraphNAS and SANE as our
main baselines.

Sparse Coding (Zhang et al., 2015) is a well-studied topic,
and its goal is to learn an informative representation as a lin-
ear combination from a collection of basis or atom, which is
called a dictionary collectively. The standard SC formulation
is written as follows:
. 2
min £(V,D,T) = ||V - DTz,

' . 3
s.t. Vi, ||T.illo < 105V, | D42 = 1,

where I is the sparse coefficient vector, D is the dictionary,
To is a value to control the sparsity. The first constraint is
to encourage a sparse representation on I' and the second
constraint is to normalize the atoms in the dictionary. NAS
aims to find a small portion of operators from a large set of
operators, making it a sparse coding problem in nature. We,
therefore, reformulate the NAS-GNN problem as a sparse
coding problem.

3. Network Architecture Coding (NAC) for
NAS-GNN

To find the best-performing architecture, we introduce a
novel NAS-GNN paradigm, Neural Architecture Coding
(NAC), based on sparse Coding, which requires no update
on the neural weights during training. Technical motivation
for NAC stems from the observation that an untrained GNN
performs well, and training it might not provide extra benefit.
In the remainder of this section, we provide a theoretical
analysis of why no-update GNNs are preferred (Section 3.1)
and propose a new NAS-GNN paradigm based on our theo-
rems by leveraging untrained GNNs (Section 3.2).

3.1. Analysis of No-update Scheme in GNNs

In the performance analysis of GNNs, the nonlinear activa-
tion function ¢ defined in Equation (1) is often skipped.
Following (Wu et al., 2019b), we simplify a GNN as
F=A. AAXW)W,... W, = ALX [, W,
where A is the adjacency matrix, W is the neural weight
at the [-th layer from a total number of layers, L. We then
obtain the final output as Out = F'W,, by passing a linear
layer W, . At the ¢-th iteration, we denote the GNN weight
at the [-th layer as Wj(¢) and the theoretical output layer
weight as W, (t).

By initializing the network for all layers, i.e., [W7.L, W],

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

we aim to train the network to get the optimal weights, de-
noted as [W7,, W], where we assume the optimal weight
can be obtained at +oco-th iteration: W;* = W;(+00). We
use gradient descent as the default optimizer in GNNS.

We now provide our first main theorem to investigate why
an untrained GNN model can attain the same performance
as the optimal one.

Theorem 3.1. Assume W;(0) is randomly initialized for
alll € [1, L], ileLz1 Wi (0) is full rank, there must exist a
weight matrix for the output layer, i.e., W,, that makes the
final output the same as the one from a well-trained network:

L L
APX [[wWrwy = AP X [[WioW,. @)
=1 =1

Please see Appendix A.2 for more details. This theorem
implies that the output layer alone can ensure the optimality
of the network even when all previous layers have no updates.
Next, we show that training in the standard setting of GNNs
is guaranteed to reach the desired weight of the output layer,
i.e. W,, under mild conditions. We begin by providing the
theorem from (Gunasekar et al., 2018).

Theorem 3.2 (From (Gunasekar et al., 2018)). Assume we
have the following main conditions: 1) the loss function
is either the exponential loss or the log-loss; 2) gradient
descent is employed to seek the optimal solution; and 3)
data is linearly separable.

When defining a linear neural network as 'Y =
XWWsh... Wy, =X Hlel W, = X 3, we always have
the same optimal weight regardless of the number of layers
when using gradient descent,

B* = argmin||8|?, st XBoOs>1, (5)
B8

where s is the ground-truth label vectors with elements as

1 or —1; 1 denotes a vector of all ones; © denotes the

element-wise product.

This theorem suggests that the optimal weights obtained by
the gradient descent are the same regardless of how many
layers are in the network, which is equivalent to finding a
max-margin separating hyperplane.

Following this, we prove that W, can be obtained based on
the above conditions:

Theorem 3.3. Assume a GNN model has either the ex-
ponential loss or the log-loss, the desired weight W, is
secured when updating with gradient descent and initializ-
ing Hlel Wi (0) as an orthogonal matrix. Mathematically,

we have Wo(+oo) = Wo* =W,.

Please see Appendix A.2 for more details. In summary,
our proposed theorems prove that a GNN with randomly

initialized weights can make the final output as good as a
well-trained network, where one needs to update the over-
all network with gradient descent and initialize networks
with orthogonal weights. Apart from the optimality, an-
other immediate benefit of this no-update scheme is that the
computational cost will be significantly reduced. This is
of particular importance when the budget is limited, as the
main computational cost of NAS comes from this update.

The above theorems show that one can approximate the
optimal output by using the network without training, where
we only need to update the final linear layer of the search
space. This finding motivates us to learn architectures by
taking advantage of randomly initialized networks. We want
to emphasize that real-world scenarios can break the optimal
conditions, such as the high complexity of data and the
early stopping of the training. Even though, our strategy
still provides near-optimal performance, if not the best, in
experiments.

3.2. Architecture Searching via Sparse Coding

In this work, we treat the entire NAS search space of GNNs
as a general GNN model where each layer is a mixture of
multiple operators. Inspired by Balcilar et al. (2021), we
propose a unified expression for each GNN layer in the
search space in the following theorem, whose proof is given
in Appendix A.3.

Theorem 3.4. Simplifying the complex non-linear func-
tions, each GNN layer in the search space can be unified by
> PY(L)H W}, where P(-) denotes the fixed polynomial
function with subscripts indicating individual terms, and
superscript (1) marks the current layer.

This theorem suggests that all GNN layers are unified as
> PY(L)H,W}, as the output of each GNN operator
shares the same expression. Recall that the non-linear acti-
vation functions o () are often neglected in the performance
analysis, and even removed in some cases. Following this,
we propose the following corollary and provide the details
in Appendix A.3.

Corollary 3.5. The search space of GNNs can be unified as
Zf:o P¥(L)XW* = DW when removing the activation
function, where D = ||[{P¥(L)X} is the fixed base, and
W = |[{WF}T is the trainable parameters. Here, || stands
for concatenating a set of matrices horizontally.

This corollary derives a unified mathematical expression of
the search space of GNNSs, implying the natural connection
between NAS in GNNs and the Sparse Coding.

Building on the above theorems, we present a novel NAS-
GNN paradigm in which an untrained GNN model can also
yield optimal outputs under mild conditions in the following.
This optimality allows us to waive the effort to design com-
plicated models for updating weights and makes us focus on

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

architecture updates. At a high level, the ultimate goal of
NAS is to assign the coefficients of unimportant operators
as zeros and the important ones as non-zeros. Towards this,
searching the optimal architecture is equivalent to finding
the optimal sparse combination of GNN operators, i.e., a.
Notably, one of the most successful algorithms for this pur-
pose is sparse coding (Olshausen & Field, 1997), which has
strong performance guarantees.

What matters most when we reformulate the NAS problem
as a sparse coding problem over a dictionary defined on
GNN operators? According to the research in sparse cod-
ing (Aharon et al., 2006; Tropp, 2004; Candes et al., 2006),
its performance depends on the quality of the dictionary. In
particular, the most desirable property is mutual coherence
or orthogonality. High incoherence in the dictionary tends
to avoid ambiguity in the solution and improve optimization
stability, resulting in optimal or at least sub-optimal solu-
tions. We prove a dictionary that is defined on deep neural
networks has built-in orthogonality, as shown in the theorem
below.

Theorem 3.6. Let the neural weights of each operator in
a deep neural network be an atom and stack them column-
wisely, we can guarantee the existence of an orthogonal
dictionary.

Please see Appendix A.5 for more details. This theorem
implies that the obtained weights are qualified to be a dictio-
nary due to the built-in high dimensionality in deep neural
networks.

Taking inspiration from this, we propose a new NAS
paradigm called neural architecture coding as follows:

min - £(y, f(2)) + ||z = B||7 + plledl,
b= [W' o ({7 vue Nw)})] (g
where 0'() = o'dy = 231, a0 (@)

ol = [0t (z),0%(x),. .., oK (z)]

where p is the sparsity hyperparameter, f(-) is a linear func-
tion as the final output layer, e.g., MLP, h represents all
nodes’ embeddings. Here, we set the number of GNN opera-
tors to K and the number of hidden layers to L. o'* denotes
the k-th operator at the [-th layer and its output is a vector;
oy, denotes the scalar coefficient for operator £ at [th-layer
and thus a; € R¥; o' is the weight vector from all operators
at the I-th layer. h!, denotes the embedding of the node v at
the [-th layer, where its neighborhood aggregation process
is performed as the weighted summation of the outputs from
all operators as o' (). Here, y is the node label.

Notice that a standard sparse coding model uses an 12-norm-
based objective for optimization, while a cross-entropy ob-
jective is preferred as we focus on a classification task. To
connect the gap, we prove that optimizing the Cross-Entropy

loss function in GNNss satisfies a sufficient condition for the
12-norm-based objective in sparse coding, as shown in the
following theorem.

Theorem 3.7. The gradient from Cross-Entropy loss func-
tion is feasible to optimize an l2-norm objective in a gradient
descent manner, such that the initial 2° converges geometri-
cally to the optimal z* with a tiny error, e.g.,

25! = 2% < (1= 2am)°[12° = 2% [+ 2v/a, (D)

where s signifies the current iteration, and vy, o, 1 define the
numerical bound for the error.

Please see Appendix A.4 for more details. Therefore, we

reformulate the objective in Equation (6) as follows,
min Lo (y, f(2) + |z — |5 + sl (8)

where L g defines the Cross-Entropy loss function.
Algorithm 1 The NAC algorithm

Require: The search space A;
Ensure: The architecture o
Randomly initializing Wi forl = 1,...,L;seta = 1;
1: whilet=1,...,7 do
2: Performing the feature aggregation at each layer as &' () =
o' = YL, matty o (@);
3: Computingh!, = ¢ [W'-5' ({h;,Vu e N(v)})];
4: Optimizing ¢ based on the objective function in Equa-
tion (8) w.r.t. & under the fixed dictionary o ;
5: Updating W, based on the objective function in Equa-
tion (8) w.r.t. W, under fixed o;
6: end while
7: Obtain the final architecture {a"} from the trained « via an
argmax operation at each layer;

It is important to note that, rather than computing the optimal
neural weight for o'* like previous NAS methods explicitly,
we use randomly initialized weights instead and focus on
optimizing the combination coefficient ¢, i.e. architecture
parameters. The desired optimal embedding z is then used
for downstream applications, such as node classification. In
practice, we often let z = h’” for computational convenience,
which makes the loss of the second term to be zero.

The sparsity regularization | |||, allows us to rank the impor-
tance of the operator directly, alleviating inaccurate gradient
estimation such as softmax (Garg et al., 2021). We want
to emphasize that this regularization does not break the re-
quirement of using gradient descent. Since the architecture,
i.e., v, is fixed when updating the output layer weights, we
can use gradient descent for updating as required, so the
theorems in Section 3.1 hold.

3.3. Implementation Details and Complexity Analysis

The overall algorithm is presented at Algorithm 1. Comput-
ing NAC consists of two major parts: the forward pass and

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

the backward pass. Given the search space, the computa-
tion of the forward is then fixed and regarded as a constant.
Therefore, the computational complexity mainly focuses on
the backward pass in the NAC algorithm.

In summary, the algorithmic complexity of NAC is O(T =
|a]), where || is the size of cv. Please refer to Appendix A.7
for more details about the implementation.

4. Experiments

We conduct experiments to address the following issues:
(1) How does NAC perform in comparison to the leading
baselines? (2) How does the no-update scheme affect other
methods? (3) Is NAC robust? Section 4.2-Section 4.4 answer
the above questions accordingly.

4.1. Experiment Setup

Datasets. We performed experiments on transductive learn-
ing for node classification (Zhao et al., 2021b). For this set-
ting, we use four benchmark datasets: CiteSeer (Giles et al.,
1998), Cora (Kipf & Welling, 2016), PubMed (Sen et al.,
2008), and Computers (McAuley et al., 2015). Also, we fol-
low the data partition setting (training/validation/testing) as
in (Zhao et al., 2021b). For more details about transductive
learning task and introduction of each dataset, please refer
to Appendix A.1 for more details.

We also conduct additional experiments on inductive task
like PPI Appendix A.11 dataset(Hamilton et al., 2017) and
the Open Graph Benchmark datasets(Hu et al., 2020) in
Appendix A.11.

Environment. For datasets of Citeseer, Cora, and PubMed,
we run experiments on a CPU server with a 48-core In-
tel Xeon Platinum 8260L CPU using PyTorch (Paszke
et al., 2019) (version 1.10.2+cpu). Due to the large size
of Amazon Computers, we experiment on a GPU server
with four NVIDIA 3090 GPUs (24G) with PyTorch (version
1.10.2+gpu). All operators used in the experiments are from
the built-in functions of PyG (version 2.0.2) (Fey & Lenssen,
2019).

Methods. Following (Zhao et al., 2021b), we compare our
NAC with the following strong baselines: 1) Random Search
(RS) (Bergstra & Bengio, 2012) and 2) Bayesian Optimiza-
tion (BO) (Jones et al., 1998), 3) GraphNAS (Gao et al.,
2020): a popular reinforcement learning-based (RL) method,
4) GraphNAS-WS (Zhao et al., 2021b): a variant of Graph-
NAS with weight sharing, and 5) SANE (Zhao et al., 2021b).
Among all baselines, the first two are hyperparameter op-
timization (HPO) methods (Yu & Zhu, 2020). GraphNAS
and GraphNAS-WS are two popular methods following the
weight sharing paradigm while SANE is the most recent
work on automated GNNs using the weight-sharing differen-

tial paradigm, which is the closest one to our work. We also
evaluate NAC-updating, i.e., NAC with weight updates, to
compare it with the proposed one with no-update scheme.

Search space. We select a list of node aggregators (i.e.,
operators) in GNNs to form the search space. More specifi-
cally, they include the following seven aggregators: multi-
layer perceptrons (MLP), GCN (Kipf & Welling, 2017b),
GAT (Velickovic et al., 2018), GIN (Xu et al., 2019), Ge-
niepath (Liu et al., 2019b), Graphsage (Hamilton et al.,
2017), and ChebNet (Defferrard et al., 2016). Note that MLP
is a special aggregator with fixed frequency when viewing
GNNs from a spectrum perspective (Balcilar et al., 2020).
Besides, Graphsage and GAT contain different aggregation
functions, i.e., maximum and LSTM. We apply all these
variations as operators in the experiments. Note that we
do not include the layer aggregators like skip-connection
in our search space. The underlying rationale is that recent
research (Zela et al., 2020; Chen & Hsieh, 2020; Liang et al.,
2019) finds that NAS models converge to skip-connection
much faster than other operators due to its parameter-free
nature. This introduces biased searching and yields poor gen-
eralization. Our experiments ensure that the search space is
the same for all baselines.

We do not include layer-wise aggregators like JKNets (Xu
et al., 2018) in the main experiment. As we show in Sec-
tion 3.1, our theory is built upon the classical GNN frame-
work, which equals matrix multiplication. JKNets cannot
be represented in this framework, which contradicts our as-
sumptions.

Evaluation Metrics. The proposed approaches aim to boost
the ability to learn efficacious architecture for downstream
tasks. The classification accuracy and the runtime (i.e., wall-
clock time) are two widely used metrics in NAS research
to measure the model performance and efficiency, respec-
tively (Zhang et al., 2021a). The reported results are the
average of the best results in 4 runs from different random
seeds.

We set the runtime of NAC, SANE, and GraphNAS as the
time they take to obtain the final architectures with 100
epochs!. The runtime of RS and Bayesian is fixed to the
time of 100 times trial-and-error processes.

4.2. Comparison Results

Results in Table 1 and Figure 1 show that NAC attains supe-
rior performance than all baselines regarding both accuracy
and efficiency. More specifically, we observe the following:

- In terms of model performance, our NAC beats all base-
lines and attains up to 2.83%improvement over the best

'The running time for the Computers dataset is measured on a
single GPU, which is different from all other three datasets.

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

Table 1: Experimental results on the compared methods: our NAC attains superior performance in both accuracy (%) and

efficiency (in minutes).

CiteSeer Cora PubMed Computers

Accuracy Time Accuracy Time Accuracy Time Accuracy Time
RS 70.124236 144 71261463 306 86.7510s2 187.8 77841135 8.75
BO 70.9541.62 18 68.591666 312 87421063 189.6 77461202 17.65
GraphNAS 68.69+130 253.8 71264490 2454 86.071051 1363.8 73974179 8637
GrathAS—WS 6535;&513 80.4 72. 14:‘:2‘59 161.4 85.71 +1.05 965.4 7299i344 42.47
SANE 718441133 42 84581953 102 87.551078 1074 90.704089 0.72
NAC 74.62.035 1.2 874199 1.2 88.0411.06 9.0 91.64. 0.4 0.23
NAC—updating 74. 17i1.18 4.2 86.62il‘l4 3.6 88010i0.86 25.8 90-89;t1A10 0.70

baseline, i.e., SANE, while attaining up to 18.8% improve-
ment over the Bayesian method, the best HPO method.
Thanks to our non-updating scheme, it prompts the out-
puts near the optimal to make the selection of the best-
performing architecture reliable, as opposed to biased op-
timization in others. We notice that in one case, NAC
is slightly worse than NAC-updating, about 0.06%. This
case reminds us that the optimal condition can get com-
promised due to the high complexity of the data. Still,
NAC holds for near-best performance, demonstrating its
robustness. Empirical results corroborate our theories in
Section 3.1 that non-updating scheme is preferred. The un-
derlying assumption of RL-based and BO-based methods
is to obtain an accurate estimation of the distribution of
the search space. However, these methods rely on random
sampling to perform the estimation, thus have no guaran-
tee of the search quality due to the high complexity in the
search space. For instance, RL-based methods are some-
times even worse than RS-based methods, pure randomly
sampled, implying the unreliability of such estimation
under a limited budget. WS-based methods couple the
architecture search and the weight training, so they strug-
gle to train the network to be optimal and obtain a biased
network due to oscillations between the two components.
- In terms of model efficiency, our NAC achieves supe-
rior performance, around 10x faster than SANE and up
to 200x time faster than GraphNAS. Our non-updating
scheme requires nearly no weight update, thus giving NAC
an incomparable advantage in reducing the computation
cost. All previous NAS methods need to update neural
weights, for example, RL-based costs the most due to re-
training the network from scratch at each time step, and
WS-based costs the least by reusing neural weights.

4.3. No-update Scheme at Work

To further validate our no-update scheme, we evaluate its
effect on other weight-sharing methods. Since SANE at-
tains the best performance among all baselines, we test the
no-update scheme on SANE as SANE”®, i.e., SANE with
fixed neural weights. Results in Table 3 show that SANE*

outperforms the one with updates. This result implies that
we can improve the performance of NAS-GNN methods by
simply fixing the weights with random initialization. This
yields a much lower computational cost in the training.

4.4. Analysis of Convergence

A notable benefit of the NAC framework is its guaranteed
convergence from the sparse coding perspective. To verify
this, Figure 3 offers a convergence comparison between
NAC and SANE from the Pubmed dataset by showing the
accuracy on the retrained network acquired at each training
epoch. NAC shows substantially faster convergence than
SANE, which take around 20 and 80 epochs, respectively.
Due to the BLO strategy, SANE suffers strong oscillation
when optimizing two variables, i.e., the architecture and
neural weights, which consumes more epochs to converge.

4.5. Ablation Studies

Initialization: Recall that in Section 3.1, a prerequisite is the
orthogonality on the neural weights matrix. This makes the
initialization critical to the final performance. To investigate
the effect of initialization, we try three types of initializa-
tion methods, including normal, uniform, and orthogonal.
Table 4 shows that NAC with orthogonal initialization out-
performs other two cases of initialization. The results again
confirm our theory.

To get a better understanding of the reason, we visualize the
eigenvalues of Hlel W, on different initialization cases in
Figure 2. The results show that the eigenvalues of NACs
with normal and uniform initialization decay accordingly.
This makes the input feature tends to project to the subspace
spanned by the top-ranked eigenvectors, which results in
feature distortion and leads to performance degeneration. In
contrast, when NAC with orthogonal initialization, the eigen-
values are distributed uniformly, which ensures the spanned
space does not bias toward any particular eigenvectors.

In summary, NAC with orthogonal initialization attains the
best performance and confirms our theory. In addition, re-

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

Table 2: Performance comparison between SANE, NAC™ and NAC.

CiteSeer Cora PubMed Computers
Acc(%) Acc(%) Acc(%) Acc(%)
SANE ‘ 71841133 84581053 87.55+0.78 90.70+0.89
NAC* ‘ 71.7642.08 87274120 87594022 91.0740.71
NAC ‘ 74.621 033 87411092 88.041106 91.641014

o 1.0 ! !
% —— NAC (Orthogonal)
é 0.8 —— NAC (Normal)
0 —— NAC (Uniform)
m 0.5} b
B .
S 0.3 *
A 0 0 | |
0 8 16 24 32

Sorted Index

Table 3: Comparison between SANE and SANE™ (w/o. weight updates). Figure 2: Visualization of the sorted eigenvalues of

weights of NAC with different initialization.

CiteSeer Cora Pubmed Computers
Acc(%) Acc(%) Acc(%) Acc(%) 80.0 —oANE
SANE | 71.841135 84.584053 87.554078 90.7040.59 . ——Nac
SANE* | 71.95., 30 85461076 88124035 90.8610s0 g (X 7
Table 4: Comparison of NAC with different initializations. g 700 i
CiteSeer Cora PubMed Computers
‘ Acc(%) Acc(%) Acc(%) Acc(%) 65016720 70 100 130 160 190 220 250
Kaiming Normal | 71.124545 86.85:0.78 87.524072 91.0510.80 Epoch
Kaiming Uniform | 72061004 86.991103 87.6810.07 88.521301 Figure 3: Convergence for SANE and NAC in terms
Orthogonal | 74.625055 874100, 88041100 91641014 of accuracy. NAC converges much faster than SNAE

in only around 20 epochs.

sults from non-orthogonal initializations are still better than
other baselines, demonstrating the robustness of NAC.

The linear output layer: Recall that for a given linear output
layer, there exists the optimal weight, i.e. WO, to secure the
optimal output according to Theorem 3.1. Nevertheless,
obtaining optimal weights in a deep learning algorithm is
an open question due to its high dimensionality. Often, in
practice, we train the network with early stopping, especially
in NAS methods. Therefore, obtaining the optimal weights
for the output layer is not possible. Is training the output
layer necessary? This experiment attempts to answer this
by comparing NAC with and without training the output
layer. Note that we fix all other layers with random weights.
By default, NAC is the one without training any layers in
the whole paper, including the output layer. On the contrary,
NAC™ is the one with training the output layer. Here, we set
the number of epochs as 100.

In Table 2, we can find that the performance of NACT is
in the middle between SANE and NAC. On the one hand,
training the linear layer may not be worthwhile because it is
impossible to get the desired optimal weights. On the other
hand, results with and without training the output layer are
always better than SANE, suggesting the superiority of the
no-update scheme in general. To further demonstrate this,
we implement multiple experiments by training the last layer
with different epochs as shown in Appendix A.8.3.

Sparsity effect: Our model uses the hyperparameter p
to control the sparsity of the architecture parameter cc. We
investigate the effect of this hyperparameter by varying its
value in a considerably large range, such as [0.001, 10]. We
find that the results vary little in a considerably wide range,

this indicates NAC is insensitive to the sparsity hyperparam-
eter.

Random seeds: Random seeds often play an importance
role in NAS methods as they also affect the initialization
significantly. By default, researchers report the average
or the best result from different random seeds, this often
lead to poor reproducibility. We now present the effect of
random seeds on this topic. In particular, we implement the
experiment on multiple random seeds and observe a stable
performance of NAC. The experimental results show that
NAC is robust to both sparse hyperparameter selection and
random seeds. Please refer to Appendix A.8.2 for more
details.

5. Conclusion

We present the first linear complexity NAS algorithm for
GNNs, namely NAC. Our NAC is solved by sparse coding
and holds no-update scheme for model weights in GNN’s
because GNNs embed the built-in model linearity and or-
thogonality for the model weights. Extensive experiments
demonstrate that our NAC can achieve higher accuracy (up
to 18.8%) and much faster convergence (up to 200x) than
SOTA NAS-GNNs baselines.

Several promising directions can be considered. We can
further explore more deep neural networks that satisfy the
mild condition of our NAC to extent its usability. We can
investigate more on the efficiency of different subgradient
methods for solving the sparse coding objective. We also
intend to investigate how to jointly learn the search space and
architectural representation to further enhance the expressive
ability of searched architectures.

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

References

Aharon, M., Elad, M., and Bruckstein, A. K-svd: An algo-
rithm for designing overcomplete dictionaries for sparse
representation. IEEE TSP, 54(11):4311-4322, 2006.

Arora, S., Ge, R., Ma, T., and Moitra, A. Simple, efficient,
and neural algorithms for sparse coding. In Proc. COLT,
pp. 113-149, 2015.

Balcilar, M., Renton, G., Héroux, P., Gaiizere, B., Adam, S.,
and Honeine, P. Analyzing the expressive power of graph
neural networks in a spectral perspective. In Proc. ICLR,
2020.

Balcilar, M., Renton, G., Héroux, P., Gaiizere, B., Adam, S.,
and Honeine, P. Analyzing the expressive power of graph
neural networks in a spectral perspective. In Proc. ICLR,
2021.

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and
Le, Q. Understanding and simplifying one-shot architec-
ture search. In Proc. ICML, 2018.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13:281-305, 2012.

Bi, K., Hu, C., Xie, L., Chen, X., Wei, L., and Tian, Q.
Stabilizing darts with amended gradient estimation on
architectural parameters. CoRR, abs/1910.11831, 2020a.

Bi, K., Xie, L., Chen, X., Wei, L., and Tian, Q. Gold-nas:
Gradual, one-level, differentiable. CoRR, abs/2007.03331,
2020b.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
Proc. ICLR, 2014.

Candes, E., Romberg, J., and Tao, T. Robust uncertainty
principles: exact signal reconstruction from highly in-
complete frequency information. /EEE Transactions on
Information Theory (TIT), 52(2):489-509, 2006.

Chen, W., Gong, X., and Wang, Z. Neural architecture search
on imagenet in four gpu hours: A theoretically inspired
perspective. arXiv preprint arXiv:2102.11535,2021.

Chen, X. and Hsieh, C. Stabilizing differentiable archi-
tecture search via perturbation-based regularization. In
Proc. ICML, 2020.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Proc. NIPS, 2016.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop, 2019.

Fischer, H. A history of the central limit theorem: from
classical to modern probability theory. Springer, 2011.

Fu, W. J. Penalized regressions: the bridge versus the lasso.
Journal of Computational and Graphical Statistics, 7(3):
397-416, 1998.

Gao, Y., Yang, H., Zhang, P., Zhou, C., and Hu, Y. Graph
neural architecture search. In Proc. IJCAI, 2020.

Garg, S., Tosatto, S., Pan, Y., White, M., and Mahmood,
A.R. An alternate policy gradient estimator for softmax
policies. arXiv preprint arXiv:2112.11622, 2021.

Giles, C. L., Bollacker, K. D., and Lawrence, S. Citeseer: An
automatic citation indexing system. In Proc of Conference
on Digital Libraries, pp. 89-98, 1998.

Gunasekar, S., Lee, J. D., Soudry, D., and Srebro, N. Implicit
bias of gradient descent on linear convolutional networks.
In Bengio, S., Wallach, H., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., and Garnett, R. (eds.), Proc. NIPS,
volume 31, 2018.

Guo, R, Lin, C., Li, C., Tian, K., Sun, M., Sheng, L., and
Yan, J. Powering one-shot topological NAS with stabilized
share-parameter proxy. In Proc. ECCV, 2020a.

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and
Sun, J. Single path one-shot neural architecture search
with uniform sampling. In Proc. ECCV, 2020b.

Hamilton, W. L. Graph representation learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
14(3):1-159, 2020.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Proc. NIPS, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Proc. NIPS, 33:
22118-22133, 2020.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization, 13(4), 1998.

Jozefowicz, R., Zaremba, W., and Sutskever, I. An empir-
ical exploration of recurrent network architectures. In
Proc. ICML, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proc. ICLR, 2017a.

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proc. ICLR, 2017b.

Liang, H., Zhang, S., Sun, J., He, X., Huang, W., Zhuang, K.,
and Li, Z. DARTS+: improved differentiable architecture
search with early stopping. CoRR, abs/1909.06035, 2019.

Liu, H., Simonyan, K., and Yang, Y. DARTS: differentiable
architecture search. In Proc. ICLR, 2019a.

Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., and
Qi, Y. Geniepath: Graph neural networks with adaptive
receptive paths. In Proc. AAAI 2019b.

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T. Neural
architecture optimization. In Proc. NIPS, 2018.

McAuley, J., Targett, C., Shi, Q., and Van Den Hengel, A.
Image-based recommendations on styles and substitutes.
In Proc. SIGIR, pp. 43-52, 2015.

Nguyen, T., Wong, R., and Hegde, C. A provable approach
for double-sparse coding. In Proc. AAAL, 2018.

Olshausen, B. A. and Field, D. J. Sparse coding with an over-
complete basis set: A strategy employed by v1? Vision
Research, 37(23):3311-3325, 1997.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Proc. NIPS, 32, 2019.

Qin, Y., Zhang, Z., Wang, X., Zhang, Z., and Zhu, W. Nas-
bench-graph: Benchmarking graph neural architecture
search. arXiv preprint arXiv:2206.09166, 2022.

Ranstam, J. and Cook, J. Lasso regression. Journal of British
Surgery, 105(10):1348-1348, 2018.

Schmidt, M., Fung, G., and Rosales, R. Optimization meth-
ods for 11-regularization. University of British Columbia,
Technical Report TR-2009-19, 2009.

Sen, P, Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Al Magazine, 29(3):93, 2008.

Shevade, S. K. and Keerthi, S. S. A simple and efficient al-
gorithm for gene selection using sparse logistic regression.
Bioinformatics, 19(17):2246-2253, 2003.

Shu, Y., Cai, S., Dai, Z., Ooi, B. C., and Low, B. K. H.
Nasi: Label-and data-agnostic neural architecture search
at initialization. arXiv preprint arXiv:2109.00817, 2021.

Su, X., You, S., Zheng, M., Wang, F., Qian, C., Zhang, C.,
and Xu, C. K-shot NAS: learnable weight-sharing for
NAS with k-shot supernets. In Proc. ICML, 2021.

10

ter Haar, D. Mathematical foundations of statistical mechan-
ics. a. 1. khinchin. Science, 110(2865):570-570, 1949.

Tropp, J. Greed is good: algorithmic results for sparse
approximation. IEEE Transactions on Information Theory
(TIT), 50(10):2231-2242, 2004.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P, and Bengio, Y. Graph attention networks. In
Proc. ICLR, 2018.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,
Y., Vajda, P, Jia, Y., and Keutzer, K. Fbnet: Hardware-
aware efficient convnet design via differentiable neural
architecture search. In Proc. CVPR, 2019a.

Wu, F, Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
Proc. ICML, pp. 6861-6871, 2019b.

Wu, Z., Pan, S., Chen, F, Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. /IEEE
Transactions on Neural Networks and Learning Systems,
32(1):4-24, 2021.

Xie, L. and Yuille, A. L. Genetic CNN. In Proc. ICCV,
2017.

Xie, L., Chen, X., Bi, K., Wei, L., Xu, Y., Wang, L., Chen,
Z., Xiao, A., Chang, J., Zhang, X., and Tian, Q. Weight-
sharing neural architecture search: A battle to shrink the
optimization gap. ACM Computing Surveys, 54(9):183:1—
183:37, 2022.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In Proc. ICML, volume 80,
pp. 5453-5462, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In Proc. ICML, 2019.

You, J., Ying, Z., and Leskovec, J. Design space for graph
neural networks. Proc. NIPS, 33, 2020.

Yu, T. and Zhu, H. Hyper-parameter optimization: A review
of algorithms and applications. CoRR, abs/2003.05689,
2020.

Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and
Hutter, F. Understanding and robustifying differentiable
architecture search. In Proc. ICLR, 2020.

Zhang, X., Huang, Z., Wang, N., Xiang, S., and Pan, C.
You only search once: Single shot neural architecture
search via direct sparse optimization. /EEE TPAMI, 43
(9):2891-2904, 2021a.

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

Zhang, Z., Xu, Y., Yang, J., Li, X., and Zhang, D. A survey of
sparse representation: algorithms and applications. /IEEE
Access, 3:490-530, 2015.

Zhang, Z., Wang, X., and Zhu, W. Automated machine
learning on graphs: A survey. In Proc. IJCAI, 2021b.

Zhao, H., Wei, L., quanming yao, and He, Z. Efficient
graph neural architecture search, 2021a. URL https:
//openreview.net/forum?id=IjIzI0OkK2D6.

Zhao, H., Yao, Q., and Tu, W. Search to aggregate neighbor-
hood for graph neural network. In Proc. ICDE, 2021b.

Zhao, Y., Wang, D., Gao, X., Mullins, R., Lio, P., and Jam-
nik, M. Probabilistic dual network architecture search on
graphs. arXiv preprint arXiv:2003.09676, 2020.

Zhou, K., Song, Q., Huang, X., and Hu, X. Auto-gnn: Neu-
ral architecture search of graph neural networks. CoRR,
abs/1909.03184, 2019.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. In Proc. ICLR, 2017.

11

https://openreview.net/forum?id=IjIzIOkK2D6
https://openreview.net/forum?id=IjIzIOkK2D6

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

A. Appendix
A.1. Dataset Details

In the transductive learning task, node features and edges between nodes in the whole datasets were known beforehand. We
learn from the already labeled training dataset and then predict the labels of the testing dataset. Three benchmark datasets
were used in this setting: CiteSeerr (Giles et al., 1998), Cora (Kipf & Welling, 2016) and PubMed (Sen et al., 2008). All of
the three benchmark datasets are citation networks. In citation networks, each node represents a work, and each edge shows
the relationship between two papers in terms of citations. The datasets contain bag-of-words features for each node, and
the goal is to categorize papers into various subjects based on the citation. In addition to the three benchmark datasets, we
also employ two another datasets: Amazon Computers (McAuley et al., 2015) and ogbn-arxiv dataset (Hu et al., 2020).
Amazon Computers is a subset of the Amazon co-purchase graph, where nodes represent commodities and edges connect
them if they are frequently purchased together. Product reviews are encoded as bag-of-word feature vectors in node features,
and class labels are assigned based on product category. The ogbn-arxiv dataset (Hu et al., 2020) is a directed graph that
represents the citation network of all computer-related papers on the arxiv website. Each node is an arxiv paper, and each
edge represents an article citing another article.

In the inductive task, several graphs are used as training data, while other completely unseen graphs are used as validation
and test data. For the inductive setting, we use the PPI (Hamilton et al., 2017) dataset as benchmark dataset. The task of PPI
dataset is to classify the different protein functions. It consists of 24 graphs, with each representing a different human tissue.
Each node has properties such as positional gene sets, motif gene sets, and immunological signatures, ant gene ontology sets
as labels. Twenty graphs are chosen for training, two graphs for validation, and the remaining for testing. For the inductive
task, we use Micro-F1 as the evaluation metric.

The used datasets are concluded in Table 5.
Table 5: The Statistics of Datasets

Transductive Inductive
| CiteSeer Cora PubMed Computers ogbn-arxiv | PPI
#nodes 2708 3327 19717 13752 169343 56944
#edges 5278 4552 44324 245861 1166243 818716
Ffeatures 1433 3703 500 767 128 121
F#-classes 7 6 3 10 40 50

A.2. Proof of Analysis for No-update Scheme in GNNs

Theorem A.1. Assume W;(0) is randomly initialized for all | € [1, L), if Hlel W (0) is full rank, there must exist a weight
matrix for the output layer, i.e., W, that makes the final output the same as the one from a well-trained network:

L L
ALX [[wywy = AP X [[wi(o)w..)

=1 =1

Proof. Because Hlel W;(0) is a full-rank matrix, Hlel W (0) is invertible. We can define W, by

L L
w, <= ([[wio) [T wrw;, (10)
=1 =1
Hence, by multiplying Hle W;(0) and AL X on both sides in Equation (10), we can attain Equation (9). O

Theorem A.2. Assume a GNN model has either the exponential loss or the log-loss, the desired weight W, is secured
when updating with gradient descent and initializing HZL:1 Wi (0) as an orthogonal matrix. Mathematically, we have

W,(+o00) = W, = W,.

Proof. We first frame the simplified GNNs as AL X HzL:1 W, = (ALX)(HlL:1 W;). According to Theorem 3.2, we
define the corresponding 3 as 3 = Hle Ww,.

12

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

When using the gradient descent to optimize W, and W,,, we have the optimized 3 as 8* = H1L:1 W - W/ . The obtained
B* can be viewed as the max-margin hyperplane to separate data A” X according to Theorem 3.2. Omitting the output
layer, we let the untrained GNN model as AL X H1L:1 W, (0) = AX X O and assume O = Hlel W;(0) is an orthogonal
square matrix.

Denoting a complete GNN model as A” XOW,, the optimized output weight, i.e. W;, becomes the max-margin
separating hyperplane of A” X O because it is also trained by gradient descent. Here, we fix the W;(0) during training
to maintain its orthogonality. We know that the max-margin hyperplane of any data remains the same if and only if it

takes orthogonal transformations, resulting in the following equivalence: OWO* =p06*= HzL:1 W - W;. Finally, we get

W, =0 [, WyWy = ([T, Wi(0) T, Wi W5 = W, O

A.3. Proof for the Unified Format of Search Space in NAC

Theorem A.3. Simplifying the complex non-linear functions, each GNN layer in the search space can be unified by
> PR(LYH W}, where P(-) denotes the fixed polynomial function with subscripts indicating individual terms, and
superscript (1) marks the current layer.

Proof. Without any loss of generality, we omit the lowerscript (1) of >~ C () H, VVl(s) to prove the equivalence between
S, COHW®) and 3, P*(L)HW? for arbitrary layer.

According to Table 1 in (Balcilar et al., 2021), we have the frequency support for most GNNs and except for GAT as
c®) =pPE)(L), (11)

where P(%) (+) denotes certain polynomial functions and Lisa re-scaling and shifting of the original/normalized/re-normalized
Laplacian matrix, which is universally denoted as L in this proof and its Corollary 3.5. > Equivalently, we have:

L =P(L) (12)
Putting Equation (12) into Equation (11), it produces:
o) = P(S)(P’l(L)) (13)
=P')(L). (14)
And we have:
Y COHW® =N "PE(L)HW). (15)

Without loss of generality, suppose s = 1, C(?) = P/(O(L) = aL? 4+ BL and CV) = P’M)(L) = ~L, and it gives:

COHW®® + cOFW® = (oL? + BL)HW) 4 \LHW® (16)
= L*H(aW) + LH(W© + ,w 1) (17)
Replacing aW (9 with WO and SW (©) + yW) with W, Equation (16) is transformed to LZHW?° + LHW. Then,
assuming P* = L? and P® = L', it produces PP HW? + PPHW' = 3", _ P*(L)HW™.
To this end, we prove the equivalence between) _ CEOHW®) and Y. PH(L)HW*.

Specially, GAT contains complex non-linear functions, and we reduce its expression to H; 1y = o((H; VVl‘ﬁ HT o
A)H; W, ;). In this expression, W, is a attention function, and ® denotes element-wise multiplication. Omitting ®
and o to obtain the format H;; = H lVVH_ll, which is identical to the case when P(®) = I and therefore inclusive in the
discussion above. O

2This symbolic simplification does not affect the conclusion of Theorem 3.4 and Corollary 3.5. Because both claims aim to achieve a
fixed dictionary format of GNNs, the different expressions of L do not change the format’s nature of being fixed.

13

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

Corollary A.4. The Search space of GNNs can be unified as Zszo P¥(L)XWP* = DW when leaving the activation
functions, where || stands for concatenating a set of matrices horizontally, D = |[{P*(L)X} is the fixed base, and
W = |[{WFT is the trainable parameters.

Proof. Suppose the node features as Hy = X, and a two-layer GNN consists of Pés), Pl(L) and WO(S), Wl(L). Here, we
assume S, L = 1 for simplicity.

Based on Theorem 3.4, the first layer outputs H; = Zi:o P(()s) (L)XWO(S) = P(()O) (L)XWO(O) + Pél) (L)XWO(I). Then,
we pass H; to the second layer the below:

2
Hy = ZPi”(L)H“)Wl(”
P§°>(L)H w4 P (L)W
=P (L) (P (L)XW + P§Y (L) X W)W,
(

oo (L)XW + P (L)XW

1x0

(
+P<”<L>< @xw® e () xwi)wy)
(

Pglxxoo L)X (OX1)+P(1X1)()XWO(lxl)
= ZP’“ L)XWk,

In Equation (18), we merge the polynomial of a polynomial as PgO)Péo) Pg();(f” Similarly, we replace W, (0) W1() with

0x0
Wi,
Ultimately, we expand Equation (18) by D = |[{P\%”(L)x, PP (1) x, PO (L)X, P XY (L) X} and W =
{W 20 W X0 w0 wilXDy o that 3, Pr(L)X W), = DW. O

A.4. Proof for the Optmization of [2-norm Objective in NAC

Theorem A.5. The gradient from the Cross-Entropy loss function is feasible to optimize an l2-norm objective in a gradient
descent manner, such that the initial z° converges geometrically to the optimal z* with a tiny error, e.g.,

1251 = 2% < (1 = 2am)°12° = 2% + 27 /e, (19)
where s signifies the current iteration, and v, o,) define the numerical bound for the error.
Proof. Given an iterative algorithm A that optimizes for a solution z* € R™ for a function f(z), it yields z°T% = 2% — ng*

in each step s. Here, 7 is the step size, and ¢° is the gradient vector . In the following, we give the sufficient conditions for
such ¢°, quoted from (Nguyen et al., 2018) and (Arora et al., 2015).

Definition A.6. A vector g*® at the s-th iteration is (a, 3, vs)-correlated with a desired solution z* if

(9°,2° = 2") 2 allz® = 2" | + Bllg”|* — 7. (20)

Under the convex optimization, if f is 2a-strong convex and 1/28-smooth, and g° is set as V, f(z), then ¢° is (o, 3, 0)-
correlated with z*.

Theorem A.7. (Convergence of approximate gradient descent). Suppose that g° satisfies the conditions described in
Definition A.6 for s = 1,2, --- ,T. Moreover, 0 < 1 < 23 and vy = max__, vs. Then, the following holds for all s:

257 = 2% < (1 = 2am)l|2" — 2|1* + 207, 1)

14

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

In particular, the above update converges geometrically to z* with an error:
41 2 2
21 = 22 < (1 = 20m)° |20 — 2|2 + 29/a. (22)
So, if the cross-entropy loss function satisfies the conditions of convexity and smoothness in Definition A.6, it meets the
sufficient conditions for convergence.
Recall that the cross-entropy loss is defined as:

LS exp F;W;
W)=-— Y DY log(zzz1 oxp i)

i=1 j*l

7ffzzympw + = ZlogZeprWk

1=1 j=1 11

(23)

where Y is one-hot matrix with ¢ classes. Then, we give the gradient w.r.t W;:

1 & 1 — exp F; W,
Vw,g = —— Y;:lF'L —_ C ! (2]
w9 m;[=1 +m;zk:1epriWk (24)
exp F; W

m and thus:

where we symbolize the softmax function s; =

m

1
Vw,g=— > (si = [Vij = 1))F;. (25)

i=1

Smoothness: In the extreme case where all the softmax values are equal, i.e., s; = % and Y;; = 1, we can develop an upper

bound as follows,
c—1

(26)
Based on this, we get:

C
Vw,g] < (27)

1

This gives us the Lipschitz constant that L = <—||F||. Sufficiently, there exists 3* that the cross-entropy loss function is

B*-smooth.

Convexity: Given Wy, W;, F; € R?, we assume each element sampled from a certain normal distribution. Without loss of
generality, we give Wy, ~ N (u1,0%), Wi, ~ N (u2,03), and F; ~ N (i, 02).
In particular, we take F; as an example and the other two follow the same rule:

E[F?] = E[(F, — p)* 4+ 2Fip — %)
5) (28)
=07+ u,

which equals to d, and thus, y?2 = L1 — 2. For W, W;, we have pu3 =2 —0? and u3 = & — o3. For strong convexity, we
need to demonstrate there exists 6 R supporting <VWk 9— Vw9, Wk —-W;) > oz(Wk — W;, Wi, — W;). By taking the
Equation (27), we can analyze the left-hand side as:

3|~
Ms

(Vw,9 — Vi, g, Wi, = Wj) = Yi; # Yie)(Fy, Wi, — W)

\Y
g~

HuMsﬂ

[Yij # Yir] i, Wi, — W5) (29)

Z Fy, Wi = Wj).
=1

| \/

15

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

In Equation (29), we assume Y; obeys uniform distribution that P(Y;, = 1) = %, then we replace [Y;; # Yii] by its average
2((L identical to the probability, P([Yi; # Yik]).

Next, we suppose 3 Ls~ n—1 dF; is an unbiased estimation of its expectation, and same for W, W},. Here, we replace
W, — W), with a new variable as W’ ~ N (u1 — pi2, 0% + 03). With the help of Equation (29), we get,

2(c—1
(Vw9 — Vw, g, Wi — W) > %du(m — p2). (30)

By taking these into the right-hand side (Wj, — W;, Wj, — W;), we have:

dE[W"] = dE[(W' — (1 — p2))? = (11 — p2)® +2W' (1 — p2)]
= d(E[(W/ (11— p2))?] = (1 — p2)® + 2(p1 — p2)E[W']) (31)
=d(o} + 03 + (1 — p2)?)

The solution above is always positive. Finally, we put and in the required inequality, we reach the following inequality :
(Vw9 = Vw, g, Wi — W) > a(Wy — W;, Wy, — Wj) only if

2(c — Dp(pr — p2)
= A0+ 05+ (1 — p2)?)’

(32)

Under a mild assumption that o* € R satisfies Equation (32), we conclude that the cross-entropy loss function is o*-
strongly convex and 3*-smooth, such that it is (%, 5 B* ,0)-correlated with z*. Thus, it meets the sufficient condition of
convergence. O

A.5. Proof of Theorem 3.6 for the Dictionary Orthogonality in NAC

Theorem A.8. Let the neural weights of each operator in a deep neural network be an atom and stack them column-wisely,
we can guarantee the existence of an orthogonal dictionary.

Proof. Given a dictionary H € R™*¥ where n is the number of nodes and K is the number of opearators in each layer,
we have its mutual coherence computed as follows,
< h; h; >
)
[hilly " IR,

where ¢ € [0, 1], and (-) denotes inner product. Here, each atom, h, is the weights from an operator. The minimum of ¢ is
0 and is attained when there is an orthogonal dictionary, while the maximum is 1 and it attained when there are at least two
collinear atoms (columns) in a dictionary.

o= ; (33)

max
hi,h;eH i#j

o _hi J—
Let E; = Tl .and .EJ
normal distribution, i.e.,

i :j\l , by Central Limit Theorem (Fischer, 2011), we know that (E;, E;) //n converges to a
a2

(Ei, Bj) = lim v/nZ, (34)
where Z is a standard normal distribution. Consider £ as the mean value of all (E;, E;). With weak law of large numbers
(a.k.a. Khinchin’s law) (ter Haar, 1949), for any positive number ¢, the probability that sample average I greater than
converges 0 is written as

lim Pr(|E|>¢) =0 (35)

n— oo

This implies that the probability that the inner product of I; and E; is greater than ¢ close to zero when n — oo. In other
words, the probability that E; and E; are nearly orthogonal goes to 1 when their dimensionality is high. Therefore, the
coherence of this dictionary reaches the minimum at a high dimensionality that holds for deep neural networks naturally. [

16

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

Operators Updating
l

RO
oo :
Q
E lf o o o o o o - v_.: az &
5.
-+ i i a;)
B e | 3 | m= _
s ! i o
2 ! i +
(R sl Eeliiben Sl = a [
‘: I K ')
i I Aggregated |
: representation i

NAC-updating updates the dictionary in training, showing the additional process with a dash line.

Algorithm 2 The NAC algorithm

Require: The search space A;

Ensure: The architecture o

Randomly initializing Wl, forl=1,...,L;seta =1;

whilet =1,...,7T do
Performing the feature aggregation at each layer as 6' (z) = o'cy = Z,ﬁil Hg%o”c(az);
Computing hl, = ¢ [W'-4' ({hl7!,Vu € N(v)})];
Optimizing o based on the objective function in Equation (8) w.r.t. & under the fixed dictionary o ;
Updating W,, based on the objective function in Equation (8) w.r.t. W, under fixed ox;

6: end while

7: Obtain the final architecture {«*} from the trained « via an argmax operation at each layer;

b AE A

A.6. Realization and Details of NAC and NAC-updating

In this work, we propose two realizations of NAC, namely NAC and NAC-updating, where Figure 4 outlines the core idea of
both methods in one layer. The objectives in Equation (8) are optimized by gradient descent, and we therefore omit the
details but present the basic pipeline in Algorithm 1. The computation of NAC has two major parts: the forward pass and
the backward pass. Given the search space, the computation of the forward is then fixed, regarding as a constant. Therefore,
the computational complexity mainly focuses on the backward pass in the NAC algorithms.

NAC. The main version of our work has no need to update weights, but only to update architectural parameter o during the
training process. Therefore, the algorithmic complexity is as O(T * ||cx||), which is a linear function w.r.t . The dimension
of av is often small, which makes the model easy to scale to large datasets and high search space. We call it NAC.

NAC-updating. When updating weights, similar to DARTS, the complexity is estimated as O(T * (||a|| + ||w]|)). The
dimension of w is often much larger than «, therefore, the complexity is dominated by updating w, where the complexity is
O(T * ||w]|). Since the dimension of v is much smaller than w, the complexity of NAC is much less than this version.

A.7. Experimental Implementation Details

Searching configuration. In our experiments we adopt 3-layer GNN as the backbone. Unless specified, our experiments
follow the same settings for searching architectures as SANE (Zhao et al., 2021b) :

- Architecture optimizer. We use Adam for training the architecture parameters a.. We set the learning rate as 0.0003
and the weight decay as 0.001. Also, the 3; and (5 are fixed as 0.5 and 0.999, respectively. All runs a constant schedule

for training, such as 100 epochs.
- Weight optimizer. We use SGD to update models’ parameters, i.e., w. The learning rate and SGD momentum are given
as 0.025 and 0, respectively, where the learning rate has a cosine decay schedule for 100 epochs. We fix the weight decay

value, i.e. set p; = 0.0005.
- Batch size. For transductive tasks, we adopt in-memory datasets, and the batch_size is fixed as the size of the dataset

themselves.

The configuration for retraining phase. At the retraining state, we adopt Adam as the optimizer and set the scheduler
with cosine decay to adjust the learning rate. The total number of epochs is fixed 400 for all methods for fairness. Please

17

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

refer to the setting of SANE (Zhao et al., 2021b) and EGAN (Zhao et al., 2021a) for more details as we follow this in our
experiment.

For CiteSeer dataset, we set the initial learning rate as 0.005937 and weight decay as 0.00002007. The configuration for
models is as follows: hidden_size = 512, dropout = 0.5, and using Re LU as the activation function.

For Cora dataset, we set the initial learning rate as 0.0004150, and weight decay as 0.0001125. In model, we set
hidden_size = 256 , dropout = 0.6, and use ReLU as the activation function.

For PubMed dataset, we set the initial learning rate as 0.002408 and weight decay as 0.00008850. As for the model, we
have hidden_size = 64 and dropout = 0.5, and use ReLU as the activation function.

For Amazon dataset, we set the initial learning rate as 0.002111 and weight decay as 0.000331. As for the model, we have
hidden_size = 64 and dropout = 0.5, and use elu as the activation function.

For PPI dataset, we set the initial learning rate as 0.00102 and weight decay as 0. As for the model, we have hidden_size =
512 and dropout = 0.5, and use Relu as the activation function.

For ognb-arXiv data, due to the limitation of computational resources, we use the NAS-Bench-Graph(Qin et al., 2022)
to get the performance of searched architecture and make some adjustments to align with the supporting search space in
NAS-Bench-Graph.

Solving L' regularization. The L' regularization, also known as Lasso Regression (Least Absolute Shrinkage and
Selection Operator), adds an absolute value of the magnitude of the coefficient as a penalty term to the loss function
(Ranstam & Cook, 2018). Using the L! regularization, the coefficient of the less important feature is usually decreased to
zero, sparsifying the parameters. It should be noted that since ||cx||; is not differentiable at o = 0, the standard gradient
descent approach cannot be used.

Despite the fact that the loss function of the Lasso Regression cannot be differentiated, many approaches to problems of this
kind, such as (Schmidt et al., 2009), have been proposed in the literature. These methods can be broadly divided into three
groups: constrained optimization methods, unconstrained approximations, and sub-gradient methods.

Since subgradient methods are a natural generalization of gradient descent, this type of methods can be easily implemented
in Pytorch’s framework. Lasso Regression can be solved using a variety of subgradient techniques; details on their
implementation can be found in (Fu, 1998) and (Shevade & Keerthi, 2003).

Computational Complexity Estimation of NAC. The computation of NAC has two major parts: the forward pass and the
backward pass. Given the search space, the computation of the forward is then fixed and regarded as a constant. Therefore,
the computational complexity mainly focuses on the backward pass in the NAC algorithms.

The main version of our work does not need to update weights, but only to update architectural parameter o« during the
training process. Therefore, the algorithmic complexity is as O(T * ||cx||), which is a linear function w.r.t . The dimension
of o is often small, which makes the model easy to scale to large datasets and high search space. When updating weights
of the linear layer, the complexity is estimated as O(T * (||a|| + ||[W,||)). The dimension of W, is a constant number,
that equals the number of classes. Therefore, the complexity is almost the same as the main version of NAC, where the
complexity is O(T x ||a|| + [|[Wo]]).

When updating weights, similar to DARTS, the complexity is estimated as O(T * (||| + ||w]|)). The dimension of w is
often much larger than «, therefore, the complexity is dominated by updating w, where the complexity is O(T * ||w]|).
Since the dimension of « is much smaller than w, the complexity of NAC is much less than this type of methods.

Approximate Architecture Gradient. Our proposed theorems imply an optimization problem with « as the upper-level
variable and W, as the lower-level variable:

a* = argmaxM (W} (o), o)

Wk (a) = argminl(a, W), (36)
W,

Following (Liu et al., 2019a), we can adopt a First-order Approximation to avoid the the expensive inner optimization,
which allows us to give the implementation in the Algorithm 1.

18

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

A.8. Ablation Studies
A.8.1. THE EFFECT OF SPARSITY

Our model uses the hyperparameter p to control the sparsity of the architecture parameter ¢, where a large sparsity is to
enforce more elements to be zero. We investigate the effect of this hyperparameter by varying its value in a considerably
large range, such as [0.001, 10]. We first present the accuracy of different sparse setting in Figure 5. We find that the results
vary little in a considerably wide range, this indicates our models are insensitive to sparsity hyperparameter in general.

90tag = NAC(Orthogonal) tag = NAC(Normal) tag = NAC(Uniform)
80

70
60

]
]
<

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

5
012345678910 012345678910 012345678910
sparse sparse sparse

(a) CiteSeer

10 0tag = NAC(Orthogonal) tag = NAC(Normal) tag = NAC(Uniform)

90

60+
012345678910 012345678910 012345678910
sparse sparse sparse
(b) Cora

1 Ootag = NAC(Orthogonal) tag = NAC(Normal) tag = NAC(Uniform)

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

012345678910 012345678910 012345678910
sparse sparse sparse

(c) PubMed

Figure 5: Sensitivity study of the sparsity. Results are with varying sparsity (x-axis) and different initialization NAC methods
(i.e., normal, uniform and orthogonal). The variation is small, showing the robustness of our model w.r.t the sparsity.

A.8.2. THE EFFECT OF RANDOM SEEDS

Random seeds often play an importance role in traditional NAS methods as it affects the initialization significantly. People
often report the average or the best results under different random seeds, this may lead to poor reproducibility. To the best
our knowledge, this is for the first we explicitly demonstrate the effect of random seeds in this subject. We run experiments
on several random seeds and report the results of NAC on Pubmed dataset, as shown in Figure 6. In particular, we implement
multiple combinations of random seeds and sparsity to observe the variation on performance. Note that we round the values
to integer to fit the table. In all these combinations, we have the average and variance as 87.32% and 0.9%, respectively.
The average performance is comparable to the best results from all competitive results, which indicates the stability of NAC.

A.8.3. THE EFFECT OF TRAINING ON THE FINAL LINEAR LAYER

Our proposed theorems prove that a GNN with randomly initialized weights can make the final output as good as a
well-trained network when initializing networks with orthogonal weights and updating the total network using gradient
descent. In practice, we find it difficult to determine at what training epoch the optimal weight parameters can be obtained
through training linear layer. We noticed that most of the time, the untrained weights in the initial state can often already
exceed the accuracy that can be obtained from the weights after multiple epochs of training the final linear layer, as shown

19

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

||
-88
-86

|

I L Fseed
88 86 ﬂ 87 88 87 =
(=}
S
I 88 86 87 87 87 87 3
S
88 E 8 87 <
88 88 ﬂ 87 87 <
o
=
ﬂ ¢ * & 72
(=}
86 87 87 87 87

0.1

3 1 5 2 0 4

parse-

S|

Figure 6: The effects of random seeds of NAC on the accuracy, where x-axis denotes the random seeds and y-axis denotes
the sparsity. NAC performs stably with random seeds.

in Figure 7. Therefore, we further omit the training of the final linear layer. It is important to note that this approximation is
based on our proposed theorems in which most of the intermediate layers do not require training.

89 T
— 88| .
X 4

= 87

[\5)

< 86

85 | | | |
0 20 40 60 80 100

Traning Epochs of Linear Layer

—— NAC

Figure 7: The effects of training final linear layer of NAC on the accuracy, where x-axis denotes the training epochs of the
final linear layer and y-axis denotes the averaged accuracy of acquired architecture o using the corresponding weights.

A.9. Runtime of Each Method on a Single GPU Server

Apart from the running time on the CPU, we also measure the running time for all methods on a GPU platform, where we
use PyTorch (version 1.10.2+gpu) on a GPU server with four NVIDIA 3090 GPUs (24G), as shown in Table Table 6. These
results are consistent with the ones in Table 1, demonstrating our advantage in speed.

Table 6: Timing results of the compared methods and our NAC method in one the same GPU server. NAC attains superior performance
in efficiency (in seconds).

‘ CiteSeer Cora PubMed Computers

RS 196.00 328.00 461.00 900.00
BO 225.00 355.00 462.00 878.00
GraphNAS 6193.00 6207.00 6553.00 8969.00
GraphNAS-WS | 947.00 1741.00 2325.00 4343.00
SANE 35.00 41.00 43.00 43.00
NAC 14.00 14.00 15.00 14.00
NAC-updating 42.00 31.00 36.00 42.00

A.10. Performance on Inductive Tasks

To validate the effectiveness of our approach to the Inductive task, we performed a set of experiments on the PPI dataset.
The experimental results are concluded in Table 7. The experimental results show that our proposed method effectively
outperforms the best baseline method by about 4% in terms of Micro-F1 score. Besides, our method achieves an 8 speedup
in terms of running time than SANE. Also, the non-updating scheme of the NAC approach exceeds the NAC-updating
method effectively.

20

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

Experiments on the PPI dataset further validate the effectiveness and superiority of our proposed method.

Table 7: Experimental results on the compared methods: our NAC attains superior performance on PPI dataset in both Micro-F1 score
(%) and efficiency (in hours).

| PPI(Micro-F1(%)) PPI(Time(h))

SANE 91.01+6.83 2.50
NAC 95.16+0.03 0.31
NAC-updating 94.47 £7.09 4.68

A.11. Performance on ogbn-arXiv

To validate the effectiveness of our approach to the Inductive task, we performed a set of experiments on the ogbn-arXiv
dataset. The experimental results are concluded in Table 8. The experimental results show that our proposed method
effectively outperforms the best baseline method by about 4% in terms of Micro-F1 score. Besides, our method achieves
an 3x speedup in terms of running time than SANE. Also, the non-updating scheme of the NAC approach exceeds the
NAC-updating method effectively.

Experiments on the ogbn-arXiv dataset further validate the effectiveness and superiority of our proposed method.

Table 8: Experimental results on the compared methods: our NAC attains superior performance on ogbn-arXiv dataset in
Accuracy (%).

\ ogbn-arXiv(Accuracy(%)) ogbn-arXiv(Time(min))

SANE 70940 .85 1.53
NAC 71131059 0.50
NAC-updating 71.10+0.47 2.20

A.12. Searched Architectures for Each Dataset of Our Method

We visualize the searched architectures (top-1) by NAC on different datasets in Figure 8.

¢ For Citeseer dataset, the searched result is [GAT, GCN, Chebconv];
¢ For Cora dataset, the searched result is [GIN, GIN, GCN];
* For Pubmed dataset, the searched result is [GCN, GAT _Linear, Geniepath;

» For Amazon Computers dataset, the searched result is [Geniepath, GCN, SAGE];

L]

For PPI dataset, the searched result is [Chebconv, GAT_COS, Chebconv];

g g g g g
Cheb GCN Geniepath SAGE Cheb
1 | | | 1
GCN GIN GAT linear GON GAT cos
| | 1 | |
GAT GIN GON Geniepath Cheb
xr x x x x
(a) CiteSeer (b) Cora (c) PubMed (d) Amazon Computers (e) PPI
Figure 8: The searched architectures of NAC on benchmark datasets.
A.13. Related Work

Another line of work (Chen et al., 2021) (Shu et al., 2021) uses neural tangent kernels (NTK) to search the network structure,
called training-free NAS and focuses on CNN architectures. These hold strong assumptions when analyzing due to the need

21

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

for infinite width of networks, and thus far from reality. In contrast, we do not have such an assumption by taking advantage
of the built-in linearity in GNNs to get untrained GNNs to work.

22

