
Do Not Train It: A Linear Neural Architecture
Search of Graph Neural Networks

Peng Xu1*, Lin Zhang2*, Xuanzhou Liu3, Jiaqi Sun3, Yue Zhao4, Haiqin Yang2, Bei Yu1

1The Chinese University of Hong Kong
2International Digital Economy Academy
3Tsinghua University
4Carnegie Mellon University



1 Backgroud & Preliminary

2 Method
2.1 Analysis of No-update Scheme in GNNs
2.2 Architecture Searching via Sparse Coding

3 Experiments

Outline

2/19



Neural architecture search (NAS) is a technique for automating the design of
artificial neural networks. NAS generally includes three major parts1:

• Search Space: The search space define the type(s) of ANN that can be designed and
optimized.

• Search Strategy: The search strategy defines the approach used to explore the search
space.

• Performance Estimation Strategy: The performance estimation strategy evaluates the
performance of a possible ANN from its design.

search space
S

search strategy
p(S) : S 7→ R

evaluation method
Eval (〈S,ω⋆(S)〉 ;Dval)

sampling S ∈ S

updating p(S)

The three components of NAS.

1Lingxi Xie et al. (2021). “Weight-sharing neural architecture search: A battle to shrink the
optimization gap”. In: ACM Computing Surveys 54.9, pp. 1–37.

Neural Architecture Search(NAS)

3/19



Graph Neural Networks (GNN) have been a very hot topic in recent years2.

• Representation learning in graphs

• Define "convolution" on
graph(non-grid) data

• Powerful expression capability in
dealing with graph structure data

• Applications of Graph Neural Network:

• Recommendation
• Fraud Detection
• Bioinformatics
• Netlist Representation
• ...

Typical Graph Structural data.

Applying NAS techniques to the field of GNN to search for data-specific GNN
network structures is a natural choice.

2Zonghan Wu et al. (2021). “A Comprehensive Survey on Graph Neural Networks”. In: IEEE
Transactions on Neural Networks and Learning Systems 32.1, pp. 4–24.

Graph Neural Networks(NAS-GNN)

4/19



NAS in Graph Neural Networks

• Sample-based

• Prohibitive computational costs

1 Reinforcement Learning-based: GraphNAS3

2 Evolutionary Algorithm-based: Genetic-GNN4

• Weight-Sharing-based

• Reduce the search effort by reusing the neural weights

1 Differential-based: SANE5

3Yang Gao et al. (2020). “Graph Neural Architecture Search.”. In: Proc. IJCAI.
4Min Shi et al. (2022). “Genetic-gnn: evolutionary architecture search for graph neural

networks”. In: Knowledge-Based Systems 247, p. 108752.
5ZHAO Huan, YAO Quanming, and TU Weiwei (2021). “Search to aggregate neighborhood for

graph neural network”. In: Proc. ICDE, pp. 552–563.

NAS in Graph Neural Networks(NAS-GNN)

5/19



The differential-based method addresses two subproblems of weights and
architectures alternatively using a bi-level optimization framework to reduce the
search effort6: α∗ = argmax

α
Lval (w∗(α), α) ,

w∗ = argmin
w

Ltrain(α,w)
(1)

where L denotes a loss function (e.g., cross-entropy loss) on training and
validating dataset w.r.t w, and α is the architecture parameter.

6ZHAO Huan, YAO Quanming, and TU Weiwei (2021). “Search to aggregate neighborhood for
graph neural network”. In: Proc. ICDE, pp. 552–563.

Differential-based NAS-GNN(Darts-GNN)

6/19



Two optimization challenges cause the instability of the differential-based
NAS-GNN methods:

• Optimization challenge due to BLO: It is difficult to reach optimal state for
objectives in the Eq. 1 simultaneously under the bi-level optimization framework.
The training process is hard to converge and suffers from oscillations.

• Inaccurate estimation: The softmax operation will keep the unimportant architecture
parameter as non-zero values.

−4 −2 2 4

0.5

1

z

σ(z)

Softmax

Existing Problems

7/19



In this work, we attempt to address the optimization difficulty in the Darts-GNN
problem from a new perspective.

• No-update Scheme: We utilize the power of untrained GNN7 in the NAS-GNN
problem and provide a theoretical analysis.

• Sparse Coding: The ultimate goal of NAS is to assign the coefficients of unimportant
operators as zeros.

y1 y2 y3 . . . yn = d1 d2 d3 d4 d5 . . . dp ×

a1n

ap1 apn

Data
Y

n
samples

m

Dictionary
D

p
factors (atoms)

A

n
coefficients

p

non-zero

zero

Sparse Coding

7Thomas N. Kipf and Max Welling (2017). “Semi-Supervised Classification with Graph
Convolutional Networks”. In: Proc. ICLR.

Motivation

8/19



We ask two key questions

• Is updating the GNN weights necessary?
• => Do untrained orthogonal weights can lead to optimal architecture search?

• Can we formulate the NAS-GNN problem as a sparse coding problem?
• => Can we find the dictionary for the NAS-GNN problem?

Challenges

9/19



In our paper, we theoretically investigate why an untrained GNN model can
attain the same performance as the optimal one.

Theorem
Assume Wl(0) is randomly initialized for all l ∈ [1,L], if

∏L
l=1 Wl(0) is full rank, there must exist

a weight matrix for the output layer, i.e., W̃o, that makes the final output the same as the one from a
well-trained network:

ALX
L∏

l=1

W∗
l W∗

o = ALX
L∏

l=1

Wl(0)W̃o. (2)

We proved that one can approximate the optimal output by using the
orthogonal initialization, which justifies the power of untrained GNN.

Analysis of No-update Scheme in GNNs

10/19



In this work, we treat the entire NAS search space of GNNs as a general GNN
model where each layer is a mixture of multiple operators. Muhammet Balcilar et
al.8 proposed that each GNN layer can have a unified expression.

Table: Summary of the studied GNN models.

Design Support Type Comolution Malrix Frequency Response

MLP Spectral Fixed C = I Φ(A) = 1
GCN Spatial Fixed C = D̃−0.5ÃD̃−0.5 Φ(λ̄) = 1 − λp̄/(p̄ + 1)
GIN Spatial Trainable C = A + (1 + ϵ)I Φ(λ) = p̄

(
1+ϵ

p̄ + 1 − λ
)

GAT Spatial Trainable C(s)
v,u = ev,u/

∑
k∈Ñ(v) ev,k NA

CayleyNet Spectral Trainable
C(1) = I Φ1(λ) = 1

C(2r) = ℜ (ρ(hL)r) Φ2r(λ) = cos(rθ(hλ))
C(2r+1) = ℜ (iρ(hL)r) Φ2r+1(λ) = − sin(rθ(hλ))

ChebNet Spectral Fixed
C(1) = I Φ1(λ) = 1

C(2) = 2L/λmax − I Φ2(λ) = 2λ/λ_max− 1
C(s) = 2C(2)C(s−1) − C(s−2) Φs(λ) = 2Φ2(λ)Φs−1(λ)− Φn−2(λ)

8Muhammet Balcilar et al. (2021). “Analyzing the Expressive Power of Graph Neural Networks
in a Spectral Perspective”. In: Proc. ICLR.

Architecture Searching via Sparse Coding

11/19



We put forward the following corollary to derive a unified mathematical
expression between NAS-GNN and sparse coding.

Corollary

The search space of GNNs can be unified as
∑K

k=0 Pk(L)XWk = DW when removing the
activation function, where D = ∥{Pk(L)X} is the fixed base, and W = ∥{Wk}T is the trainable
parameters. Here, ∥ stands for concatenating a set of matrices horizontally.

This corollary derives a unified dictionary for the search space in NAS-GNN,
implying the natural connection between NAS-GNN and sparse coding.

Architecture Searching via Sparse Coding

12/19



The optimality of untrained GNNs and the connection between NAS in GNNs
and sparse coding allow us to waive the effort of updating weights and make us
focus on architecture updates.
As shown in the Figure 5, we put forward Neural Architecture Coding(NAC),
which directly learns architecture α with a fixed dictionary.

D
i
c
t
i
o
n
a
r
y

𝑂1 𝑂2 𝑂3 𝑂𝐾

Operators

𝛼2

𝛼1

𝛼3

𝛼𝐾

Aggregated 
representation

…𝑤1 𝑤2 𝑤3 𝑤𝐾

Updating

C
l
a
s
s
i
f
i
c
a
t
i
o
n

…
…

The framework of the proposed NAC in one layer.

Methodology

13/19



NAC attains superior performance than all baselines regarding both accuracy and
efficiency.

Table: Experimental results on the compared methods: our NAC attains superior
performance in both accuracy (%) and efficiency (in minutes).

CiteSeer Cora PubMed Computers
Accuracy Time Accuracy Time Accuracy Time Accuracy Time

RS 70.12±2.36 14.4 71.26±4.68 30.6 86.75±0.82 187.8 77.84±1.35 8.75
BO 70.95±1.62 18 68.59±6.66 31.2 87.42±0.68 189.6 77.46±2.02 17.65
GraphNAS 68.69±1.30 253.8 71.26±4.90 245.4 86.07±0.51 1363.8 73.97±1.79 86.37
GraphNAS-WS 65.35±5.13 80.4 72.14±2.59 161.4 85.71±1.05 965.4 72.99±3.44 42.47
SANE 71.84±1.33 4.2 84.58±0.53 10.2 87.55±0.78 107.4 90.70±0.89 0.72

NAC 74.62±0.38 1.2 87.41±0.92 1.2 88.04±1.06 9.0 91.64±0.14 0.23
NAC-updating 74.17±1.18 4.2 86.62±1.14 3.6 88.10±0.86 25.8 90.89±1.10 0.70

• In terms of model performance, our NAC beats all baselines and attains up to 2.83%
improvement over the best baseline, i.e., SANE while attaining up to 18.8%
improvement over the Bayesian method, the best HPO method.

Comparisons between NAC and state-of-the-art methods

14/19



100 101 102

Running Time (Min) in log base 10

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

RS
BayesianGraphNAS

GraphNAS-WS

SANE
NAC

Accuracy vs. running time on Cora. NAC (ours) outperforms the leading methods significantly in
both accuracy and speed (in minutes).

• In terms of model efficiency, our NAC achieves superior performance, around 10×
faster than SANE and up to 200× time faster than GraphNAS.

Comparisons between NAC and state-of-the-art methods

15/19



To further validate our no-update scheme, we evaluate its effect on other
weight-sharing methods.

Table: Comparison between SANE and SANE∗ (w/o. weight updates).

CiteSeer Cora Pubmed Computers
Acc(%) Acc(%) Acc(%) Acc(%)

SANE 71.84±1.33 84.58±0.53 87.55±0.78 90.70±0.89

SANE∗ 71.95±1.32 85.46±0.76 88.12±0.35 90.86±0.80

• Results in Table 3 show that SANE∗ outperforms the one with updates.

• This result implies that we can improve the performance of NAS-GNN methods by
simply fixing the weights with orthogonal initialization.

• This yields a much lower computational cost in training.

No-update Scheme at Work

16/19



A notable benefit of the NAC framework is its guaranteed convergence from the
sparse coding perspective. Figure 7 offers a convergence comparison between
NAC and SANE from the Pubmed dataset.

10 40 70 100 130 160 190 220 250
65.0

70.0

75.0

80.0

Epoch

A
cc
u
ra
cy

SANE
NAC

Convergence for SANE and NAC in terms of accuracy. NAC converges much faster than SANE in
only around 20 epochs.

Analysis of Convergence

17/19



• We convert the traditional NAS problem into a sparse coding task with linear
complexity of backward computing called Neural Architecture Coding(NAC).

• We have theoretically justified the power of untrained GNN in the NAS-GNN
problem, where updating the neural weights is not necessary.

• NAC achieves higher accuracy (up to 18.8%) and much faster convergence speed(up
to 200×) without any updating on neural weights.

Overview

18/19



THANK YOU!


	Backgroud & Preliminary
	Method
	Analysis of No-update Scheme in GNNs
	Architecture Searching via Sparse Coding

	Experiments

