
OpenDRC: An Efficient Open-Source Design Rule Checking
Engine with Hierarchical GPU Acceleration

Zhuolun He1,2, Yihang Zuo2, Jiaxi Jiang2, Haisheng Zheng2, Yuzhe Ma3, Bei Yu1

1CUHK 2Shanghai AI Laboratory 3HKUST(GZ)

Abstract—Design rule checking (DRC) is an essential procedure in
physical verification, yet few open-source DRC tools are accessible in
academia. To fill in the gap, we present OpenDRC, an open-source
DRC engine that aims for extremely high efficiency. OpenDRC maintains
hierarchical layouts with layer-wise bounding volume hierarchies and
performs adaptive row-based partition to identify independent regions
for check pruning and/or parallel processing. For common design rules,
OpenDRC provides a sequential mode that runs cell-level sweeplines, and
a parallel mode that launches edge-based GPU check kernels. Experiments
demonstrate that OpenDRC outperforms state-of-the-art multi-threading
and GPU-accelerated design rule checkers. The source code is available
at https://github.com/opendrc/opendrc.

I. INTRODUCTION

Design rule checking (DRC) is a critical stage in VLSI design flow
that ensures a layout satisfies a deck of design rules imposed by
process technology. Modern design rules consist of complex geometric
constraints, such as constraints on distance, area, alignment, shape,
and so on. Moreover, these rules may involve interactions between
layers (e.g., constraints on the NOT CUT result between layers,
minimum overlapping area constraints), as well as conditional rules
(e.g., different spacing constraints given different projection lengths).
The facts above, together with the explosion in the number of design
rules as technology nodes scale down, have pushed DRC to become
one of the most time-consuming stages in the whole design flow.

Improving tool/algorithm efficiency has been a central issue in
the development of electronic design automation (EDA), which has
received long-standing attention and abundant efforts. From the
methodology perspective, these attempts could be classified into three
categories, namely 1) to design better algorithms, 2) to parallelize
computation workloads, and 3) to approximate desired results. Design-
ing better core algorithms directly targets the underlying problem,
which often has great impacts on the community. As for DRC, many
theoretical results are obtained a few decades ago, such as rectangle
intersection report [1], orthogonal range query [2], and boolean mask
operations [3]. Proper data structures to cope with layout data are
also discussed, including binary space partitioning data structures like
quad-tree [4] and kd-tree [5], and hierarchies of bounding volumes
like r-tree [6] and its variants. These historic milestones form the
algorithmic foundations of today’s design rule checkers. Parallel
computing carries out computation workloads in multiple processors
simultaneously to reduce turnaround time. Various kinds of data par-
allelism have been exploited: region-based methods [7], [8] partition
the circuit into subregions for spatial parallelism; design hierarchy [9],
[10] helps to realize cell-level parallelism; edge-based approaches [11],
[12] increase parallelism within sweepline algorithms. Different design
rules can be checked concurrently [13], attaining task parallelism,
which could be further combined with data parallelism [14]. These
works gain benefits from different hardware platforms, including
SIMD engines [15], GPU [12], specialized hardware [16], [17], and
distributed systems [7], [18]. Approximation methods sacrifice result

This work is partially supported by The Research Grants Council of Hong
Kong SAR (CUHK14208021) and National Key R&D Program of China
(2020YFA0711900, 2020YFA0711903).

accuracy to trade for improved runtime efficiency, among which
machine learning (ML) algorithms are a popular subset. By predicting
design rule violation (DRV) types of clipped layout regions, ML-
based design rule checkers have demonstrated tens of times speedup
compared with an accurate checker [19]. In the design stages (e.g., in
placement or routing), ML is widely used to predict DRC hotspots [20]
and the number of DRVs [21], without locating and identifying
exact violations [19]. Although not directly accelerating the checking
process, some ML-enhanced DRC schemes are worth mentioning, such
as design rule verification [22], design rule augmentation [23], and
DRC script generation [24].

Meanwhile, open-source EDA tools have been inspiring and empow-
ering the evolution of cutting-edge EDA research. Many remarkable
research outcomes would not be possible without the existence of
public pioneering tools ABC [25], FLUTE [26], OpenTimer [27],
DreamPlace [28], OpenROAD [29], etc. An open-source EDA tool
facilitates researchers by 1) offering an off-the-shelf working solution
to complete specific tasks, 2) serving as a strong baseline for algorithm
development, and 3) providing infrastructures for data collection and
golden result acquiring for ML applications. When it comes to ‘design
rule checking’ in the literature, detailed routers (e.g., TritonRoute [30])
and layout editors (e.g., Magic [31], KLayout [32]) often integrate
design rule checkers. Although basic design rule checking algorithms
are implemented within these tools, they are not designed solely for
physical verification purposes: detailed routers handle fundamental
‘design rules’ like short, spacing, and minimum area [33], while
they are tightly coupled with the path search algorithms; layout
viewers/editors are graphical user interface (GUI) centric, which are
not optimized for standalone design rule checking. As design rule
checking is a critical stage where many interesting research and
design problems remain unsolved, we feel that a new design rule
checking engine is necessary to support all these explorations. To
this end, we propose OpenDRC, an open-source design rule checking
engine that aims for extremely high efficiency. OpenDRC provides
both sequential and parallel modes, where data structures and al-
gorithms are accordingly customized for the different computational
models. Besides, OpenDRC supports hierarchical layouts with layer-
wise bounding volume hierarchies and is able to perform adaptive
row-based layout partitioning to identify independent regions.

Our contributions are as follows: (1) we develop a new open-source
design rule checking engine; (2) we come up with an adaptive row-
based layout partition strategy that effectively generates independent
clips for check pruning and parallel processing; (3) we present and
implement customized data structures and algorithms for sequential
(CPU) and parallel (GPU) hierarchical design rule checking; (4) we
achieve a significant speedup of various design rule checks compared
with state-of-the-art multithreading and GPU design rule checkers.

II. PRELIMINARY

Design Rule. Design rules consist of geometric constraints imposed
by specific fabrication technologies to achieve a high yield. Distance

https://github.com/opendrc/opendrc

Sequential Mode

Parallel ModeRules from API Adaptive partition

Layout in BVH

Fig. 1 The overall flow of OpenDRC.

constraints are the most common constraints, which include, depending
on the positional relation between objects, width rules, spacing rules,
extension rules, enclosure rules, and so on. Distance rules usually
require a minimum distance between polygon edges due to various
reasons [34]: the minimum width of polygons is limited by the
resolution of the lithographic technique used, the minimum spacing
between polygons is to ensure electrical isolation, and the minimum
enclosure is to avoid layer misalignment errors. Other popular rules
are minimum area rules, shape constraints (e.g., rectilinear), and multi-
color design rules for multi-patterning lithography.

General-Purpose GPU and CUDA. The prosperous development
of artificial intelligence has also popularized the concept of general-
purpose graphics processing unit (GPGPU), which runs general-
purpose programs on the hardware architecture initially dedicated
to graphics rendering. GPGPUs offer massive computing power for
highly parallel applications in various disciplines, which finds orders of
magnitude performance gain. The programming model for GPGPUs is
best described as Single Program Multiple Data (SPMD), where many
parallel processing elements execute a single program on different
input data, making them a good fit for data parallelism.

To enhance GPU programmability, higher-level programming envi-
ronments have emerged, such as CUDA [35], OpenCL [36], and Ope-
nACC [37]. CUDA comes with a software stack that extends C++ as
the programming interface, attracting great attention in academia and
industry. CUDA offers a thread hierarchy to organize parallel threads,
which form one-, two-, or three-dimensional thread blocks [38].
Thread blocks are similarly organized into block grids. To allocate
computation onto the above threads, CUDA defines kernel with an
execution parameter N , which will be launched N times in N different
CUDA threads. Each such thread is given a unique thread ID accessible
with built-in variables in the kernel.

III. OVERALL FLOW

We first introduce the overall flow of OpenDRC, as illustrated in Fig. 1.
Given a hierarchical layout, OpenDRC parses the input file, and
maintains the components in a layer-wise bounding volume hierarchy
tree (detailed in Section IV-A). Meanwhile, design rules are specified
from the provided programming interface (introduced in Section V-B).
For the layers relevant to the specified design rules, OpenDRC per-
forms an adaptive row-based partition of the layout, which effectively
identifies independent regions (detailed in Section IV-B). After layout
partitioning, OpenDRC provides a sequential (CPU) branch (detailed
in Section IV-D) and a parallel (GPU) branch (detailed in Section IV-E)
to execute the design rule checks.

IV. ALGORITHMS

A. Layer-wise Bounding Volume Hierarchy
Hierarchical modularity is a natural solution for designers to cope
with very large-scale systems. In the GDSII stream format [39],
infinitely many hierarchical layers could be defined by recursive
structure reference:

<structure> ::= BGNSTR STRNAME {<element>}* ENDSTR
<element> ::= { · · · | <SREF> | · · ·} · · · ENDEL
<SREF> ::= SREF · · · SNAME · · ·
In the above Backus Naur representation of the stream syntax, a
⟨structure⟩ is composed of a list of ⟨elements⟩, and an ⟨element⟩
could be, among others, a structure reference ⟨SREF⟩ that instantiates
another structure defined elsewhere. Hereafter we use ‘cell’ and
‘structure’ interchangeably. To enable hierarchical design rule check-
ing, OpenDRC does not flatten the layout, but preserves the layout
hierarchy instead. Specifically, a structure reference effectively stores
a pointer to the structure definition to reduce memory consumption.

One drawback of the layout hierarchy is that objects belonging
to the same layer could scatter around the hierarchy tree. However,
(range) queries for layer objects are very common since many design
rules are defined for specific layers. To improve efficiency for such
queries, OpenDRC maintains the minimum bounding rectangle (MBR)
of each cell; for a cell that spans multiple layers, separated MBRs are
computed for each layer and maintained. To answer a layer range
query, it suffices to descend the hierarchy tree from the topmost
⟨structure⟩ (root), and prunes the whole subtree rooted at an element
if its MBR for the interested layer is empty. Augmenting the hierarchy
tree with MBRs reduces the layer range query complexity from O(n)
to O(min(n, kh)), where n is the number of leaf nodes, k is the
number of output, and h is the height of the hierarchy tree. Note that
such MBR technique is widely applied in geometric data structures
such as kd-trees [5] and R-trees [6].

Duplication and inverted indices. An effective strategy to trade space
consumption for speed is to duplicate the hierarchy tree in a layer-wise
manner. Namely, a separated hierarchy tree is built for each layer such
that only modules containing objects in that layer are added to this
hierarchy tree. The space consumption could be enlarged by at most L
times where L is the number of layers. Suppose queries only ask for all
objects in the given layer, it is possible to further construct element-
level inverted indices that each contain a full list of leaf elements
belonging to a layer.

B. Adaptive Row-based Partition
OpenDRC offers an adaptive row-based partition scheme that turns
out to be very effective for check pruning and parallelization. The
rationale behind is related to the popular row-based placement [28],
[40]. The intuitions are twofold:

1) Layouts can be partitioned into non-overlapping regions (rows)
along the y-axis, where cells do not overlap too much;

2) By grouping cells into independent rows, x-coordinates of cells
in a row are more likely to be separated as well.

Technically, the row-based partition can be regarded as an interval
merging problem, which can be efficiently solved in Θ(k+N) time,
where k is the number of merge operations, and N is the size of the
domain. In our case, k equals the number of cells, and N is the number
of unique y-coordinates (discretization assumed). The algorithm can
be divided into three steps: 1) initialize an array A of size N with
indices as entry values; 2) merge y-coordinates belonging to the same
cell; and 3) scan the whole array A to obtain the cover. To be specific,
we use an ‘pigeonhole array’ (of domain size N) to maintain the right
endpoints of intervals, while interval left endpoints are indicated by
the array indices. For each merge, only one array entry is updated in
constant time. Algorithm 1 describes the details.

Note that the interval merging problem can also be solved without
using the large pigeonhole array by sorting the merge targets, which
yields an algorithm with time complexity Ω(k log k). We come up with
our solution since k is typically much larger than N in our problems,
and arrays usually have a much better locality.

Algorithm 1 Interval Merging for Adaptive Layout Partition
Require: A set S of intervals to be merged
Ensure: Non-overlapping intervals covering the domain of S

1: Initialize an array A with indices ▷ Step1: Initialize
2: for all interval [l, r] ∈ S do ▷ Step2: Merge
3: Update A[l]← max(A[l], r)
4: end for
5: Initialize current interval end e← −1
6: for the i-th element ∈ A do ▷ Step3: Scan
7: if i > e then ▷ moving across interval boundary
8: Create a new interval and reset e
9: end if

10: Update current interval end e← max(e,A[i])
11: end for

C. Task Pruning from Hierarchy Tree
With the preserved hierarchy, OpenDRC always attempts to minimize
the number of checks that are actually run. Redundancy could occur
due to two possible reasons: 1) the check result could be inferred
from previously finished checks; and 2) the check could be eliminated
because violations must or cannot happen. In either the case, running
an actual check is unnecessary. The former situation commonly occurs
in hierarchical layouts, as they usually contain isomorphic modules that
preserve geometric invariants under certain transformations, such as
reflection and rotation, and under instantiation constructs like ⟨SREF⟩
and ⟨AREF⟩ in GDSII files. The latter situation can also be improved
with the MBR augmented hierarchy tree.

Intra-Polygon Checks. As the finest granularity for transformations
is usually at the polygon-level, there exist great optimization oppor-
tunities for intra-polygon checks. Given an intra-polygon check for a
certain layer, OpenDRC performs depth-first search (DFS) along the
hierarchy tree to locate layer objects. When a specific layer polygon
is first encountered, the corresponding check is scheduled to the task
graph. If the check is done for a leaf object, a tag is marked to indicate
the finished check type. The same tag is marked for a non-leaf module
if all submodules and leaf elements belonging to the module have been
checked. In this way, OpenDRC tries to reuse check results when
visiting a cell reference element: if the corresponding cell has already
been checked elsewhere, and the transformations preserve the target
properties of the check, the check result could be safely reused.

Inter-Polygon Checks. Inter-polygon checks are slightly more com-
plicated as many invariants are no longer preserved under common
constructs. Nevertheless, OpenDRC still attempts to explore oppor-
tunities to reduce workloads. Given an inter-polygon check between
layer M and layer N (M and N could be identical), OpenDRC still
searches along the hierarchy tree from the root, denoted as a pair
of nodes (rootM , rootN). A similar memoization strategy is used as
described in intra-polygon checks. Specifically, only if (aM , aN) has
been checked, OpenDRC marks it down for possible reuse. Note that
the check result of (aM , bN) cannot be reused if a and b do not belong
to the same parent cell, because another instantiation of them may not
be of the same relative position. A check for node pair (aM , bN) could
possibly be eliminated if:

• M = N ∧ ida > idb. Node id assignment could be arbitrary.
This is a duplication of the check for (bM , aN).

• a = b and (aM , aN) has been checked. This corresponds to
redundancy case 1) we described.

• MBRM
a ∩MBRN

b = ∅. This corresponds to redundancy case 2)
we described.

Technically, the MBRs should be enlarged by a minimum rule distance

N

M
a

b3

b2(= a)

b1

Fig. 2 Three inter-polygon checks could be eliminated.

Fig. 3 Sweepline and interval tree for overlapping MBR query.

to ensure non-overlapping indeed indicates no violations.
Fig. 2 illustrates the above three cases. When M = N , the check

(aM , bN1) is a duplication of (bM1 , aN). As b2 and a refer to the
same cell, the check result of (aM , aN) can be reused if it is already
checked. The check (aM , bN3) can be pruned because their MBRs are
non-overlapping.

D. The Sequential Mode
As by the task pruning strategy introduced in Section IV-C, the
sequential mode of OpenDRC first detects potential violations between
objects by querying overlapping MBRs of polygons or cells, and then
performs edge-based checks among those object pairs.

Overlapping MBR Query. OpenDRC runs a standard sweepline
algorithm [1] to detect all overlapping MBRs, except that interval
trees [41] are used instead of segment trees for implementation
simplicity. An interval tree is a binary search tree that stores an interval
I in the highest node satisfying u ∈ I , where u is the key of this node.
Specifically, every node of the interval tree maintains its intervals in
two separate lists: one is sorted by left endpoints, and the other is
sorted by right endpoints. By the definitions above, all left endpoints
(resp. right endpoints) stored in the right (resp. left) subtree are larger
(resp. smaller) than the parent node’s key, which enables efficient range
queries. The sweepline algorithm moves a conceptual line across the
plane from top to bottom, which scans through the top and bottom
sides of all MBRs in descending y. When the top side of an MBR m
is encountered, the corresponding horizontal interval is inserted into
the interval tree, and a query to the interval tree reports all the MBRs
overlapping with m. When the bottom side of m is encountered, the
horizontal interval is removed from the interval tree. Fig. 3 illustrates
the sweepline procedure and the corresponding interval tree.

Check Procedures. For distance rules, edge-to-edge checks need to be
performed, be it an intra-polygon check extracted from the hierarchy
tree, or an inter-polygon check obtained from MBR queries. Polygon
vertices are stored in clockwise order, so that positional relations of
edges are determined accordingly. For area rule checks, OpenDRC
computes polygon areas by the Shoelace Theorem.

E. The Parallel Mode
The parallel mode of OpenDRC runs design rule checks on GPUs,
which utilizes very different algorithms and data structures from
those for sequential processing. After layout partitioning, OpenDRC
performs parallel design rule checks in a row-by-row manner, as cells
belonging to different rows will not produce any violation.

Before checking, OpenDRC packs the edges of relevant polygons
into a flattened array, which is transferred from the host memory to the

GPU device memory. Depending on the complexity of each polygon
or polygon pair, OpenDRC selects either a brute-force executor or a
sweepline executor. For smaller tasks, parallel threads are launched
for each polygon (or pair), in which edge pairs are enumerated and
checked. For larger tasks, a parallel sweepline algorithm is performed,
which is similar to the one described in X-Check [12]: firstly, a parallel
scan determines the check range of each edge; then parallel threads are
launched to perform the check between an edge and all other edges
within its check range. Although these two steps can be combined
theoretically, separating them into two kernel launches enables efficient
kernel code optimization (viz. for loops versus while loops).

V. DESIGN AND IMPLEMENTATION DETAILS

A. Software Architecture
Conceptually, OpenDRC consists of four layers, from topmost to
bottommost:

1) the interface layer,
2) the application layer,
3) the algorithm layer, and
4) the infrastructure layer.

In general, higher layers depend on the abstraction of lower layers, but
not the other way around. The interface layer is responsible for the
interaction between OpenDRC and the outside world, such as reading
design files, defining rule decks, adaptors to design databases, and
result output. The application layer can be regarded as a system
controller that schedules computation tasks and dispatches them to
algorithms. The algorithm layer, as indicated by the name, consists
of the implementation of design rule checking algorithms, such as
width-check and space-check. The infrastructure layer
is for abstract data structure and algorithms, various program utilities
(timer, logger, etc.), and some basic GPU libraries.

B. General Programming Interface
OpenDRC aims to provide extreme extensibility and usability through
its general programming interface. OpenDRC recognises the need of
researchers and end users to customize their usage of the engine, so
it encourages the use of the C++ programming interface, instead of
another scripting language, as the default way to define design rule
checking tasks. The code snippet in Listing 1 demonstrates how to

Listing 1 Code snippet of using OpenDRC.
1 auto db = odrc::gdsii::read(/* path-to-gdsii */);
2 auto e = odrc::engine();
3 e.add_rules({
4 db.polygons().is_rectilinear(),
5 db.layer(19).width().greater_than(18),
6 db.layer(20).polygons().ensures(
7 [](const auto& p){return !p.name.empty();}
8)
9 });

10 e.check(db);

program OpenDRC. We start by reading-in a layout file and creating
an instance of the DRC engine. Then we specify a list of design
rules using the add_rules method, where each rule is described
in chaining methods that resemble natural language. In this example,
we have defined three rules: the first rule ensures that all the polygons
are rectilinear; the second rule ensures the minimal width in layer 19
is 18nm; the third rule ensures that every polygon in layer 20 has a
non-empty name. Finally, calling check() will run checks for the
specified rules.

OpenDRC defines two categories of methods, selectors and pred-
icates to help define design rules. Selectors locate the target objects
for which a design rule is defined. In our example, chained methods

layer(19).width() selects the width in the 19-th layer as the
check target. Predicates are the conditions that the selected objects
need to conform to, such as is_rectilinear() that requires axis-
aligned shapes. Specifically, the ensures() method takes a callable
as a parameter that enables user-defined predicates.

C. Heterogeneous Computing via Asynchronous Operations
A CPU-GPU computing platform is heterogeneous, which requires
special considerations on the orchestration between them. OpenDRC
utilizes asynchronous operations and Stream Ordered Memory Al-
locator [38] to hide communication or computation latencies. When
OpenDRC starts, it creates CUDA stream objects that are responsible
for asynchronous operations. As the parsing is finished and the
database is ready, asynchronous data copies are launched to prepare
necessary data (e.g., polygon edges) for parallel checks. The data
movement is thus usually hidden by the layout partitioning in the flow.
OpenDRC also tries to overlap CPU computation and GPU processing
to hide latency. For example, parallel checks of a row (taking place
on device) can be performed concurrently with the necessary data
preprocessing of the next row (taking place on host).

D. Functors and Type Traits
The extensibility of OpenDRC also comes from a generic implementa-
tion of underlying functors. The sweepline functor shown in Listing 2
is a typical example, which is regarded as a metafunction that takes
another callable as a parameter. Here an executor is either a wrapper for

Listing 2 The sweepline functor.
1 template <typename Executor, typename EventIt,
2 typename Status, typename Op>
3 void sweepline(Executor&& exec, EventIt first,
4 EventIt last, Status* st, Op op) {
5 if constexpr (std::is_same_v<std::remove_cv_t<
6 std::remove_reference_t<decltype(exec)>>,
7 odrc::execution::sequenced_policy>) { // CPU
8 } else { /* GPU */ }
9 }

a CUDA stream object (cudaStream_t), indicating the operation will
be appended to the stream, or a simple odrc::sequenced_policy
object that indicates a sequential operation.

OpenDRC utilizes type traits to manage certain properties of rules
and checks, which dispatches function calls at compile time and avoids
runtime branching. Line 5-8 in Listing 2 demonstrates how OpenDRC
decides whether a sweepline operates on CPU or GPU by accessing
the type traits of the executor in a constexpr if statement. Another
typical usage is to mark the rule types by the target edge relations
(e.g., width or space), which is also implemented in KLayout [32]
as runtime arguments. In general, using type traits slightly improves
runtime efficiency and helps organize code logic concisely.

VI. EXPERIMENTAL EVALUATION

OpenDRC is implemented in C++17 and CUDA. Experiments were
conducted on a Linux machine with an Intel Core i7-11700 pro-
cessor (2.5GHz), 64GB main memory, and an NVIDIA GeForce
GTX 1660Ti graphics card. Benchmark layouts are synthesized from
OpenROAD [29], with the ASAP7 [42] process design kit (PDK) and
all default settings provided in the flow scripts.

To evaluate the efficiency of OpenDRC, we compare its perfor-
mance with the state-of-the-art multi-threading design rule checker,
KLayout [32], and the state-of-the-art GPU design rule checker, X-
Check [12]. KLayout provides three different operation modes, namely
flat mode, deep (hierarchy) mode, and tiling mode. In the deep mode,
the operations will be performed in a hierarchical fashion; in the tiling
mode, operations are evaluated in tiles, and multi-CPU support is

TABLE I Runtime comparisons for intra-polygon design rule checks.

Design Rule KLayout X-Check OpenDRC Rule KLayout X-Check OpenDRC
flat deep tile Seq. Par. flat deep tile Seq. Par.

aes
M1.W.1 3.45 12.69 0.49 0.41 0.02 0.03 M1.A.1 3.34 3.32 0.65 - 0.02 0.03
M2.W.1 1.37 3.83 0.23 0.14 0.04 0.04 M2.A.1 1.35 1.33 0.37 - 0.04 0.04
M3.W.1 2.52 2.98 0.36 0.11 0.03 0.03 M3.A.1 2.49 2.51 0.51 - 0.03 0.03

ethmac
M1.W.1 11.88 45.84 1.56 1.21 0.07 0.08 M1.A.1 11.55 11.55 2.05 - 0.07 0.08
M2.W.1 3.76 10.72 0.52 0.42 0.10 0.11 M2.A.1 3.62 3.63 1.01 - 0.10 0.11
M3.W.1 6.36 7.64 0.77 0.31 0.08 0.08 M3.A.1 6.20 6.24 1.24 - 0.08 0.08

gcd
M1.W.1 0.13 0.44 0.13 0.11 < 0.01 < 0.01 M1.A.1 0.13 0.13 0.13 - < 0.01 < 0.01
M2.W.1 0.05 0.08 0.05 < 0.01 < 0.01 < 0.01 M2.A.1 0.05 0.05 0.05 - < 0.01 < 0.01
M3.W.1 0.06 0.07 0.06 < 0.01 < 0.01 < 0.01 M3.A.1 0.06 0.06 0.06 - < 0.01 < 0.01

ibex
M1.W.1 3.60 12.38 0.50 0.43 0.02 0.03 M1.A.1 3.52 3.52 0.65 - 0.02 0.03
M2.W.1 1.30 3.61 0.24 0.14 0.03 0.04 M2.A.1 1.27 1.28 0.36 - 0.04 0.04
M3.W.1 2.38 2.88 0.36 0.10 0.03 0.03 M3.A.1 2.36 2.35 0.51 - 0.03 0.03

jpeg
M1.W.1 13.32 55.35 1.68 1.39 0.08 0.08 M1.A.1 13.01 13.00 2.17 - 0.07 0.08
M2.W.1 3.05 8.77 0.46 0.40 0.10 0.10 M2.A.1 2.98 2.95 0.95 - 0.09 0.09
M3.W.1 4.86 6.14 0.59 0.29 0.08 0.08 M3.A.1 4.79 4.81 1.10 - 0.08 0.07

sha3
M1.W.1 3.48 12.36 0.49 0.43 0.02 0.03 M1.A.1 3.40 3.40 0.63 - 0.02 0.03
M2.W.1 1.10 2.95 0.21 0.12 0.03 0.03 M2.A.1 1.07 1.09 0.33 - 0.03 0.03
M3.W.1 1.79 2.15 0.30 0.09 0.02 0.02 M3.A.1 1.79 1.77 0.42 - 0.02 0.02

uart
M1.W.1 0.15 0.40 0.15 0.11 < 0.01 < 0.01 M1.A.1 0.14 0.14 0.15 - < 0.01 < 0.01
M2.W.1 0.06 0.12 0.06 < 0.01 < 0.01 < 0.01 M2.A.1 0.06 0.06 0.06 - < 0.01 < 0.01
M3.W.1 0.08 0.09 0.08 < 0.01 < 0.01 < 0.01 M3.A.1 0.08 0.08 0.08 - < 0.01 < 0.01

Average 37.7× 82.1× 9.6× 4.5× 0.9× 1.0× 37.6× 37.6× 13.0× - 1.0× 1.0×

enabled [32]. These three modes are exclusive, so we list DRC runtime
under the three options in individual columns since no combination
of them is directly accessible. We reimplement the vertical sweeping
algorithm proposed in X-Check (Section 4.1 in their paper [12]).

We follow the experimental settings in X-Check [12] to check
(minimum) width, spacing, and enclosure rules; we further implement
minimum area checks that X-Check is unable to deal with. These
rules are typical, as they include two intra-polygon rules (width, area)
and two inter-polygon rules (spacing, enclosure); enclosure rules are
inter-layer while others are intra-layer; except area rules, other rules
are essentially distance rules. The selected rules involve Back-End-
Of-Line (BEOL) layers M1, M2, M3, V1, and V2 [42].

Runtime comparisons for intra-polygon checks are shown in TA-
BLE I, and comparisons for inter-polygon checks are in TABLE II. The
‘average’ rows are normalized against the parallel mode of OpenDRC,
where the runtime is the geometric mean of the column, as we value
all checks equally regardless of their sizes. Note again that X-Check
is unable to perform area checks, so the column is empty. Intra-
polygon checks generally run fast, which confirms the claim in X-
Check [12]. OpenDRC achieves 4.5× speedup on average compared
with X-Check, and 9.6× - 13.0× speedup compared with KLayout
(tiling mode). For sequential modes, OpenDRC is around 37.6×
faster than the flat/deep mode of KLayout, which we argue is due
to the hierarchy strategy OpenDRC adopts. In fact, both sequential
and parallel modes of OpenDRC run equally fast for intra-polygon
checks. Inter-polygon checks have heavier computation workloads,
where we see more significant speedup from GPU acceleration. For
space checks, GPU-accelerated OpenDRC is 3.2×, 5.6×, and 12.0×
faster than sequential OpenDRC, X-Check, and KLayout (tiling mode),
respectively; for enclosing checks, the speedups become 4.7×, 2.9×,
61.5×, respectively.1 The sequential implementation of OpenDRC is
also 14.9× - 91.3× faster than KLayout (the faster one in flat/deep
mode). The experiments demonstrate the efficiency of OpenDRC and
the effectiveness of the proposed techniques.

We also provide a runtime breakdown of OpenDRC in Fig. 4, taking
sequential space checks as an example. Since asynchronous operations
are utilized in the parallel mode, runtime profiling and visualization
are slightly complicated and are left to future work. As can be seen,

1We notice the abnormal runtime of KLayout reported in X-Check [12],
which we think could be due to a very large number of violations that trigger
abnormal program behavior (e.g., heavy disk IO, etc.).

0 20 40 60 80 100

uart
sha3
jpeg
ibex
gcd

ethmac
aes

Runtime Percentage

Layout Part.
Preprocess
Sweepline
Intvl. Tree Ops.
E2E Check

Fig. 4 The runtime breakdown of OpenDRC sequential minimum
spacing checks. ‘Layout Part’ refers to adaptive layout partitioning;
‘Intvl. Tree Ops.’ refers to interval tree operations insert, remove,
and query; ‘E2E Check’ refers to edge-to-edge checks.

the adaptive layout partition consumes only around 15% of overall
runtime, but greatly enhances the efficiency of subsequent steps. The
sweepline algorithm, together with operations in the interval tree,
taking around 35% of runtime, examines overlapping of cell MBRs
and prunes unnecessary checks. Finally, 40% - 50% of the overall
runtime is spent on edge-to-edge space checks.

VII. CONCLUSION AND ROADMAP

As inspired by many interesting research problems in VLSI layout
operations and design rule checking, we develop OpenDRC, a new
open-source design rule checking engine. By introducing adaptive
row-based layout partition and efficient sequential/parallel hierarchical
DRC procedures, OpenDRC achieves significant speedup compared
with state-of-the-art multi-threading and GPU design rule check-
ers. Ongoing works for OpenDRC include a systematic evaluation
of heterogeneous computing in DRC, data compression techniques
for memory footprint reduction, and supports for general geometric
shapes.

REFERENCES

[1] J. L. Bentley and D. Wood, “An optimal worst case algorithm for reporting
intersections of rectangles,” IEEE TC, vol. 29, no. 07, pp. 571–577, 1980.

[2] D. E. Willard, “New data structures for orthogonal range queries,” SIAM
Journal on Computing (SICOMP), vol. 14, no. 1, pp. 232–253, 1985.

[3] U. Lauther, “An o (n log n) algorithm for boolean mask operations,” in
Proc. DAC, 1981, pp. 555–562.

[4] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974.

TABLE II Runtime comparisons for inter-polygon design rule checks.

Design Rule KLayout X-Check OpenDRC Rule KLayout X-Check OpenDRC
flat deep tile Seq. Par. flat deep tile Seq. Par.

aes
M1.S.1 4.33 13.78 0.62 0.17 0.21 0.06 V1.M1.EN.1 468.24 462.28 15.97 0.20 6.44 0.12
M2.S.1 1.55 4.15 0.29 0.13 0.09 0.02 V2.M2.EN.1 2.93 1.64 0.59 0.14 0.18 0.09
M3.S.1 2.64 3.25 0.38 0.12 0.15 0.02 V1.M2.EN.2 469.96 468.89 15.71 0.20 0.24 0.12

ethmac
M1.S.1 14.67 48.50 1.89 0.39 0.72 0.14 V1.M1.EN.1 3045.02 3038.10 57.76 2.00 42.35 0.41
M2.S.1 4.35 11.71 0.59 0.20 0.23 0.05 V2.M2.EN.1 8.29 4.74 1.45 0.23 0.47 0.22
M3.S.1 6.68 8.17 0.82 0.16 0.39 0.04 V1.M2.EN.2 3031.20 3034.67 55.63 0.36 0.84 0.32

gcd
M1.S.1 0.15 0.46 0.14 0.11 < 0.01 0.01 V1.M1.EN.1 3.06 2.96 3.09 0.11 0.06 < 0.01
M2.S.1 0.05 0.09 0.05 0.11 < 0.01 < 0.01 V2.M2.EN.1 0.07 0.05 0.08 0.10 < 0.01 < 0.01
M3.S.1 0.06 0.07 0.06 0.11 < 0.01 < 0.01 V1.M2.EN.2 2.95 2.95 2.99 0.10 < 0.01 < 0.01

ibex
M1.S.1 4.45 13.15 0.63 0.17 0.22 0.06 V1.M1.EN.1 477.86 473.62 16.03 0.21 7.14 0.13
M2.S.1 1.49 3.96 0.25 0.13 0.09 0.02 V2.M2.EN.1 2.78 1.56 0.56 0.15 0.18 0.08
M3.S.1 2.50 3.08 0.39 0.12 0.14 0.02 V1.M2.EN.2 479.79 477.17 15.90 0.17 0.24 0.12

jpeg
M1.S.1 15.82 57.36 2.01 0.43 0.80 0.16 V1.M1.EN.1 3609.55 3580.46 58.29 1.59 55.07 0.49
M2.S.1 3.48 9.79 0.49 0.21 0.20 0.05 V2.M2.EN.1 7.07 4.04 1.22 0.22 0.40 0.20
M3.S.1 5.17 6.70 0.64 0.16 0.30 0.03 V1.M2.EN.2 3611.69 3588.04 57.01 0.35 0.87 0.32

sha3
M1.S.1 4.23 13.02 0.60 0.16 0.21 0.06 V1.M1.EN.1 476.10 472.44 15.87 0.49 7.07 0.12
M2.S.1 1.16 3.23 0.22 0.12 0.07 0.02 V2.M2.EN.1 2.32 1.29 0.48 0.13 0.14 0.07
M3.S.1 1.87 2.31 0.30 0.11 0.11 0.02 V1.M2.EN.2 468.70 467.92 17.28 0.15 0.22 0.11

uart
M1.S.1 0.19 0.44 0.19 0.11 < 0.01 0.01 V1.M1.EN.1 3.61 3.50 3.62 0.10 0.06 < 0.01
M2.S.1 0.07 0.13 0.07 0.11 < 0.01 < 0.01 V2.M2.EN.1 0.10 0.06 0.10 0.12 < 0.01 < 0.01
M3.S.1 0.08 0.10 0.08 0.10 < 0.01 < 0.01 V1.M2.EN.2 3.49 3.48 3.54 0.10 < 0.01 < 0.01

Average 47.6× 99.5× 12.0× 5.6× 3.2× 1.0× 514.9× 429.0× 61.5× 2.9× 4.7× 1.0×

[5] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[6] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. SIGMOD, 1984, pp. 47–57.

[7] S. Nandy, “Geometric Design Rule Check of VLSI Layouts in Distributed
Computing Environment,” Proc. VLSI Design, vol. 1, no. 2, pp. 155–167,
1994.

[8] K.-T. Hsu, S. Sinha, Y.-C. Pi, C. Chiang, and T.-Y. Ho, “A distributed
algorithm for layout geometry operations,” in Proc. DAC. IEEE, 2011,
pp. 182–187.

[9] F. Gregoretti and Z. Segall, “Analysis and evaluation of parallel rectangle
intersection for vlsi design rule checking,” Microprocessors and Microsys-
tems, vol. 19, no. 2, pp. 85–100, 1987.

[10] N. Hedenstierna and K. Jeppson, “A parallel hierarchical design rule
checker,” in European Conference on Design Automation. IEEE Com-
puter Society, 1992, pp. 142–143.

[11] E. C. Carlson and R. A. Rutenbar, “Mask verification on the connection
machine,” in Proc. DAC. IEEE, 1988, pp. 134–140.

[12] Z. He, Y. Ma, and B. Yu, “X-Check: GPU-Accelerated Design Rule
Checking via Parallel Sweepline Algorithms,” in Proc. ICCAD, 2022.

[13] J. D. Marantz, “Exploiting parallelism in VLSI CAD,” 1986.
[14] K. MacPherson and P. Banerjee, “Parallel algorithms for VLSI layout

verification,” Journal of Parallel and Distributed Computing, vol. 36,
no. 2, pp. 156–172, 1996.

[15] S. Koranne, “A high performance SIMD framework for design rule check-
ing on Sony’s PlayStation 2 Emotion Engine platform [IC layout],” in
International Symposium on Signals, Circuits and Systems. Proceedings,
SCS 2003.(Cat. No. 03EX720). IEEE, 2004, pp. 371–376.

[16] R. Kane and S. Sahni, “A systolic design rule checker,” in Proc. DAC.
IEEE, 1984, pp. 243–250.

[17] Z. Luo, M. Martonosi, and P. Ashar, “An edge-endpoint-based config-
urable hardware architecture for VLSI layout Design Rule Checking,”
Proc. VLSI Design, vol. 10, no. 3, pp. 249–263, 2000.

[18] A. Pais, M. Anido, and C. Oliveira, “Developing a distributed architecture
for design rule checking,” in Proc. MWSCAS, vol. 2, 2001, pp. 678–681.

[19] L. Francisco, T. Lagare, A. Jain, S. Chaudhary, M. Kulkarni, D. Sardana,
W. R. Davis, and P. Franzon, “Design Rule Checking with a CNN Based
Feature Extractor,” in Proc. MLCAD. IEEE, 2020, pp. 9–14.

[20] W. Zeng, A. Davoodi, and R. O. Topaloglu, “Explainable DRC hotspot
prediction with random forest and SHAP tree explainer,” in Proc. DATE,
2020, pp. 1151–1156.

[21] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen, and
J. Hu, “RouteNet: Routability prediction for mixed-size designs using
convolutional neural network,” in Proc. ICCAD. IEEE, 2018, pp. 1–8.

[22] I. Alam, T. Li, S. Brock, and P. Gupta, “DRDebug: Automated Design
Rule Debugging,” IEEE TCAD, 2022.

[23] V. Dai, L. Capodieci, J. Yang, and N. Rodriguez, “Developing DRC
Plus rules through 2D pattern extraction and clustering techniques,” in
Proc. SPIE, vol. 7275. SPIE, 2009, pp. 332–341.

[24] B. Zhu, X. Zhang, Y. Lin, B. Yu, and M. Wong, “Efficient design rule
checking script generation via key information extraction,” in Proc. ML-
CAD, 2022, pp. 77–82.

[25] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. CAV. Springer, 2010, pp. 24–40.

[26] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE TCAD, vol. 27,
no. 1, pp. 70–83, 2007.

[27] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing
analysis tool,” in Proc. ICCAD, 2015, pp. 895–902.

[28] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “Dream-
place: Deep learning toolkit-enabled gpu acceleration for modern vlsi
placement,” in Proc. DAC, 2019, pp. 1–6.

[29] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng,
M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an open-source
digital flow: First learnings from the openroad project,” in Proc. DAC,
2019, pp. 1–4.

[30] A. B. Kahng, L. Wang, and B. Xu, “TritonRoute: An initial detailed router
for advanced VLSI technologies,” in Proc. ICCAD, 2018, pp. 1–8.

[31] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S.
Taylor, “The magic VLSI layout system,” IEEE MDAT, vol. 2, no. 1, pp.
19–30, 1985.

[32] “KLayout,” https://klayout.de/.
[33] G. Chen, C.-W. Pui, H. Li, and E. F. Young, “Dr. CU: Detailed routing by

sparse grid graph and minimum-area-captured path search,” IEEE TCAD,
vol. 39, no. 9, pp. 1902–1915, 2019.

[34] K. Bhanushali and W. R. Davis, “FreePDK15: An open-source predictive
process design kit for 15nm FinFET technology,” in Proc. ISPD, 2015,
pp. 165–170.

[35] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda: Is cuda the parallel programming model that
application developers have been waiting for?” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[36] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21
Symposium (HCS). IEEE, 2009, pp. 1–314.

[37] “The OpenACC Application Programming Interface,” OpenACC-
Standard.org, Specification, Nov. 2021, version 3.2.

[38] “CUDA C++ Programming Guide,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[39] “GDSII Stream Format Manual,” http://bitsavers.informatik.uni-stuttgart.
de/pdf/calma/GDS II Stream Format Manual 6.0 Feb87.pdf.

[40] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and
C.-K. Cheng, “eplace: Electrostatics based placement using nesterov’s
method,” in Proc. DAC, 2014, pp. 1–6.

[41] E. M. McCreight, “Efficient algorithms for enumerating intersecting
intervals and rectangles,” Tech. Rep., 1980.

[42] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive
process design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

https://klayout.de/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://bitsavers.informatik.uni-stuttgart.de/pdf/calma/GDS_II_Stream_Format_Manual_6.0_Feb87.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/calma/GDS_II_Stream_Format_Manual_6.0_Feb87.pdf

