

OpenDRC: An Efficient Open-Source Design Rule Checking Engine with Hierarchical GPU Acceleration

Zhuolun He^{1,2}, Yihang Zuo², Jiaxi Jiang², Haisheng Zheng², Yuzhe Ma³, Bei Yu¹

¹CUHK ²Shanghai AI Lab ³HKUSZ(GZ)

Design Rule Checking¹...

- verifies a deck of layout constraints
- consists of complex rules nowadays
 - geometric, inter-layer, conditional rules...
- is ultra time-consuming in the design flow

¹Figure from ASAP7 design rule manual

Efficient DRC

There are several ways to improve DRC efficiency:

- better algorithms/data structures
 - sweepline, quad-tree, r-tree, ...
- parallel computing
 - region-based, design hierarchy, edge-based, task parallelism, ...
 - on SIMD engines, specialized hardware, distributed systems, GPUs, ...
- approximation methods
 - hotspot detection, violation type/number prediction, ...
 - other ML-enhanced DRC schemes

Open-Sourcing Tools!

Open-source EDA tools have been inspiring and empowering the evolution of cutting-edge EDA research.

Open-source 'design rule checkers' often appear in

- detailed routers (e.g., TritonRoute²)
 - not for verification purpose
 - tightly coupled with path searching
- layout editors (e.g., Magic³, KLayout⁴)
 - GUI-centric, not optimized for standalone checking
 - different data structure for efficient editing

²A. B. Kahng, L. Wang, and B. Xu, "Tritonroute: An initial detailed router for advanced vlsi technologies", in *IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, 2018.
³J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor, "The magic vlsi layout system", *IEEE Design & Test of Computers*, vol. 2, no. 1, pp. 19–30, 1985.
⁴M. Köfferlein, *Klayout*, https://klayout.de/, 2018.

We feel that a new (open-source) design rule checking engine is necessary!

This work proposes OpenDRC, which

- aims for extremely high efficiency
- supports hierarchical designs
- provides GPU acceleration
- is available at https://github.com/opendrc/opendrc

OpenDRC Overall Flow

Hierarchical DRC

• Core data structure: Layer-wise Bounding Volume Hierarchy (BVH)

- does not flatten the layout; preserves design hierarchy
- maintains minimum bounding rectangle (MBR) of cells
- Redundant check elimination

- some are trivial duplications: (a^M, b_1^N) and (b_1^M, a^N) when M = N
- some results could be reused: (a^M, a^N) and (b_2^M, b_2^N) when $b_2 = a$
- some violations cannot happen: (a^M, b_3^N)

Adaptive Layout Partition

Intuition (due to row-based placement):

- Layouts can be partitioned into non-overlapping regions (rows) along the y-axis
- By such grouping, x-coordinates of cells in a row are also likely to be separated

Solution: adaptive row-based partition

- solvable as interval merging problem in $\Theta(k + N)$ or $\Theta(k \log k)$)
- *k* is the number of cells, *N* is the number of unique coordinates ($k \gg N$)

Interval Merging

Require: A set *S* of intervals to be merged

Ensure: Non-overlapping intervals covering the domain of *S*

- 1: Initialize an array A with indices
- 2: for all interval $[l, r] \in S$ do
- 3: Update $A[l] \leftarrow max(A[l], r)$
- 4: end for
- 5: Initialize current interval end $e \leftarrow -1$
- 6: for the *i*-th element $\in A$ do
- 7: **if** i > e **then**
- 8: Create a new interval and reset *e*
- 9: end if
- 10: Update current interval end $e \leftarrow max(e, A[i])$
- 11: end for

▷ Step1: Initialize
▷ Step2: Merge

Step3: Scan
 moving across interval boundary

• Standard sweepline algorithm⁵ (but we use interval tree)

Parallel Mode w/ GPU Acceleration

- parallel DRC row-by-row
- edges of polygons are packed into a flattened array and transferred to device memory
- parallel sweepline⁶
 - parallel scan to determine check range
 - 2 parallel edge to edge(s) check

⁶Z. He, Y. Ma, and B. Yu, "X-check: Gpu-accelerated design rule checking via parallel sweepline algorithms", in *Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design*, 2022, pp. 1–9.

OpenDRC Software Architecture

OpenDRC										
GDSII Parser Rule Def. Result IO										
Application Layer Task Scheduler Algo Dispatcher										
Algorithm Layer Area Width Spacing Enclosure										
Infrastructure Layer Database Geo. Utility GPU Libs										

General Programming Interface

```
1 auto db = odrc::gdsii::read(/* path-to-gdsii */);
```

- 2 auto e = odrc::engine();
- 3 e.add_rules({
- 4 db.polygons().is_rectilinear(),
- 5 db.layer(19).width().greater_than(18),
- 6 db.layer(20).polygons().ensures(

```
7 [](const auto& p){return !p.name.empty();}
```

- 8)
- 9 });
- 10 e.check(db);

Experimental Evaluation (Intra-Polygon Rules)

Design	Rule	KLayout			V Chock	OpenDRC		Pula	KLayout			V Chark	OpenDRC	
		flat	deep	tile	A-CHECK	Seq.	Par.	Kule	flat	deep	tile	A-CHECK	Seq.	Par.
aes	M1.W.1	3.45	12.69	0.49	0.41	0.02	0.03	M1.A.1	3.34	3.32	0.65	-	0.02	0.03
	M2.W.1	1.37	3.83	0.23	0.14	0.04	0.04	M2.A.1	1.35	1.33	0.37	-	0.04	0.04
	M3.W.1	2.52	2.98	0.36	0.11	0.03	0.03	M3.A.1	2.49	2.51	0.51	-	0.03	0.03
ethmac	M1.W.1	11.88	45.84	1.56	1.21	0.07	0.08	M1.A.1	11.55	11.55	2.05	-	0.07	0.08
	M2.W.1	3.76	10.72	0.52	0.42	0.10	0.11	M2.A.1	3.62	3.63	1.01	-	0.10	0.11
	M3.W.1	6.36	7.64	0.77	0.31	0.08	0.08	M3.A.1	6.20	6.24	1.24	-	0.08	0.08
gcd	M1.W.1	0.13	0.44	0.13	0.11	< 0.01	< 0.01	M1.A.1	0.13	0.13	0.13	-	< 0.01	< 0.01
	M2.W.1	0.05	0.08	0.05	< 0.01	< 0.01	< 0.01	M2.A.1	0.05	0.05	0.05	-	< 0.01	< 0.01
	M3.W.1	0.06	0.07	0.06	< 0.01	< 0.01	< 0.01	M3.A.1	0.06	0.06	0.06	-	< 0.01	< 0.01
ibex	M1.W.1	3.60	12.38	0.50	0.43	0.02	0.03	M1.A.1	3.52	3.52	0.65	-	0.02	0.03
	M2.W.1	1.30	3.61	0.24	0.14	0.03	0.04	M2.A.1	1.27	1.28	0.36	-	0.04	0.04
	M3.W.1	2.38	2.88	0.36	0.10	0.03	0.03	M3.A.1	2.36	2.35	0.51	-	0.03	0.03
jpeg	M1.W.1	13.32	55.35	1.68	1.39	0.08	0.08	M1.A.1	13.01	13.00	2.17	-	0.07	0.08
	M2.W.1	3.05	8.77	0.46	0.40	0.10	0.10	M2.A.1	2.98	2.95	0.95	-	0.09	0.09
	M3.W.1	4.86	6.14	0.59	0.29	0.08	0.08	M3.A.1	4.79	4.81	1.10	-	0.08	0.07
sha3	M1.W.1	3.48	12.36	0.49	0.43	0.02	0.03	M1.A.1	3.40	3.40	0.63	-	0.02	0.03
	M2.W.1	1.10	2.95	0.21	0.12	0.03	0.03	M2.A.1	1.07	1.09	0.33	-	0.03	0.03
	M3.W.1	1.79	2.15	0.30	0.09	0.02	0.02	M3.A.1	1.79	1.77	0.42	-	0.02	0.02
uart	M1.W.1	0.15	0.40	0.15	0.11	< 0.01	< 0.01	M1.A.1	0.14	0.14	0.15	-	< 0.01	< 0.01
	M2.W.1	0.06	0.12	0.06	< 0.01	< 0.01	< 0.01	M2.A.1	0.06	0.06	0.06	-	< 0.01	< 0.01
	M3.W.1	0.08	0.09	0.08	< 0.01	< 0.01	< 0.01	M3.A.1	0.08	0.08	0.08	-	< 0.01	< 0.01
Average		37.7×	$82.1 \times$	$9.6 \times$	$4.5 \times$	$0.9 \times$	$1.0 \times$		37.6×	$37.6 \times$	$13.0 \times$	-	$1.0 \times$	$1.0 \times$

Experimental Evaluation (Inter-Polygon Rules)

Design	Rule	KLayout			V Charle	OpenDRC		Pula	KLayout			V Chark	OpenDRC	
		flat	deep	tile	A-CHECK	Seq.	Par.	Kule	flat	deep	tile	A-CHECK	Seq.	Par.
aes	M1.S.1	4.33	13.78	0.62	0.17	0.21	0.06	V1.M1.EN.1	468.24	462.28	15.97	0.20	6.44	0.12
	M2.S.1	1.55	4.15	0.29	0.13	0.09	0.02	V2.M2.EN.1	2.93	1.64	0.59	0.14	0.18	0.09
	M3.S.1	2.64	3.25	0.38	0.12	0.15	0.02	V1.M2.EN.2	469.96	468.89	15.71	0.20	0.24	0.12
ethmac	M1.S.1	14.67	48.50	1.89	0.39	0.72	0.14	V1.M1.EN.1	3045.02	3038.10	57.76	2.00	42.35	0.41
	M2.S.1	4.35	11.71	0.59	0.20	0.23	0.05	V2.M2.EN.1	8.29	4.74	1.45	0.23	0.47	0.22
	M3.S.1	6.68	8.17	0.82	0.16	0.39	0.04	V1.M2.EN.2	3031.20	3034.67	55.63	0.36	0.84	0.32
gcd	M1.S.1	0.15	0.46	0.14	0.11	< 0.01	0.01	V1.M1.EN.1	3.06	2.96	3.09	0.11	0.06	< 0.01
	M2.S.1	0.05	0.09	0.05	0.11	< 0.01	< 0.01	V2.M2.EN.1	0.07	0.05	0.08	0.10	< 0.01	< 0.01
	M3.S.1	0.06	0.07	0.06	0.11	< 0.01	< 0.01	V1.M2.EN.2	2.95	2.95	2.99	0.10	< 0.01	< 0.01
ibex	M1.S.1	4.45	13.15	0.63	0.17	0.22	0.06	V1.M1.EN.1	477.86	473.62	16.03	0.21	7.14	0.13
	M2.S.1	1.49	3.96	0.25	0.13	0.09	0.02	V2.M2.EN.1	2.78	1.56	0.56	0.15	0.18	0.08
	M3.S.1	2.50	3.08	0.39	0.12	0.14	0.02	V1.M2.EN.2	479.79	477.17	15.90	0.17	0.24	0.12
jpeg	M1.S.1	15.82	57.36	2.01	0.43	0.80	0.16	V1.M1.EN.1	3609.55	3580.46	58.29	1.59	55.07	0.49
	M2.S.1	3.48	9.79	0.49	0.21	0.20	0.05	V2.M2.EN.1	7.07	4.04	1.22	0.22	0.40	0.20
	M3.S.1	5.17	6.70	0.64	0.16	0.30	0.03	V1.M2.EN.2	3611.69	3588.04	57.01	0.35	0.87	0.32
sha3	M1.S.1	4.23	13.02	0.60	0.16	0.21	0.06	V1.M1.EN.1	476.10	472.44	15.87	0.49	7.07	0.12
	M2.S.1	1.16	3.23	0.22	0.12	0.07	0.02	V2.M2.EN.1	2.32	1.29	0.48	0.13	0.14	0.07
	M3.S.1	1.87	2.31	0.30	0.11	0.11	0.02	V1.M2.EN.2	468.70	467.92	17.28	0.15	0.22	0.11
uart	M1.S.1	0.19	0.44	0.19	0.11	< 0.01	0.01	V1.M1.EN.1	3.61	3.50	3.62	0.10	0.06	< 0.01
	M2.S.1	0.07	0.13	0.07	0.11	< 0.01	< 0.01	V2.M2.EN.1	0.10	0.06	0.10	0.12	< 0.01	< 0.01
	M3.S.1	0.08	0.10	0.08	0.10	< 0.01	< 0.01	V1.M2.EN.2	3.49	3.48	3.54	0.10	< 0.01	< 0.01
Average		$47.6 \times$	99.5×	$12.0 \times$	5.6×	3.2×	1.0×		$514.9 \times$	$429.0 \times$	$61.5 \times$	$2.9 \times$	$4.7 \times$	1.0×

Runtime Breakdown for Sequential Spacing Check

The runtime breakdown of OpenDRC sequential *minimum spacing* checks. 'Layout Part' refers to adaptive layout partitioning; 'Intvl. Tree Ops.' refers to interval tree operations insert, remove, and query; 'E2E Check' refers to edge-to-edge checks.

We develop OpenDRC, a new open-source design rule checking engine

- adaptive row-based layout partition
- efficient sequential/parallel hierarchical DRC procedures
- significant speedup compared with SOTA multi-threading/GPU design rule checkers Future work:
 - systematic evaluation of heterogeneous computing in DRC
 - data compression techniques for memory footprint reduction
 - supports for general geometric shapes

THANK YOU!

